用户名: 密码: 验证码:
煤矿区“一张图”建设的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,国土资源部门一直积极推进全国一张图工程,以实现土地资源与矿产资源等全覆盖全流程的动态监测与监管,达到一张图管地管矿管权实践表明,这对保证煤矿区土地利用和煤炭资源开发相协调资源开发与环境保护相协调尤为重要,但同时又存在诸多问题
     论文围绕煤矿区一张图建设中的数据获取核心数据库和综合监管决策平台开发及应用,以皖北钱营孜矿神东矿区和徐州夹河矿为例,综合运用多学科理论与方法,探讨了若干关键技术问题论文首先总结了煤矿区土地资源和矿产资源管理综合监管存在的问题,剖析了煤矿区一张图综合监管的内涵和框架;借助于多源多时相多尺度遥感数据研究了煤矿区土地利用一张图数据融合处理与评价技术,分析了利用多源遥感影像融合后数据更新矿区1:2000大比例尺地形图的可行性,探讨了基于遥感的煤炭开发扰动下的土地利用/覆盖的空间格局分类与动态变化信息获取技术;通过对不同传感器的SAR数据(ALOS ENVISAT合成孔径雷达数据)进行干涉处理,探讨了D-InSAR二轨法获取地表沉降信息获取的技术流程,利用时序SAR建立了矿区沉降的非线性模型,揭示地表沉降变形的时空演变规律利用GIS物联网等信息手段,研究了煤矿区物联网井下信息感知关键技术,探讨了无线实时定位技术(Wi-Fi RTLS)自定义UDP通信协议数据包传输和处理方式,分析了感知矿山GIS监控系统(MIOTGIS)工作原理,构建了基于感知层网络层数据层和应用层的MIOTGIS四层结构模式,设计了感知矿山网络部署和数据库E-R模型,基于.NET平台开发了井下人员和设施的实时定位功能和历史轨迹再现功能,实现了矿产资源采掘跟踪越层越界非法开采监控等矿山地下资源全过程全方位远程精细化管理
     通过融合煤矿区地上地表地下多源信息,整合集成了矿区土地权属土地规划土地利用状况土地复垦等地籍信息与矿产资源的矿业权矿产资源规划矿产储量矿产开发状况等矿籍信息,分析了实体要素分类编码和市县两级数据中心建设方式,实现了煤矿区土地和矿产资源一张图的统一数据组织,建立了矿地一张图核心数据库,实现了数据整合分层存储集中管理分布式应用同时,以计算机网络及硬件设施为基础,采用B/S与C/S相结合的双构架模式,建设了以GIS系统为平台,以Web技术为依托的集地政矿政决策分析于一体的煤矿区一张图综合监管决策平台,为矿区土地和矿产监管宏观决策,促进矿区资源与环境保护提供了技术与手段支持
In recent years, Departments of land and resources have been promoting the project of ?One Map‘of the whole country actively to realize the whole cover and flow dynamic monitoring of the land and mineral resources and to achieve managing the land and mine with one map. It has been proved that this is vital to the harmony of land utilization and coal resource exploitation and harmonizing resource exploitation with environment conservation. However, there are also many problems.
     Based on multidisciplinary theories and research methods, this paper discusses several key technological questions on the information obtainment and the development and application of the core database and synthesize monitoring and decision-making platform, taking Qianyingzi Coal Mine, Shendong Coal Mine and Jiahe Coal Mine of Xuzhou for examples. This paper first summarizes the coal and mineral resources, land resources management problems in an integrated monitoring, analysis of the content and framework of the coal mining area "one-map" consolidated supervision; With multi-source, multi-temporal, multi-scale remote sensing data of the coal mining land use "one-map" data fusion processing and evaluation techniques, analysis feasibility of the use of remote sensing image fusion of multi-source data update 1:2000 mine large-scale topographic map, discussing the mineral development disturbance of land use / cover classification and spatial pattern dynamics monitoring technology; on this basis ,have interference processing through the SAR data achieve by different sensors (ALOS, ENVISAT synthetic aperture radar data), discussed the technical processes of D-InSAR with two-pass methods for surface subsidence monitoring, the use of timing SAR to established a mining settlement nonlinear model, revealing the temporal and spatial deformation of the surface subsidence evolution. The use of GIS, and other means of information of things, on the basis of analysis internet of things and the status quo of mining of things, studied the key technologies of underground mineral resources in coal mining areas perception of things, discussed the real-time location of a wireless technology (Wi-Fi RTLS), Custom UDP communication protocol data packet transmission and processing methods, in-depth analysis the operating principle of perception of mining GIS monitoring system (MIOTGIS),to build MIOTGIS four structural model which based on the perception layer, network layer, data layer and application layer, the design of network-aware mining ER model and database deployment. NET-based platform for the development of underground facilities and real-time positioning and historical trajectory of representation functions, to achieve the extraction of mineral resources to track the more layer of cross-border surveillance of illegal exploitation of underground resources in the whole mining process, comprehensive long-range precision of transparent management.
