用户名: 密码: 验证码:
GPS地壳形变观测及其在中亚大三角地震构造域的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纵观全球中强地震的空间分布,除一系列的洋脊、裂谷、海沟、转换断层和大陆内部的古板块边缘等大型构造活动带被清晰地勾画和显示外,在亚洲大陆东部地区相对密集的地震还清楚地勾画了一个面状的三角形区域。自1898年以来,该区域记录到的6级及以上地震占到全球地震的4.4%。在如此小的范围内发生如此多的强地震,前人将这一特殊区域称之为“中亚大三角地震构造域”。中亚大三角地震构造域位于亚洲的中东部地区,地处经度E60°-120°,纬度N10°-60°的矩形范围内,总体形态大致呈正三角形,其西南边界为平行于喜马拉雅山脉的区域,是大三角形的底边;东边界大致沿东经105°线,即从中国境内的南北地震带沿华南地块、鄂尔多斯地块西边缘向北延伸至贝加尔湖;西北边界则从帕米尔高原开始,穿越天山、阿尔泰山至贝加尔湖地区。
     自1900年以来,中亚大三角地震构造域内共发生过121次7级以上大地震。其中8级以上大地震有22次,这些大地震主要发生在青藏高原、天山造山带以及贝加尔断裂带上。最近十多年来发生的破坏性地震有:1997年11月8日玛尼Ms7.9地震、2001年11月14日昆仑山Ms8.1级地震、2008年3月21日于田Ms7.3级地震、2008年5月12日汶川Ms8.0地震、2010年4月14日玉树Ms7.1地震等。
     中亚大三角地震构造域是一个由密集的中强地震所自然呈现出的特殊区域,其内部跌宕起伏的高原、山脉、山间盆地和地堑,以及错综复杂的活动断裂直接反映了该区域强烈的地壳运动和构造形变。中亚大三角地震构造域主要包含青藏高原和西域二大构造区域。其中,青藏高原构造区域内部发育有一系列规模宏大、活动性强的弧形断裂带,主要的大型断裂带有:喜马拉雅主中央断裂带、西昆仑断裂带、喀喇昆仑—嘉黎断裂带、鲜水河断裂带、东昆仑断裂带、阿尔金断裂带和红河断裂带;西域构造区内部发育有天山断裂带、戈壁阿尔泰断裂带、蒙古-阿尔泰断裂带、Bolnay断裂带等。
     本论文以高精度、高密度、大范围的GPS观测资料为主,并结合活动断裂资料和最近百余年的中强地震资料,对中亚大三角地震构造域的现今地壳形变特征以及地壳形变与地震活动性的关系进行探讨。具体研究方法与成果包括:
     1.在吸纳国内外关于高精度GPS数据处理方法和策略的基础上,完善了一套基于GIPSY和QOCA的高精度、高效率的自动化GPS数据处理系统。在USGS(United States Geological Survey, USGS)的自动化GPS处理软件包GP的基础上,吸收和采纳目前国际上GPS数据处理的最新模型与方法,利用TEQC、GIPSY、Ambizap以及QOCA等软件,完善出一套实用化的GPS前期数据处理与后期数据分析系统,实现了从GPS数据准备、GPS数据处理、联合平差及结果可视化展示等一系列步骤的自动化,实现了高效的GPS数据处理。
     2.融合国内外多渠道GPS资料,获得中亚大三角地震构造域的综合GPS速度场。主要通过二种方式获得中亚大三角地震构造域的GPS速度场:①野外流动加密观测;②将不同机构、不同区域、不同时期、不同参考框架下的GPS速度场资料,以不同数据的公共点为“桥梁”,通过球面欧拉旋转变换,融合、归化至相同的参考框架。通过一致性检核和粗差剔除等环节,最后得到1647个GPS站点的速率。首次给出中亚大三角地震构造域及其周缘的GPS速度场。
     3.基于高精度、高密度的GPS速度场结果,并结合中亚大三角地震构造域的活动构造概要,总结出中亚大三角地震构造域GPS速度场的主要特征和区域内部的差异运动特点:
     ①相对于稳定的欧亚板块,中亚大三角地震构造域的北东向水平地壳运动速度的大小,从南部喜马拉雅地区的~40mmm/a向北依次梯度变小至北部贝加尔地区~3mm/a。反映出中亚大三角在印度板块北东向俯冲、推挤作用下的缩短、隆升。
     ②在整个中亚大三角地震构造域,青藏高原表现出了最强烈的水平向地壳差异运动。由于塔里木块体、阿拉善块体和鄂尔多斯块体的“准刚性”阻挡,以及高原北部区域对南部区域的自然阻挡作用,青藏高原在发生北东向强烈挤压缩短的同时,产生了明显的东向挤出式“逃逸”。
     ③在青藏高原的东南部,由于“阿萨姆犄角”的北东向强烈插入,再加之华南“准刚性”块体在东部的阻挡,使该区域的高塑性地壳物质围绕喜马拉雅东构造结产生强烈的顺时针流滑式挤出逃逸。
     ④塔里木地块在整个中亚大三角地震构造域的的现今地壳变形中扮演着重要的角色:由于塔里木地块的调节和转化作用,使中亚大三角地震构造域中部的水平地壳运动,呈现出从NNE到NE方向的扇状发散特征。在塔里木盆地内部,速度大小比较均匀,反映出较小的内部形变。
     ⑤天山地区是中亚大三角地震构造域仅次于青藏高原的强烈挤压变形区。在跨越天山前后,GPS速度场从15-20mm/a迅速变小到1-5mm/a。
     ⑥在蒙古中西部及贝加尔湖地区,站点的运动速度普遍在2-5mm/a之间,且运动方向无明显规律性,反映出该区域相对比较微弱的地壳形变背景。
     ⑦在帕米尔高原地区,由于缺少足够的GPS观测站点,我们尚无法直观判定其内部的地壳运动差异性,但根据其周缘的GPS速度场状况,可推测其可能存在塔里木刚性块体阻挡下强烈的逆时针旋转。
     4.基于优选的空间内插算法,给出中亚大三角地震构造域连续分布的GPS应变率场。采用二维“高张力样条”(t=0.95)内插算法,对非均匀的GPS速度场进行了0.5°×0.5°的均匀预测加密,然后根据每个1°×1°网格边界及内部的9个内插速度矢量,计算出相应1°×1°网格内的均匀应变率。由此得出中亚大三角地震构造域各个区域定量、直观的地壳形变状况。
     ①整个喜马拉雅弧形地块,在沿印度板块与欧亚板块会聚的方向上承受着强烈的挤压缩短,典型的压缩应变率为(30-60)nanostrain/a,局部量值高达(80-90) nanostrain/a。其中,喜马拉雅地块西部挤压应变比东部更强烈。同时,在大致垂直于板块会聚的方向上,喜马拉雅地块还承受着轻微的横向拉张。
     ②拉萨地块沿印度板块与欧亚板块会聚的方向上,挤压缩短的典型应变率明显地减小为(20-30)nanostrain/a。但是,在该地块的中部,横向拉伸应变率变得非常明显,典型量值为(20-30)nanostrain/a,局部高达(40-60)nanostrain/a。这种明显拉张应变与该地区广泛发育的南北向正断层是相一致的。
     ③羌塘地块的中西部典型的应变是近南北向的挤压和东西向的拉伸,量值在(15-25)nanostrain/a。而在青藏高原的东部,应变场表现出明显的近南北向拉伸,典型量值为(20-30)nanostrain/a。
     ④祁连地块东边的四川盆地及其以北区域,并无显著的应变,典型的量值在10nanostrain/a以下。整个祁连地块和柴达木地块的应变状况比较均匀,主要表现为NE-SW向挤压和NW-SE向拉伸,挤压应变的典型量值为(15-25)nanostrain/a,拉张应变的典型量值为(10-15)nanostrain/a。
     ⑤青藏高原东南角的川滇地区,应变强烈且方向变化较复杂,不过,大致东西向的扩散拉张和南北向的挤出式压缩特征非常清晰。
     ⑥天山地区主要为天山南北向挤压缩短变形为主,挤压缩短呈现非均匀分布特征。挤压的最大量值为30nanostrain/a;
     ⑦贝加尔地区整体上处于NW-SE向的拉张状态,拉张的最大量值为40nanostrain/a,在东部地区存在少量NNW向和NNE向的压缩状态,压缩的最大量值为10nanostrain/a,面膨胀应变的结果表明贝加尔地区整体上呈膨胀状态。
     5.中亚大三角地震构造域地壳形变块体的划分和平均应变状况的研究。中亚大三角地震构造域内主要有青藏高原-喜玛拉雅挤压区、天山挤压造山带、贝加尔拉张区以及川滇剪切区。本文在前人关于活动地块划分的基础上,以地壳形变特征为依据,划分出5类地壳形变块体,包括准刚性块体、纯拉张变形块体、纯挤压变形块体、拉张为主变形块体、挤压为主变形块体等。在中亚大三角地震构造域所划分出的具体形变块体包括:东塔里木块体、西塔里木块体、阿拉善块体、萨彦块体、阿穆尔块体、准噶尔块体、天山块体、祁连块体、巴颜喀拉块体、羌塘块体、拉萨块体、滇南块体、川滇块体。其中鄂尔多斯块体、塔里木块体、阿拉善块体为刚性块体。
     6.综合采用半无限弹性空间的断裂位错模型、准刚性块体欧拉旋转模型和弹性块体应变与旋转模型,对中亚大三角地震构造域的现今地壳形变GPS速度场进行了拟合、解释。综合与简化中亚大三角地震构造域内主要活动断裂带,建立每一条断裂在半无限空间的三维几何模型,并赋予必要的运动方式先验信息。以中亚大三角地震构造域的1233个GPS速度矢量为约束,通过在合理的范围内约束和调整各断层段运动速率的先验值,用半无限弹性空间的深断裂位错模型最佳拟合了GPS速度场,并反演获得了所有断裂段的运动速率。同时对于无法利用该模型解释的GPS速度场残差,进一步采用准刚性块体旋转模型以及弹性块体应变与旋转模型进行了拟合、解释。亦即,尝试采用非连续形变模型和连续形变模型相结合的方法,初步解释了亚大三角地震构造域的地壳运动与形变特征。
     7.分析、研究了中亚大三角地震构造域地震活动性与地壳形变关系,包括地震空间分布与地震矩累积率场、面膨胀率场和最大剪切应变场的高值对应关系,并首次对比了地震矩累积率与地震能量释放量之间的空间对应关系。结果表明:在中亚大三角地震构造域内,虽然应变率场、面膨胀率以及剪切应变率场与研究区域内的地震存在一定的空间相关性,但关系复杂。而采用地震能量释放量与地震矩累积率的的空间对比发现,尽管两者有着一定的相关性,但并不明显,最可能的原因是我们的地震能量释放计算,仅采用了100年的地震资料,与板内地震的平均复发周期相比,这样短时间段内统计、计算的地震能量释放分布,完全不能代表一个地震周期内的能量释放分布。
Although most major earthquakes occur on plate boundaries, including ocean mid-ridges, trenches, and transform faults, some of continental interiors are also seismically active, such as central Asia. A map of epicenter distribution in this region delineates a huge triangular area with relatively densely populated quakes (M≥6.0) which account for 4.4% of all events since 1898. It is called the "Great Triangular Seismic Region". It covers 60°-120E and 0°-60°N. Viewed as a plane, it as three boundaries. The southwestern boundary of the triangle lies parallel to the Himalayas. The eastern boundary lies roughly along 105°E, and tectonically along the eastern edges of South China and the Ordos block, and extending northward to Lake Baikal. The third side is the northwestern boundary, which roughly begins at the Pamirs and continues northeastward through the Tian Shan Mountains, the Altai, and onwards to Baikal.