     By combining coal mining area on the ground, surface, underground multi-source information, integrated mining land ownership, land planning, land utilization, land reclamation and other "cadastral" information and mining mineral resources, mineral resources planning, mineral reserves, state of mineral development and other "mineral origin" information, analysis of the physical elements of classification coding and the construction in two data centers of cities and counties, enabling a coal mining area of land and mineral resources, "one-map" of the unified data organization, the establishment of the mine to "one-map "core database to achieve data integration, storage tiering, centralized management, distributed applications. At the same time, based on computer networks and hardware, combination dual architecture model of B / S and C / S, the construction of the GIS system as a platform to rely on a set of Web technology for land, mineral policy, decision analysis in one coal mining area, "one-map" comprehensive regulatory decision-making platform, to achieve the mining and mineral resources, land resources monitoring and management of macroeconomic policy-making.
引文
[1]吴虹,杨永德,王松庆. Quickbird-2 & SPOT-1矿山生境遥感调查试验研究[J].国土资源遥感, 2004, 4: 46-49.
    [2]李成尊,聂洪峰,汪劲等.矿山地质灾害特征遥感研究.国土资源遥感. 2005, 1(63):45-48.
    [3]王瑜玲,刘少峰,李婧等.基于高分辨率卫星遥感数据的稀土矿开采状况及地质灾害调查研究[J].江西有色金属, 2006, 20(1): 10-14.
    [4]雷国静,刘少峰,程三友.遥感在稀土矿区植被污染信息提取中的应用[J].江西有色金属, 2006, 20(2): 1-5.
    [5]杨圣军,赵燕,吴泉源等.高分辨率遥感图像中采矿塌陷地的提取—以龙口矿区为例[J].地域研究与开发, 2006, 25(4): 120-124.
    [6]于海洋,甘甫平,党福星.高分辨率遥感影像波段配准误差试验分析[J].国土资源遥感.2007,3(73):39-42.
    [7]童庆禧,张兵,郑兰芬.高光谱遥感——原理?技术与应用[M].北京:高等教育出版社, 2006.
    [8] CheVral St.Assessing and monitoring the environmental impact of mining activities in Europe using most advanced Earth Observation Techniques.2000
    [9] Y. Yamaguchi,H. Fujisada,ASTER Instrument Characterization and Operation Scenario [M]. Advances in Space Research. 1999
    [10] Burt PJ,et al. 1993 Enhanced image capture through fusion,In Proceedings of the 4th International Conference on Computer Vision.Berlin.pp.173-182
    [11] Blaine, C., Susan J. Coal extraction-environmental prediction, USGS Fact Sheet 073-02, Sep. 2002.
    [12] Kuosmanen, V., Laitinen, J., and Arkimaa, H. A comparison of hyperspectral airborne Hymap and spaceborne Hyperion data as tools for studying the environmental impact of talc mining in Lahnaslampi, NE Finland. Proceeding of 4th EARSel Workshop on Imaging Spectroscopy, 2005.
    [13] Minekawa, Y., Uto, K., and Kosaka, N. et al. Salt-damaged paddy fields analyses using high-spatial-resolution hyperspectral imaging system. IGARSS2005, Vol. 3: 2153-2156.
    [14] Goovaerts, P., Jacquez, G., and Marcus, A. Geostatistical and local cluster analysis of high resolution hyperspectral imagery for detection of anomalies[J]. Remote Sensing of Environment, 2005, 95: 351-367.
    [15] Vaughan, R. and Calvin, W. Synthesis of high-spatial resolution hyperspectral VNIR/SWIR and TIR image data for mapping weathering and alteration minerals in virginal city, Nevada. IGARSS2004, Vol. 2: 1296-1299.
    [16]周强,刘圣伟,甘甫平.德兴铜矿矿山污染高光谱遥感直接识别研究[J].中国地质大学学报, 2004, 29(1): 119-126.