     Since 1900,121 quakes greater than M7.0 have occurred in this region, including twenties of greater than M8.0. Almost all these earthquakes happened in the Tibetan Plateau, Tien Shan orogen and Baikal rift zone. In recent years, the devastating events in this region include the Mani Ms7.9 in Qinghai on November 8,1997, Kunlun Ms8.1 in Qinghai on November 14,2001, Yutian Ms7.3 in Xingjiang on March 21,2008, Wenchuan Ms8.0 in Sichuan on May 12,2008 and Yushu Ms7.1 in Qinghai on April 14,2010.
     This great triangular seismotectonic region is a particular natural domain formed by densely distributed major and large earthquakes, laced with plateaus, mountains, basins, and grabens, and complicated active faults, indicative of intensive crustal movement and tectonic deformation. In tectonics it mainly comprises the Tibetan plateau block and Xiyu (West domain) block. A series of large-scale and active arcuate fault systems characterize the Tibetan plateau, such as the West Kunlun fault, Karakorum-Jiali fault, Xianshuihe fault, East Kunlun fault, Altyn Tagh fault and the Red River fault. In the Xiyu block exist the Tienshan fault, Gobi-Altay fault, Altay fault and Bolnay fault and so forth.
     This thesis focuses on data processing and analysis of high-precision and large-scale GPS measurements. Combined with data of active faults and major earthquakes over 100 years, this work attempts to reveal present-day crustal deformation of the great triangular seismic region in central Asia and its relationship with seismicity. Detailed approaches and research results are described as follows.
     1. Establishment of a set of high-efficiency and high-precision GPS data automatic processing system. Based on the GP programs developed by USGS, this work has absorbed and adopted the latest models and methods of GNSS data processing. By utilizing and modifying the software TEQC, GIPSY, Ambizap and QOCA, a complete set of perfect pre-processing and post-processing GPS data analysis system was formed. It realizes a series of automatic procedures, including GPS data preparation, GPS data processing, joint adjustment and visual displaying of results. All these have facilitated GPS data processing with high efficiency.
     2. Integrating GPS data from many channels abroad and determination of the GPS velocity field for the great triangular seismic region in central Asia. This GPS field was determined with two methods:①field campaign GPS observations,②The GPS data of different times and under various frameworks from varied institutions and regions are reduced to a same reference frame using the common points among the data, and rotation transform on the Euler sphere. By consistency tests and eliminating the data of sites that were too dense in distribution, of bad quality or obviously inconsistent with surrounding sites. Finally, the rates at 1647 GPS sites are obtained. It is the first time to show a GPS velocity field in the great triangular seismic region in central Asia and its surroundings.
     3. Based on the resultant high-accuracy and high-density GPS velocity field, combined with the outlined active tectonics in the great triangular seismic region in central Asia, this thesis summarizes the following main characters of the GPS velocity field and differential motions in the study area:
     ①With respect to the stable Eurasian plate, the northeastward horizontal crustal velocities become smaller successively from-40mm/a at the south Himalaya to-3mm/a at north of Baikal, which reflect the uplift and shorten in the great triangular seismic region in central Asia plunged northeastward by the Indian plate.
     ②In the whole great triangular seismic region in central Asia, the most remarkable differential horizontal crustal motions appear in the Tibetan plateau. Due to hampering of the rigid Tarim and Alashan blocks and the quasi-rigid Ordos block as well as the natural impedance of the northern plateau to the southern regions, notable eastward extrusion-like escape of the Tibetan plateau occurs as it experienced northeast directed compression and shortening.
     ③In the southeastern Tibetan plateau, because of the northeastward intensive insertion of the Asam corner plus the hampering of the quasi-rigid South China block, the highly plastic crustal material of this region rotates clockwise about the East Himalayan syntaxis and slides toward southeast.
     ④The Tarim block plays an important role in the present-day crustal deformation of the whole great triangular seismic region in central Asia. Due to its accommodation and transform, the horizontal motions in this region exhibit a divergence feature in NNE to NE directions. Within the Tarim basin, velocities are relatively uniform implying little deformation of its interior.
     ⑤The Tian Shan area also experiences strong compressive deformation only inferior to the Tibetan plateau. Across the Tian Shan, GPS velocities become rapidly from 15-20mm/a to 1-5mm/a.
     ⑥In the central and western Mongolia and the Baikal region, GPS velocities are generally 20-5mm/a, without obvious regularity. It means that these regions have relatively weak deformation of the crust.
     ⑦As the Pamir region lacks sufficient GPS sites, its differential crustal motions cannot be determined directly. Considering the GPS velocity fields surrounding this region, it is speculated that it may strongly rotate under the hampering of the rigid Tarim block.
     4. The continuous GPS strain field in the great triangular seismic region in central Asia derived from preferred spatial interpolation. Adopting the 2D high tension spline (τ=0.95) interpolation algorithm, this work made interpolation uniformly to the irregular GPS velocity field with a 0.5°×0.5°grid. Then the regular grid strain rate with 1°×1°grid was calculated by 9 velocity vectors of the boundaries and interiors of each grid, yielding situations of crustal deformation of each area in the great triangular seismic region of central Asia quantitatively and intuitively.
     ①The whole Himalayan arc-shaped terrain is subject to intensive compression and shortening along the convergence direction of the India plate and Eurasia plate with typical compression and shortening strain rate of 30-60×10-9/a, locally reaching 80-90×10-9/a. Such deformation in the western Himalaya is more intensive than that of the eastern Himalaya. Meanwhile, it also experiences slight lateral extension in the direction roughly normal to the plate convergence.
     ②In the Lhasa terrain, the strain rate of compression and shortening in the plate convergence direction declines to20-30×10-9/a. While in the middle its lateral extension is very notable with representative values 20-30×10-9/a, and locally as high as 40-60×10-9/a, which is consistent with widespread NS trending normal faults in this region.
     ③The typical strain rate of mid-west of the Qiangtang block is approximate NS compression and EW extension. The value is about 15-25nanostrain/a.While in the eastern Tibetan plateau, the strain field exhibits obvious nearly NS extension with a rate 20-30 nanostrain/a.
     ④No obvious strain is seen in the Sichuan basin and its north, with the value below 10 nanostrain/a. The Kunlun block and Qaidam block have a uniform strain rate, mainly in a NE-SW compression and NW-SE extension. The strain rate values are 15-25nanostrain/a for compression and 10-15nanostrain/a for extension, respectively.
     ⑤The strain in the Chuandian region southeast of the Tibetan plateau is strong and complex with variable directions. Nevertheless, it is a clear pattern that the approximately EW extension and NS compression characterize this region.
     ⑥In the Tien Shan region, NS compressive deformation is dominant. But the compressive shortening is not uniform, where the maximum strain rate value is about 30nanostrain/a
     ⑦In the Baikal region. NW-SE extensional strain exists in the whole zone. The largest strain rate is 40nanostrain/a. In the eastern Baikal exists some NNW and NNE compression, with the maximum value 10nanostrain/a. Analysis of plane dilatation strain of Baikal shows that it is a whole expansion.
     5. Division of deformed crustal blocks and average strain analysis for the great triangular seismic region in central Asia. This region comprises the Tibet-Himalaya compression area, Tien Shan compressive orogen, Baikal extensional area and Chuandian shear area. Based on previous studies, according to characteristics of crustal deformation, this work subdivides the whole region into five types of deformed blocks, i.e. quasi-rigid block, purely extensional block, purely compressive block, extension-dominant block, and compression-dominant block. Consequently, the great triangular seismic region in central Asia comprises the following blocks:East Tarim, West Tarim, Ordos, Alasan, South China, Sayan, Amur, Zhungeer, Tien Shan, Qilian, Bayan Hara, Qiangtang, Lhasa, South Yunnan and Chuandian. Among them, the Ordos block, Tarim block, and Alasan block are rigid massifs.
     6. Fitting and interpretation of the present-day GPS velocity field in the great triangular seismic region in central Asia based on joint usage of the fault dislocation model in half-space, Euler rotation model of the quasi-rigid block and strain-rotation model of the elastic block. This work simplifies and synthesizes the major active faults in the great triangular seismic region in central Asia, builds up the 3D fault segment geometries of each fault in half infinite elastic space, and gives an necessary prior information of fault movements. Constrained with 1233 GPS velocity vectors in the great triangular seismic region, it adjusts the prior slip rate of each fault segment within reasonable ranges, then makes the best fit of GPS velocity vectors with a model of half infinite elastic space containing deep fault dislocations as well as inversion of slip rates of all the fault segments. At the same time, it adopts the rigid block rotation model and elastic block strain and rotation model to describe the rest residuals which can not be well explained.
     7. Relationship between seismic activity and crustal deformation in the great triangular seismic region. This work analyzes the relationships among spatial-temporal distributions of earthquakes, the field of accumulative seismic moments, field of plane expansion rates and field of maximum shear strains. And it compares the spatial corresponding relationship between the accumulation rates of seismic moments and release of seismic energy. The result shows that although there exists some spatial correlation among the strain rate field, planes expansion rate field, shear strain rate field and earthquakes in the study region, it is of a complicated relationship. On the other hand, the correlation between the seismic energy release and accumulation rate of seismic moments is not obvious. The most possible reason for this result is that only quake data of 100 years are used for calculation of seismic energy release. Compared with the average recurrence intervals of intraplate earthquakes, such a time span is too short to describe the distribution of seismic energy release in a complete seismic cycle.
引文
1. Abdrakhmatov K. Y.,Aldazhanov S. A.,Hager B. H.,et al. Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates [J].Nature,1996,384:450-453.
    2. Allen C. R.,Han Y., Sieh K. E.,et al. Red River and associated faults, Yunnan Province,China, Quaternary geology,slip rates, and seismic harzard[J]. Geol. Soc, Am. Bull.,1984,95,686-700.
    3. Allen C. R., Luo Z. L., Qian H.,et al. Field study of a highly active fault zone:the Xianshuihe fault of southwestern China[J]. Geol Soc AmBull,1991,103:1178-1199.
    4. Allinson C R,Clarks P J.Edwards S J et al. Stability of direct GPS estimates of ocean tide loading[J].Geophys. Res. Lett.,2004,31,L15603.
    5. Armijo R,Tapponnier P,Mercier J. L.,et al. Quaternary extension in southern Tibet:Field observations and tectonic implications[J].J. Geophys Res.,1986(91):13803-13872.
    6. Avouac J. P.,Tapponnier P.,Bai M.,et al.Active thrusting and folding along the northern TienShan and Late Cenozoic rotation of the Tarim relative to Dzungeria and Kazakhstan[J].J Geophys Res,1993,98:6755-6804.
    7. Avouac J. P.,Tapponnier P. Kinematic model of active deformation in Central Asia[J]. Geophys. Res. Lett.,1993,20(10):895-898.
    8. Baljinnyam L.,et al.Ruptures of major earthquakes and active deformation in Mongolia and its surroundings[M],Mem.Geol.Soc.Am.1993.181,62.
    9. Banerjee P.,Burgmann R.Covergence across the northwest Himalaya from GPS measurement[J].Geophys. Res. Lett.2002,29(13):1652-1655.
    10. Barruol,G.,A. Deschamps,J.Deverchere et al.Upper mantle flow beneath and around the Hangay dome,Central Mongolia[J].Earth Planet. Sci. Lett.,2008,274:221-233.
    11. Bendick R.,Bilham R.,Freymueller J T,et al.Geodetic evidence for a low slip rate in the Altyn Tagh fault system[J].Nature,2000,404:69-72.
    12. Bertiger W.,Desai S.,Haines B.,et al. Single receiver phase ambiguity resolution with GPS data[J] J.Geodesy,2010,84,327-337.
    13. Bilham,R.,K. Larson,J. Freymueller et al.GPS measurements of present day convergence rates in the Nepal Himalaya[J].Nature,1997,336,61-64.
    14. Blewitt G. Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000km[J].J. Geophys. Res.,1989,94(B8):10187-10203.
    15. Blewitt G. Fixed Point Theorems of GPS Carrier Phase Ambiguity Resolution and Their Application to Massive Network Processing:Ambizap[J], J Geophys Res.,2008,113(B 12410):1-16.
    16. Bock Y.,Nikolaidis R. M.,Jonge P. J.,et al.Instantaneous geodetic positioning at medium distance with the Global Positioning System[J].J Geophys Res,2000,105(28)223-228,253.
    17. Boehm J.,Niell A.,Tregoning P.,et al. Global Mapping Function(GMF):A new empirical mapping function based on numberic weather model data[J]. Geophys Res Lett,2006,33(L07304):1-4.
    18. Boehm J.,Werl B.,Schuh H.Troposphere mapping functions for GPS and very long baseline interferometry from European Center for Midium-Range Weather Forcasts operational analysis data[J]. Journal of Geophysical Research,2006,111,B02406
    19. Boehm J.,Heinkelmann R.,Schuh H. Short Note:A global model pressure and temperature for geodetic applications[J].Journal of Geodesy,2007.