    [17]张杰林,曹代勇.高光谱遥感技术在煤矿区环境监测中的应用[J].自然灾害学报, 2005, 14(4): 158-162.
    [18]万余庆,谭克龙,周日平.高光谱遥感应用研究[M].北京:科学出版社, 2006.
    [19]郑礼全,卢霞. ASTER遥感数据在矿区生态损害现状监测中的应用[J].灌溉排水学报, 2007, 26(4): 101-103.
    [20]程博,王威,张晓美等.基于光谱曲线特征的水污染遥感监测研究[J].国土资源遥感, 2007, 2: 68-70.
    [21]康高峰,卢中正,李社等.遥感技术在煤炭资源开发状况监督管理中的应用研究[J].中国煤炭地质, 2008.20(1):13-16.
    [22]夏乐.遥感技术在矿山开发监测中的应用[D].北京:中国地质大学(北京), 2008.
    [23] Prakash, A., Fielding, E. J., and Gens, R. et al. Data fusion for investigating land subsidence and coal fire hazards in a coal mining area [J]. International journal of remote sensing, 2001, 22(6): 921-932.
    [24] Mularz, Kosaka,N. et al. Salt-damaged paddy fields analyses using high-spatial-resolution hyperspectral imaging system. IGARSS2005,Vol.3:2153-2156.
    [25] Ferrier, Ferrucci F, Prati C, et al. High spectral analysis of building collapse by means of the permanent scatterers technique[C]. IGARSS2000, 2000,7:3 219-3 221
    [26] Ferrier, Prati C, Rocca F. Permanent scatters in High spectral interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(1): 8-20.
    [27] A.H.Ng, H.Chang, L.Ge, C.Rizos, M.Omura. Radar Interferometry for Ground Subsidence Monitoring Using ALOS PALSAR Data[C]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science. Vol.XXXVII.Part B7:67-74. Beijing 2008.
    [28] Antony M, Paul S. Subsidence at The Geysers geothermal field, N.California from a comparison of GPS and leveling surveys [J].Geophysical research letters. 1997, vol.24, No.14, Pages1839-1842.
    [29] Winter, E., Winter, M., and Beaven, S. et al. Resolution enhancement of Hyperion hyperspectral data using Ikonos multispectral data. SPIE Conference on Remote Sensing for Environmental Monitoring, GIS Applications, and Geology VII, 2007.
    [30] Sanjeevi S. Targeting limestone and bauxite deposits in southern India by spectral unmixing of hyperspectral image data[C]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, Vol. XXXVII: 1189-1194.
    [31]盛业华,郭达志,张书毕,杜培军.工矿区环境动态监测与分析研究[M].北京:地质出版社, 2001.
    [32]杜培军,郭达志等.工矿区陆面演变监测分析与调控治理研究[M].北京:地质出版社2005.
    [33]陈龙乾,郭达志,胡召玲等.徐州市城区土地利用变化的卫星遥感动态监测[J].中国矿业大学学报,2004,33(5):528-532.
    [34]雷利卿,岳燕珍,孙九林,李永庆.遥感技术在矿区环境污染监测中的应用研究[J].环境保护,2002(2):33-36.
    [35]甘甫平,刘圣伟,周强.德兴铜矿矿山污染高光谱遥感直接识别研究[J].地球科学,2004,29(1):119-126.
    [36]陈华丽,陈刚,李敬兰等.湖北大冶矿区生境动态遥感监测[J].资源科学, 2004, 26(5): 132-138.
    [37]杨忠义,白中科,张前进,马锐.矿区生态破坏阶段的土地利用/覆被变化研究—以平朔安家岭矿为例[J].山西农业大学学报,2004,23(4):367-370.
    [38]陈旭.遥感解译分析矿山开发对生态环境的影响[J].资源调查与环境, 2004, 25(1): 13-16.
    [39]李振存,张峰,罗进选等. ETM+ SPOT 5融合卫星影像在矿区水土流失调查中的应用[J].中国水土保持, 2006, 12: 50-51.
    [40]马保东,吴立新,刘善军.煤矿区地表水体和固废占地变化的遥感检测-以兖州矿区为例. 2007年全国矿山测量学术年会论文集,28-31.
    [41]卓义,于凤鸣,包玉海.内蒙古伊敏露天煤矿生境遥感监测[J].内蒙古师范大学学报(自然科学汉文版), 2007, 36(3): 358-362
    [42]漆小英,晏明星.多时相遥感数据在矿山扩展动态监测中的应用[J].国土资源遥感, 2007,(3): 85-88.