    20. Brown L. D.,Zhao W. J.,Nelson K. D.,et al. Bright spots,structure and magmatism in Southern Tibet from INDEPTH seismic reflection profiling[J].Science,1996,274:1684-1690.
    21. Brown E.T.,Bendick R.,Bourles D.L.,et al.Slip rate on the Karakoram fault Ladakh,India,detemined using cosmic ray exposure dating of debris flows and moraines[J].J. Geophys. Res.,2002,107:ESE7-1-ESE7-13.
    22. Burchfiel B. C.,Zhang P., Wang Y.,et al. Geology of the Haiyuan fault zone,Ningxia Autonomous Region,China and its relation to the evolution of the northeastern margin of the Tibetan Plateau[J].Tectonics,1991,10:1091-1110.
    23. Calais E.,Lesne O.,Deverchere J.,et al. Crustal deformation in the Baikal rift from GPS measurements[J].Geophys. Res. Lett.,1998,25(21):4003-4006.
    24. Calais E.,Amarjargal S. New constraints on current deformation in Asia from continous GPS measurements at Ulan Baatar,Mongolia[J].Geophys. Res. Lett.2000,27(10):1527-1530.
    25. Calais E.,Vergnolle M.,Sankov V.,et al. GPS measurements of crustal deformation in the Baikal-Mongolia area(1994-2002):Implication for current kinematics of Asia[J].J.Geophys. Res.2003,108(B10):2501-2513.
    26. Calais E.,L. Dong, M. Wang et al.Continental deformation in Asia from a combined GPS solution[J].Geophys. Res. Lett.,2006,33,L24319:1-6.
    27. Cardellach E.,Elosegui P.,Davis J. L. Global distortion of GPS networks associated with satellite antenna model errors[J].,J.Geophys.Res.,2007,112,B07405,:1-13.
    28. Chevalier M. L.,Ryerson F. J.,Topponnier P.,et al. Slip rate measurements on the Karakoram fault amy imply secular variations in fault motion[J].Science,2005,307:411-414.
    29. Counselman C. C.,Shapiro I. I. Miniature interferometer terminals for earth surveying. Bull.Geod.1979,53(2),139-163.
    30. Counselman C.C.,SHAPIRO I. I.,GREENSPAN R. L.,et al. Backpack VLBI. Terminal with Subcentimeter Capability. Radio Interferometry Techniques for Geodesy, NASA Conference Publication,1979,vol.2115,409,414,.
    31. Cowgill,E.,Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting:revisiting the CherChen River site along the Altyn Tagh Fault,NW China[J].Earth Planet. Sci. Lett.,2007,254,239-255.
    32. Cunningham,W.D.Lithospheric control on late Cenozoic construction of the Mongolia Altai[J].Tectonics,1998,17,891-902.
    33. Cunningham,D.Active intracontinental transpressional mountain building in the Mongolian Altai:Defining a new class of orogen[J].Earth Planet. Sci. Lett.,2005,240,436-444.
    34. Densmore A. L.,Ellis M.A.,et al.Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau[J].Tectonics,2007,26(10)
    35. Dewey,J.F.,and Burke,K.C.A.,Tibetan,variscan,and Precambrian basement reactivation:products of continental collision[J].J. Geol.,1973,81,683-692.
    36. Dong D.,Bock Y.Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California[J] Journal of Geophysical Research,1989,94(B4):3949-3966.
    37. Dong D.,T.A.Herring,R.W.King,Estimating regional deformation from a combination of space and terrestrial geodeticdata,Journal of Geodesy,1998,72,pp.200-214.
    38. Dong D N,Fang P,Bock Y,et al.Anatomy of apparent seasonal variations from GPS derived site position time series[J].J Geophys Res.,2002,107(B4):ETG901-ETG916.
    39. Dong D N,Fang P,Bock Y,et al. Spatiotemporal filtering using principal component analysis and Karhunen-Love expansion approaches for regional GPS network analysis[J]. J Geophy Res, 2006.111:B03405:1-16.
    40. England P.,and Houseman G.,Finite strain calculations of continental deformation 2.Comparison with the India-Asia Collision zone[J].J. Geophys. Res.,1986,91(B3):3644-3676.
    41. England, P., and P. Molnar, The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults, Geophys. J. Int.,1997,130,551-582.
    42. England,P.,and P.Molnar.Late quaternary to decadal velocity fields in Asia[J].J.Geophys.Res.,2005,110,B12401-B12427.
    43. Gan W.,Prescott W.H..Crustal deformation rate in central and eastern U.S. inferred from GPS[J].Geophys. Res. Lett.,2001,28(19):3733-3736.
    44. Gan W,Zhang P,Shen Z K et al.Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J],J Geophys Res,2007,112(B08416):1-14
    45. Ge M,Gendt G,Dick G,et al.Impact of GPS satellite antenna offsets on scale changes in global network solutions[J].Geophysical Research Letters,2005,32,L06310:1-4.
    46. Gendt G.[IGSMAIL5438]:IGS switch to absolute antenna model and ITRF2005.
    47. Grapenthin,R.,F.Sigmundsson,H.Gerisson,et al.Icelandic rhymics:Annual modulation of land elevation and plate spreading by snow load[J].Geophys. Res. Lett.,2006,33(L24305):l-5.
    48. Gurtner, W., G. Mader, D. MacArthur, A Common Exchange Format for GPS Data. Proceedings of the Fifth International Geodetic Symposium on Satellite Systems,1989,pp.917ff, Las Cruces
    49. Gutenberg B and C.F.Richter.Seismology of the earth and associated phenomena[M].Princeton University Press,1954.
    50. He Jiankun,Chery J.Slip rates of the Altyn Tagh,Kunlun and Karakorum faults(Tibet) from 3D mechanical modeling[J].Earth and Planetary Science Letters,2008(274):50-58.
    51. Heflin, M. B., Bertiger, W. I., Blewitt, G. et al. Global geodesy using GPS without fiducial sitesfJ]. Geophys. Res. Lett.,1992,19:131-134.
    52. Herring, T. A.,1997. GLOBK:Global Kalman Filter VLBI and GPS analysis program, v.4.1, Mass. Inst. of Technol.,Cambridge.
    53. Holt W E、Chamot-Rooke N、Le Pichon X et al, Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations,Jour Geophys Res,2000,105:19185-19209
    54. Jackson M.,Bilham R.Constraints on Himalayan deformation inferred from vertical velocity fields in Nepal and Tibet[J].J. Geophys. Res.1994,99(B7):13897-13912.
    55. Kedar,S.,G.A.Hajj,B.D.Wilson,et al.The effect of the second order GPS ionospheric correction on receiver positions,Geophys.Res.Lett.,2003,30(16),1829:SDE2-4.
    56. King,M.A.,C.S.Watson,N.T.Penna,et al.Subdaily signals in GPS observations and their effect at semiannual and annual periods, Geophys.Res.Lett.,2008,35,L03302:1-5.
    57. King,N.E.,et al.Space geodetic observation of expansion of the San Gabriel Valley,California,aquifer system,during heavy rainfall in winter 2004 2005,J.Geophys.Res.,2007,112,B03409:1-11.
    58. Kong X.,and Bird,P.,Notectonics of Asia:Thin-shell finite-element models with faults,in Yin A.,and Harrison,T.M.,eds.,The tectonic evolution of Asia:New York,Cambridge University Press.,p.18-34.
    59. Kostrov, V. V. Seismic moment and energy of earthquake and seismic flow of rock[J].Izy.Acad. USSR Phys.Solid Earth 1994,1,13-21.
    60. Lacassin R.,Valli F.,Amaud N.,et al.Large-scale geometry,offset and kinematic evolution of the Karakoram fault,Tibet[J].Earth Planet. Sci. Lett.,2004,219:255-269.
    61. Larson.K.M.,Burgmann R.,Bilham R.,et al.Kinematics of the India-Eurasia collision zone from GPS measurements[J].J. Geophys. Res.,1999,104(B1):1077-1093.
    62. Lave,J.,and J.P. Avouac.Active folding of fluvial terraces across the Siwaliks Hills,Himalaya of central Nepal[J].J. Geophys. Res.,2000,105(B3):5735-5770.
    63. Leloup P H, Kienast J R.1993.High temperature metamorphism in a strike-slip shear zone:the Ailao Shan-Red River(P.R.C). Earth Planet Sci Lett,118:213-234.
    64. Li C.,He Q.,Zhao G.Paleo-earthquake studies on the eastern section of the Kunlun fault[J].Acta Seismolocica Sinica,2005,18(1):64-71.
    65. Lyard F,Lefevre F,Letellier T,et al.Modelling the global ocean tides:insights from FES2004[J].Ocean Dynamics,2006,56:394-415.
    66. MacDoran, P.F., Satellite Emission Radio lnterferometric Earth. Surveying SERIES-GPS geodetic system. Bull. Gwd., Vol.53, pp.117-138,1979.
    67. Mader G L.GPS antenna calibration at the National Geodetic Survey[J].GPS Solutions,1999,3(1):50-58.
    68. Mangiarotti S,Cazenave A,Soudarin L,et al.Annual vertical crustal motion predicted from surface mass redistribution and observed by space geodesy[J].J Geophys Res.,2001,106(B3):4277-4291.
    69. McCarthy D,Petit G.IERS Conventions(2003),IERS Technoical Notes 32.3004,Frankfurt,Germany.
    70. McCarthy D.IERS Standards,IERS Technical Note 13,1992,Paris,France.
    71. Melbourne W G.The case for ranging in GPS based geodetic system.In:Proceedings 1st international symposium on precise positioning with the global positioning system,1985,April 15-19,Rockville,373-386.
    72. Meriaux,A.-S.,F.J.Ryerson,P. Tapponnier,et al.Rapid slip along the central Altyn Tagh Fault:Morphochronologic evidence from Cherchen He and Sulamu Tagh[J].J. Geophys. Res.,2004,109,B06401:1-23. doi:10.1029/2003JB002558.
    73. Meriaux,A.,Tapponnier,P.,et al.The Aksai segment of the northern Altyn Tagh Fault:tectonic geomorphyology,landscape evolution,and Holocene slip rate[J].J. Geophys. Res.,2005,110(B04404).doi:10.1029/2004JB003210.
    74. Meyer,B.,Tapponnier,P.,Gaudemery,Y.,et al.Rate of left lateral movement along easternmost segment of the Altyn Tagh fault,east of 96°E(China)[J].Geophys. J.Inter.,1996,124,29-44.
    75. Miyazaki S, Laeson K, Choi K, et al. Modeling the rupture process of the 2003 Septempter 25 Tokachi-Oki(Hokkaido) earthquake using 1 Hz GPS data [J]. Geophys Res Lett,2004,31, L21603, DOI:10.1029/2004GL021457.
    76. Miyazaki,S.,P. Segall,J.J.McGuire,et al.Spatial and temporal evolution of stress and slip rate during the 2000 Tokai earthquake[J].J. Geophys. Ress.,2006,111(B03409),doi:10.1029/2004JB003426.
    77. Mogi K.Earthquake prediction[M].Academic Press,1985.
    78. Mohadjer,S.,Bendick R.,Ischuk A..et al.Partitioning of India-Eurasia convergence in the Pamir-Hindu Kush from GPS measurements[J].Geophys. Res. Lett.2010,37(L04305):1-6.
    79. Murphy M.A.,Yin A.,Kapp P.,et al.Southward propagation of the Karakoram faults system,southwest Tibet:Timing and magnitude of slip[J].Geology,2000,28,451-454.
    80. Murphy M.A.,Yin A.,Kapp P.,et al.Structural evolution of the Gurla Mandatha detachment system,southwest Tibet:implications for the eastward extent of the Karakoram fault system[J].Geol. Soc. Am. Bull.,2002,114:428-447.
    81. Neill A E.Global mapping functions for the atmosphere delay at radio wavelength[J]. J Geophys Res.1996,101(B2):3227-3246.
    82. Niell,A.E; Ong, K.M. MacDoran,PF.,et al.Comparision of a radio interferometric differential baseline measurement with conventional geodesy, Tectonophysics,vol.52,no.1-4,..49-58.1979.
    83. Nikolaidis R.Observation of Geodetic and Seismic Deformation with the Global Positioning System[D].San Diego:University of California,2002.
    84. Okada Y. Internal Deformation due to Shear and Tensile Faults in a Half-space[J].Bulletine of the Seismological Society of America,1992,82(2):1018-1040.
    85. Okal E..The July 9 and 23,1905,Mongolia earthquakes:A surface wave investigation[J],Earth Planet,Sci.Lett.,1977,34:326-331.
    86. Ong K.M.,K.M. MacDoran,Thomas J.B.,et al.1976.A demonstration of a transportable radio interferometric surveying system with 3-cm accuracy on a 307-m baseline, J.Geophys.Res., vol.81,no.20,3587-3593.
    87. Ortiz J.P.,Toledano C.,Cachorro V.,et al.Improvement in PWV estimation from GPS due to the absolute calibration of antenna phase center variations[J].GPS Solut,2010(14):389-395.
    88. Paul J,R Burgmann,Gayr V K,et al.The motion and active deformation of India[J].Geophys. Res. Lett.2001,28:647-650.
    89. Peltzer G.,Tapponnier R.,Gaudener Y.,et al.,Offsets of late quaternary morphology rate of slip and recurrence of large earthquake on the Chang Ma fault[J].J.Geophys. Res.,1988,93,15095-15117.
    90. Peltzer G., Tapponnier R, Armijo R. Magnitude of late Quaternary left-lateral displacements along the northern edge of Tibet[J].Science.1989,246:1283-1289
    91. Peltzer G,Saucier F.Present-day kinematics of Asia derived from geologic fault rates[J].J. Geophys Res.1996,101 (B12):27943-27956.
    92. Penna N T,King M T,Stewart M P.GPS height time series:short-period origins of spurious long-period signals[J]. Journal of Geophysical Research,2007,112,B02402.
    93. Penna N T,Stewart M P.Aliased tidal signatures in continuous GPS height timer series[J].Geophyical Research Letters,2003,30(23):2184
    94. Petit, C., and J. Deverchere.Structure and evolution of the Baikal rift:A synthesis[J].Geochem. Geophys. Geosyst.,2006,7(Q 11016):1-26.
    95. Petrov,L.,and C.Ma.Study of harmonic site position variations determined by very long baseline interometry[J].J. Geophys. Res.,2003,108(B4),2190-2205.
    96. Phillips R.J.,Parrish R.R.,Searle M.P.Age constraints on ductile deformation and long-term slip rate along the Karakoram fault zone,Ladakh[J].Earth Planet. Sci. Lett.,2004,226:305-319.
    97. Pollitz,F.,M. Vergnolle,and E. Calais.Fault interaction and stress triggering of twentieth century earthquakes in Mongolia[J].J. Geophys. Res.,2003,108(B10),2503,doi:10.1029/2002JB002375.
    98. Ponraj M.,Miura S. Reddy C.D.Slip distribution beneath the central and western Himalaya inferred from GPS observations[J].Geophys J. Int.2011,185,724-736.
    99. Prawirodirdjo,L.,Y.Ben-Zion,and Y.Bock.Observation and modeling of thermoelastic strain in Southern California Integrated GPS Network daily position time series[J].J. Geophys. Res.,2006,111(B02408):1-10.
    100. Prentice,C.S.,K.J. Kendrick,K.Berryman.,et al.Prehistoric ruptures of the Gurvan Bulag fault,Gobi Altay,Mongolia[J].J. Geophys. Res.,2002,107(B12):2321-2339.
    101. Rogozhin,E.A.,A.N.Ovsyuchenko,A.R.Geodakov.,et al.A strong earthquake of 2003 in Gornyi Altai[J].Russ. J. Earth Sci.,2003,5(6)
    102. Rothacher M. Comparison of absolute and relative antenna phase center variations[J].GPS Solutions,2001,4(4):55-60.
    103. Sankov,V.A.,et al.,On the estimation of rates of horizontal earth crust movements of the Baikal rift system on the basis of GPS geodesy and seismotectonics(In Russia),In Tectonophysics Today,edited by V.N.Strakhov and Y.G.Leonov,pp.120-128,United Inst. Of the Phys. Of the Earth,Russ. Acad. Of Sci.,Moscow,2002.
    104. Savage J.C. and Simpson R.W.Surface strain accumulation and the seismic moment tensor[J].BSSA,1997,87(5):1345-1353.
    105. Schemeck H G,Johansson J M,Webb F H.Ocean loading tides in GPS and rapid variations of the frame origin.In:Schwarz K P(ed.):Geodesy beyond 2000-The challenges in the First Decade.IAG General Assembly Birmingham,July 19-30,1999,32-40.
    106. Schmid,R.,P. Steigenberger,G. Gendt,et al.Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antenna[J],J. Geod.,2007,81,781-798.
    107. Searle M.P.Geological evidence against large-scale pre-Holocene offsets along the Karakoram Fault:Implications for the limited extrustion of the Tibetan Plateau[J].Tectonics,1996,15(1):171-186.
    108. Serpelloni,E.,R. Burgmann,M.Anzidei,et al.Strain accumulation across messina straits and kinematics of Sicily and Calabria from GPS data and dislocation modeling[J].ScienseDirect,2010,doi:10.1016/j.epsl.2010.08.005.
    109. Shen Z K,Zhao Ch,Yin A,etal.Contemporary crustal deformation in eastern Asia constrained by Global Positioning System measurements[J].J Geophys Res,2000,105:5721-5734.
    110. Shen, Z.-K., M. Wang, Y. Li et al. Crustal deformation along the Altyn Tagh fault system, western China, from GPS[J].J Geophys Res,2001,106(B12):30607-30621.
    111. Shen,Z.-K,Sun J.-B.,Zhang P.-Z.et al.Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J].Nature Geosicence,2009,2,718-724.
    112. Shen,Z.-K.,J.Lu,M.Wang et al.Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau[J].J. Geophys. Res.,2005,110,B11409:1-17.
    113. Steigenberger P,Rothacher M,Dietrich R,et al.Reprocessing of a global network[J].Journal of Geophysical Research,2006,111,B05402
    114. Steigenberger P.,Boehm J.,Tesmer V.Comparison of GMF/GPT with VMF1/ECMWF and Implications for Atmospheric Loading[J],Journal of Geodesy,2009,9,311-319.
    115. Stewart M P,Penna N T,Lichti D D.Investigating the propagation mechanism of unmodelled systematic errors on coordinate time series estimated using least squares[J].Journal of Geodesy,2005,79:479-489.
    116. Tapponnier P,Peltzer G,Le Dain A Y,et al. Propagating extrusion tectonic in Asia:new insight from simple experiments with plasticine[J].Geology,1982,10(12):611-616.
    117. Tapponnier P.,Xu Z.,Roger F.,et al.Oblique stepwise rise and growth of th Tibet Plateau[J].Science,2001,294,1671-1677.
    118. Taylor,M.,and A.Yin.Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution,contemporary strain field,and Cenozoic volcanism[J].Geosphere,2009,5(3):199-214;DOI:10.1130/GES00217.1.
    119. Thatcher W.Microplate model for the present-day deformation of Tibet[J].J. Geophys. Res,2007,112,B01401:1-13.
    120. Urschl C,Dach R,Hugentobler U et al.Validating ocean tide loading models using GPS,Journal of Geodesy,2005,78:616-625.
    121. van Dam T., J. Wahr, P. C. D. Milly,et al.Crustal displacements due to continental water loading[J], Geophys. Res. Lett.,2001,28(4),651-654.
    122.vanDam T. M., G. Blewitt, and M. B. Heflin. Atmospheric pressure loading effects on Global Positioning System coordinate determinations, J. Geophys. Res.,1994,99(B'12),23939-23950.
    123. Vergnolle M.,Bouin M.N. Morel L.et al.GPS estimates of ocean tide loading in NW-France:determination of ocean tide loading constituents and comparison with a recent ocean tide mode[J].Geophys J.Int.,2008,173:444-458.
    124. Vergnolle M.,Pollitz F.,Calais E.,Constraints on the viscosity of the continental crust and mantle from GPS measurements and postseismic deformation models in western Mongolia[J].J.Geophys.,Res.,2003,108(B 10):2502-2516
    125. Vergnolle,M.,E. Calais,and L.Ding.Dynamics of continental deformation in Asia[J].J. Geophys. Res.,2007,112,B1 1403:1-22.
    126. Wallace,K.,R.Bilham,F.Blume et al.Surface deformation in the region of the 1905 Kangra Mw=7.8 earthquake in the period 1846-2001[J],Geophys.Res.Lett.,2005,32,L15307:1-5.
    127. Wang Qi,Zhang Peizhen,Jeffrey T,et al.Present-day crustal deformation in continental China constrained by Global Positioning System measurements[J].Science,2001,249:574-577.
    128. Watson C,Tregoning P,Coleman R.Impact of solid Earth tide models on GPS coordinate and tropospheirc time series.Geophysical Research Letters[J],2006,33,L08306:1-4.
    129. Webb,F.H.,Zumberge,J.F.An introduce to GIPSY-OASIS Ⅱ,Jet Propulsion Laboratory User Manual,JPL Technical Document D-1 1088,California Institute of Technology.
    130. Weldon,R., and E. Humphreys.A kinematic model, of southern California[J].Tectonics,1986,5,33-48.
    131. Williams,S.D.P.,and N.T.Penna.Non-tidal ocean loading effects on geodetic GPS heights[J].Geophys. Res. Lett.,2011,38(L09314):1-5.
    132. Williams,S.D.P.,Offsets in Global Positioning System time series[J],J.Geophys.Res.,2003,108(B6),2310, ETG 12:1-13.
    133. Wright,T.,Parsons,B.,England,P.,et al.InSAR observations of low slip rates on the major faults of western Tibet[J].Science,2004,305,236-239.
    134. Wubberna G.Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurement.In:Proceedings 1st international symposium on precis positioning with the global positioning system,1985,April 15-19,Rockville,403-412.
    135. Wyss,M.,J.N.Brune.Seismic moment,stress,and source dimension for earthquake in the California-Nevada region[J].J.Geophys. Res.1968,73(14):4681-4694.
    136. Yin A,Nie S,Craig P,etal.Late Cenozoic tectonic evolution of the southern Chinese Tianshan[J].Tectonics,1998,17:1-27.
    137. Zhang P,Molnar P,Burchfiel B C,et al. Bounds on the Holocene slip rate along the Haiyuan fault,north-central China[J].Quaternary Research,1988,30:151-164.
    138. Zhang, P., Z. Shen, M. Wang, W. Gan, R. Burgmann, P. Molnar, Q. Wang, Z. Niu, J. Sun, J. Wu, H. Sun, and X. You (2004), Continuous deformation of the Tibetan Plateau from Global Positioning System data, Geology,32,809-812.
    139. Zhu S,Massmann F-H,Yu Y,et al.Satellite antenna phase center offsets and scale error in GPS solution[J].Journal of Geodesy,2003,76:668-672.
    140. Zubovich A.V.,Wang X.Scherba Y.G.. et al. GPS velocity field for the Tien shan and surrounding regions[J].Tectonics.2010,29(TC6014):1-23
    141. Zumberge J F,Helfin M B,Jefferson D C,et al.Precise point positioning for the efficient and robust analysis of GPS data from large networks[J]. J Geophys Res,1997,102(B3):5005-5017.
    142.柏美祥.额尔齐斯活动断裂带[J].新疆地质,1996,14(2):127-134.
    143.陈俊勇.GPS现代化重大进展-GPS L5和L3频率的发射[J].全球定位系统,2009(4):7-8.
    144.陈立春,王虎,冉勇康等.玉树Ms7.1级地震地表破裂与历史大地震[J],科学通报,2010,55(13):1200-1205.
    145.程宗颐,朱文耀.由APRGP97-APRGP99的GPS联测资料确定的亚太地区地壳形变[J].地震学报,2001,23(3):268-279.
    146.党亚民,陈俊勇,张燕平.利用GPS资料分析南天山地区的地壳形变特征[J].测绘科学,2002,27(4):13-15.
    147.党亚民等.全球导航卫星系统原理与应用[M].北京:测绘出版社,2007.
    148.邓起东,冯先岳,张培震等.乌鲁木齐山前坳陷逆断裂-褶皱带及其形成机制[J].地学前缘,1999,6(4):191-201.
    149.邓起东,P.Molnal,E.T.Brown等.天山南缘北轮台断裂库尔楚段晚第四纪的最新活动和滑动速率[J].内陆地震,2001,15(4):289-298.
    150.邓起东,张培震,冉勇康等.中国活动构造基本特征[J].中国科学D辑,2002,32(12):1020-1030.
    151.刁法启,熊熊,郑勇等.蒙古-贝加尔裂谷区地壳应变场及其地球动力学涵义[J].地球物理学进展,2009,24(4):1243-1251.
    152.丁国瑜.中国岩石圈动力学概论[M].北京:地震出版社,1991.
    153.付碧宏,张松林,谢小平等.阿尔金断裂系西段-康西瓦断裂的晚第四纪构造地貌特征研究[J].2006,26(2):228-235.
    154.付碧宏,时丕龙,贾营营.青藏高原大型走滑断裂带晚新生代构造地貌生长及水系响应[J].地质科学,2009,44(4):1343-1363.
    155.傅征祥.全球地震活动的不均匀性[J].地震科技情报,1994(1):1-7.
    156.傅容珊,黄建华,徐耀民等.印度与欧亚板块碰撞的数据模拟和现代中国大陆形变[J].地震学报,2000,22(1):1-7.
    157.甘卫军,沈正康,张培震,等.青藏高原地壳水平差异运动的GPS观测研究[J].大地测量与地球动力学,2004,24(1):29-35.
    158.甘卫军.GPS的地球物理应用-美国加州东部及全美中部地壳变形研究[D].北京:中国地震局地质研究所,2001.
    159.高祥林,马晓静,李晓丽.亚洲东部大三角地震构造区的周边和深部动力环境[J].地学前缘,2010,17(4):33-42.
    160.顾国华.基准站GPS连续观测得到的垂直位移时间序列[J].地震地质,2005,27(2):332-340.
    161.郭东美,李军,熊熊,刁法启.地壳运动速度场的数据融合研究[J],武汉大学学报.信息科学版,2008,33(2):212-215.
    162.国家地震局地质研究所,宁夏回族自治区地震局.海原活动断裂带[M].北京:地震出版社,1990.
    163.虢顺民,向宏发,计凤桔等.1996.红河断裂带第四纪右旋走滑与尾端拉张转换关系研究[J].地震地质,18(4):301—3.
    164.何宏林,池田安隆,何玉林等.2008.新生的大凉山断裂带—鲜水河—小江断裂系中段的裁弯取直.中国科学D辑:38(5):564-574
    165.何文贵,刘百篪,袁道阳等.冷龙岭活动断裂的滑动速率研究[J].西北地震学报,2000,22(1):90-97.
    166.洪樱,欧吉坤,彭碧波.GPS卫星精密星历和钟差三种内插方法的比较[J].武汉大学学报.信息科学版,2006,31(6):516-518,556.
    167.胡彩波,王宏兵,赵娜等.日本QZSS导航系统-GPS增强系统性能分析[J].无线电工程,2009,39(6):37-39.
    168.黄珹,胡小工,程宗颐.利用非差资料的精密点定位方案解算区域GPS网[J].天文学报,2001,42(3):248-258.
    169.黄健,汪平,阮仁贵等.DCB对精密单点定位精度影响研究[J].大地测量与地球动力学,2010,30(3):110-112,117.
    170.李传友.青藏高原东北部几条主要断裂带的定量研究[D].北京:中国地震局地质研究所.2005.
    171.李海兵,Franck Valli,许志琴,等.喀喇昆仑断裂的变形特征及构造演化[J].中国地质,2006,33(2):239-255.
    172.李西,张建国,郭君.红河断裂带中、越现代形变监测对比研究综述[J].地震研究,2009,32(增刊):481-487.
    173.刘根友,朱耀仲,周蓉生.GPS单历元定位新算法用于滑坡监测[J].地震学报.2005,27(4):402-408.
    174.刘经南,姚宜斌,施闯.中国大陆现今垂直形变特征的初步探讨[J].大地测量与地球动力学,2002,22(3):1-5.
    175.刘庆元,包海,王潜心等.基于L5的GPS电离层折射误差改正[J].测绘工程,2008,17(1):17-20.
    176.刘焱雄,彭琳,周兴华等.网解和PPP解的等价性[J].武汉大学学报.信息科学版,2005,30(8):736-738
    177.刘宇平,陈智梁,唐文清等.青藏高原东部及周边现时地壳运动[J].沉积与特提斯地质,2003,23(4):1-8
    178.吕弋培.道孚6.9级地震形变特征分析[J].四川地震,1989(4):43-39.
    179.马保起,苏刚,侯治华,等.2005.利用岷江阶地的变形估算龙门山断裂带中段晚第四纪滑动速率[J].地震地质,27(2):234-242.
    180.马杏垣.中国岩石圈动力学图[A].北京:地图出版社,1989.
    181.马宗晋,陈鑫连,叶叔华,等.中国大陆现今地壳运动的GPS研究[J].科学通报,2001,46(13):1118-1120.
    182.马宗晋,杜品仁,高祥林等.东亚与全球地震分布[J].地学前缘,2010,17(5):215-233.
    183.马宗晋.论全球地震构造系统[J].地球科学,1982(3):23-38.
    184.孟国杰,任金卫,金红林等.GPS高频数据处理方法及其在地震学中的应用研究进展[J].2007(7):26-31.
    185.孟国杰,申旭辉,伍吉仓等.GPS揭示的贝加尔湖地区现今地壳形变特征[J].大地测量与地球动力学,2006,26(1):15-20.
    186.牛之俊,游新兆,杨少敏.利用GPS分析天山现今地壳形变特征[J].大地测量与地球动力学,2007,27(2):1-9.
    187.乔学军,工琪,杜瑞林.川滇地区活动地块现今地壳形变特征[J].地球物理学报,2004,47(5):805-811.
    188.任金卫,沈军,曹忠权等.西藏东南部嘉黎断裂新知[J].地震地质,2000,22(4):344-350.
    189.任俊杰,陈虹.东昆仑断裂带地震复发周期与发震概率研究[J].大地测量与地球动力学,2004,24(3):51-56.
    190.沈军,赵瑞斌,李军等.塔里木盆地西北缘河流阶地变形测量与地壳缩短速率[J].科学通报,2001,46(4):334-338.
    191.沈军,李莹甄,汪鹏等.阿尔泰活动断裂[J].地学前缘,2003,10(特刊):132-141.
    192.宋方敏,汪一鹏,俞维贤等.小江活动断裂带[M].北京:地震出版社,1998.
    193.宋小勇,杨志强,焦文海等.GPS接收机码间偏差[J].大地测量与地球动力学,2009,29(1):27-31.
    194.宋紫春.我国空间大地网的建设进展[J].全球定位系统,2003(1):18-22.
    195.唐荣昌,韩渭宾.四川活动断裂与地震[M].北京:地震出版社.1993.
    196.唐文清,陈智梁,刘宇平等.青藏高原东缘鲜水河断裂与龙门山断裂现今的构造活动[J].地质通报,2005,24(12):1169-1172.
    197.唐颖哲,杨元喜,宋小勇.2000国家GPS大地控制网数据处理方法与结果[J].大地测量与地球动力学,2003,23(3):77-82.
    198.田勤俭,张军龙.蒙古阿尔泰东缘新发现的地震地表破裂带[J].地震地质,2008,30(1):324-332.
    199.王辉,刘杰,石耀霖等.鲜水河断裂带强震相互作用的动力学模拟研究[J].中国科学D辑:地球科学,2008,38(7):808-818.
    200.王敏,沈正康,董大南.非构造形变对GPS连续站位置时间序列的影响和修正[J].地球物理学报,2005,48(5):1045-1052.
    201.王敏,沈正康,牛之俊等.现今中国大陆地壳运动与活动地块模型研究[J].中国科学(D辑),2003,33(增刊):21-32.
    202.王敏.GPS数据处理方面的最新进展及其对定位结果的影响[J].国际地震动态,2007(7):3-8.
    203.王琪,赖锡安,游新兆等.红河断裂的GPS监测与现代构造应力场[J].地壳形变与地震,1998,18(2):49-56.
    204.王庆良,崔笃信,王文萍等.川西地区现今垂直地壳运动研究[J].中国科学D辑:地球科学,2008,38(5):598-610.
    205.王庆良,王建华,朱桂芝等.东昆仑山断裂带及昆仑山口西8.1级地震垂直形变研究[J].地震地质,2004,26(2):273-280.
    206.王文利,董鸿闻,忽巍.新疆地区陆地垂直运动趋势的探讨[J].测绘技术装备,2009,11(3):6-8.
    207.王晓强,李杰,Alexander Zubovich等.利用GPS形变资料研究天山及邻近地区地壳水平位移与应变特征[J].地震学报,2007,29(1):31-37.
    208.王晓强,谭凯,李杰等.新疆富蕴地区近五十年形变研究[J].大地测量与地球动力学,2006,26(3):10-15
    209.王勇,许厚泽.青藏高原印度板块向欧亚大陆俯冲速率的研究-GPS观测资料的反演结果[J].地球物理学报,2003,46(2):185-190
    210.王泽民,张学廉.我国GPS大地高的精度分析[J].地壳形变与地震,1997,17(1):28-33.
    211.王治民,王晓强,朱令人等.南天山及帕米尔高原现代地壳水平形变[J].高原地震,2007,19(3):29-34.
    212.魏子卿,段五杏,唐颖哲等.全国GPS一、二级网与中国地壳运动观测网络[J].解放军测绘研究所学报,2000,20(3):10-16.
    213.闻学泽,Allen C.R.,罗灼礼等.鲜水河全新世断裂带的分段性、几何特征及其地震构造意义[J].地震学报,1989,11(4):362-372.
    214.闻学泽,徐锡伟,郑荣章等.甘孜-玉树断裂的平均滑动速率与近代大地震破裂[J].中国科学D辑,2003,增刊,199-208.
    215.伍吉仓,邓康伟,陈永奇.三角形形状因子对地壳形变计算精度的影响[J].大地测量与地球动力学,2003,23(3):26-30.
    216.伍岳,孟泱,王泽民等.现代化后电离层折射误差高阶项的三频改正方法[J].武汉大学学报(信息科学版),2005,20(7):601-603,608.
    217.向宏发,韩竹军,虢顺民等.红河断裂带大型右旋走滑运动与伴生构造地貌变形.地震地质,2004,26(4):598-610
    218.向宏发,万景林,韩竹军,等.红河断裂带大型右旋走滑运动发生时代的地质分析与FT测年.中国科学D辑,2006,36(11):977-987.
    219.新疆维吾尔自治区地震局.富蕴地震断裂带[M].北京:地震出版社,1985.
    220.熊福文,朱文耀.长江三角洲地区地形变特征的GPS监测和分析[J].地球物理学报,2007,50(6):1719-1730.
    221.熊永良,黄丁发,徐韶光等.长距离动态GPS数据处理方法与汶川地震引起的动态地壳形变特征分析[J].武汉大学学报.信息科学版,2010,35(3):265-269.
    222.徐纪人,赵志新.青藏高原及其周围地区区域应力场与构造运动特征[J].中国地质,2006,33(2):275-285.
    223.徐绍铨.2003.GPS测量原理与应用[M].武汉:武汉测绘科技大学出版社.
    224.徐锡伟,陈文彬,于贵华等.2001年11月14日昆仑山库赛湖地震(Ms8.1)地表破裂带的基本特征[J].地震地质,2002,24(1):1-13.
    225.徐锡伟,闻学泽,郑荣章等.川滇地区活动块体最新构造变动样式及其动力来源[J].中国科学D辑,2003,33(增刊):151-162.
    226.徐锡伟,陈桂华,于贵华等.5.12 汶川地震地表破裂基本参数的再论证及其构造内涵分析[J].地球物理学报,2010,53(10):2321-2336.
    227.许志琴等.中国松潘—甘孜造山带的造山过程[M].北京地质出版社,1992.
    228.许志琴,戚学祥,杨经绥等.西昆仑康西瓦韧性走滑剪切带的两类剪切指向、形成时限及其构造意义[J].地质通报,2007,26(10):1252-1261.
    229.杨海军,李曰俊,师骏等.南天山晚新生代褶皱冲断带构造特征[J].第四纪研究,20]0,30(5):1030-1043.
    230.杨凯,刘鸿飞,赵倩等.绝对天线相位改正模型对GPS精密数据处理的影响[J].武汉大学学报.信息科学版,2010,35(6):694-697.
    231.杨强,党亚民,秘金钟.基于IGS连续跟踪站的GPS高程时间序列分析[J].测绘科学,2007,32(3):55-56.
    232.杨少敏,李杰,王琪.GPS研究天山现今变形与断层活动[J].中国科学D辑:地球科学,2008,38(7):872-880.
    233.杨晓平,冉勇康,宋方敏等.西南天山柯坪逆冲打推覆构造带的地壳缩短分析[J].地震地质,2006,28(2):194-204.
    234.杨永林,苏琴,朱航.短水准短基线观测资料反映出的川滇几个断层活动特点[J].四川地震,2005(3):17-21.
    235.殷海涛,甘卫军,肖根如等.利用高频GPS技术进行强震地而运动监测的研究进展[J].地球物理学进展,2009,24(6):2012-2019.
    236.游新兆,杜瑞林,王琪等.中国大陆地壳现今运动的GPS测量结果与初步分析[J].地壳形变与地震,2001,21(8):1-8.
    237.于小平,张延玉,骆元家等.区域高程异常内插方法研究[J],世界地质,2008,27(4):422-426.
    238.袁道阳,刘百簏,吕太乙等.北祁连山东段活动断裂带的分段性研究[J].西北地震学报,1998,20(4):2-34
    239.袁道阳,张培震.青藏高原新生代构造和第四纪研究的进展及问题讨论[J].西北地震学报,2001,23(2):199-205.
    240.袁林果,丁晓利,陈武等.香港GPS基准站坐标时间序列特征分析[J].地球物理学报,2008,51(5):1372-1384.
    241.袁林果,丁晓莉,孙和平等.利用GPS技术精密测定香港海潮负荷位移[J].中国科学.地球科学,2010,40(6):699-714.
    242.曾融生,丁志峰,吴庆举.青藏高原岩石圈构造及动力学过程研究[J].地球物理学报,1994,37(增刊):99-116.
    243.张飞鹏,董大南,程宗颐等.利用GPS监测中国地壳的垂向季节性变化[J].科学通 报,2002,47(18):1370-1377.
    244.张国民,张培震.近年来大陆强震机理与预测研究的主要进展[J].中国基础科学,1999,(2-4):1-6.
    245.张培震,邓起东,徐锡伟等.盲断裂、褶皱地震与新疆1906年玛纳斯地震[J].地震地质,1994,18(3):193-204.
    246.张培震,邓起东,杨晓平等.天山的晚新生代构造变形及其地球动力学问题[J].中国地震,1996,12(2):127-140.
    247.张培震,邓起东,张先康等.中国大陆的强震活动与活动地块[J].中国科学D辑,2003,33(增刊):12-20.
    248.张培震,王琪,马宗晋.青藏高原现今构造变形特征与GPS速度场[J].地学前缘,2002,9(2):442-450.
    249.张培震,王琪,马宗晋.中国大陆现今构造变形的GPS速度场与活动地块[J].地学前缘,2002,9(2):430-441.
    250.张世民,谢富仁.鲜水河-小江断裂带7级以上强震构造区的划分及其构造地貌特征[J].地震学报,2001,23(1):36-44.
    251.张文佑.断块构造导论[M].北京:石油工业出版社,1984.
    252.赵明,陈运泰,巩守文等.用水准测量资料反常1990年青海共和地震的震源机制[J].地壳形变与地震,1992,12(4):1-11.
    253.郑文俊,张培震,袁道阳等.GPS观测及断裂晚第四纪滑动速率所反映的青藏高原北部变形[J].地球物理学报,2009,52(10):2491-2508.
    254.钟大赉,P.Tapponnier,吴海威等.大型走滑断层-碰撞后陆内变形的重要形式[J].科学通报,1989(7):526-529.
    255.周荣军,马声浩,蔡长星.甘孜—玉树断裂带的晚第四纪活动特征.中国地震,1996,12(3):250-260.
    256.周荣军,何玉林,黄祖智.鲜水河断裂带乾宁—康定段的滑动速率与强震复发间隔.地震学报,2001,23(3):250-261.
    257.周荣军,陈国星,李勇等.四川西部理塘-巴塘地区的活动断裂与1989年巴塘6.7级震群发震构造研究[J].地震地质,2005,27(1):31-43.
    258.朱治国,李杰,方伟等.北天山流动水准测量资料前兆异常分析[J].内陆地震,2010,24(3):247-252

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700