    [43]许长辉,高井祥,王坚等.多源多时相遥感数据融合在煤矿塌陷地中应用研究[J].水土保持研究, 2008, 15(1): 92-95.
    [44] Wang Y J. Intelligent Monitoring and Early Warning of Mine Disaster Based on Spatial Information Technologies. Proceedings of the Spatial Science Institute Biennial International Conference (SSC2007), Hobart, Tasmania, Australia, 14-18 May 2007 :79-95.
    [45] Wang Y J. Spatial Decision Systems of Mining Area‘s Environment Security[J]. Mining Science and Technology. A.A.Balkema Publishers, 2004, 123-129.
    [46] Berry P, Pistocchi A. A multicriterial geographical approach for the environmental impact assessment of open-pit quarries [J]. Surface Mining, Reclamation and Environment, 2003, 17(14): 213-226.
    [47] Bongenaar R. GPS-based fault location on Netherlands railways [J]. Eisenbahningenieur. 2007, 59(5):16-18.
    [48] Chacón J, Irigaray C, Fernández T, et al. Engineering geology maps: landslides and geographical information systems [J]. Bulletin of Engineering Geology and the Environment, 2006, 65(4): 341-411.
    [49] Frunneau B, Achache J, Delacourt C. Observation and modeling of the Saint-Etienne-de-tinee landslide using SAR interferometry[J]. Techtonophysical,1996,265:181-190.
    [50] Gabrysch RK, Ronald J. Neighbors. Measuring a century of subsidence in the Houston-Galveston Region, Texas, USA. Proceedings of the Seventh International Symposium on Land Subsidence[A]. Shanghai, 2005. Vol.?:379-387.
    [51] Nakagawa H,Murakami M,Fujiwara S,et al.Land subsidence of the Northern Kanto Plains caused by ground water extraction detected by JERS-1 SAR interferometry[J].International Geosciences and Remote sensing symposium,2000(5):2233-2235.
    [52] Kazuyo Hirose,Yuichi Maruyama,Dodid Murdohardono,et al.Land subsidence detection using JERS-1 SAR Interferometry[C].Singapore:22nd Asian Conference on Remote sensing,2001:5-9.
    [53] Linlin Ge,Tsujii T,Rizos C.Tropospheric heterogeneities corrections in differential radar interferometry [J].24th Canadian Symposium on Remote Sensing,2002(3):1747-9174.
    [54] Hsing-Chung Chang,Linlin Ge,Rizos C,Milne T.Validation of DEMs derived from radar interferometry,airborne laser scanning and photogrammetry by using GPS-RTK[J].IGARSS 2004,2004(5):2815-2818.
    [55] Linlin Ge,Hsing-Chung Chang,Lijiong Qin,Ming-han Chen,Chris Rizos.Differential Radar Interferometry for mine subsidence monitoring [J].11th FIG Symposium on deformation measurements,Santorini,Greece,2003.
    [56] Raucoules D,Maisons C,Carnec C.Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France)-Comparison with ground-based measurement [J].Remote Sensing of Environment,2003,88(4):468-478.
    [57] Ge, L., Rizos, C., Han, S. and Zebker, H., 2001. Mining subsidence monitoring using the combined InSAR and GPS approach. Proceedings of the 10th International Symposium on Deformation Measurements, International Federation of Surveyors (FIG), 19–22 March, Orange, California, pp. 1–10.
    [58] Ge, L., Chen, H.-Y., Han, S. and Rizos, C., 2001. Integrated GPS and interferometric SAR techniques for highly dense crustal deformation monitoring[C]. Proceedings of the 14th International Technical Meeting of the Satellite Division of the U.S. Institute of Navigation, 11–14 September, Salt Lake City, Utah: 2552–2563.
    [59] Ge, L., Chang, H.-C. and Rizos, C., 2004a. Monitoring ground subsidence due tounderground mining using integrated space geodetic techniques. ACARP Report C11029.
    [60] Cascini L,Ferlisi S,Fornaro G. Subsidence monitoring in Sarnourban area via multi-temporal D-InSAR technique [J].International Journal of Remote Sensing,2006,27(8):1709-1716.
    [61] Casu F,Manzo M,Lanari R.A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from D-InSAR data [J] . Remote Sensing of Environment, 2006,102:195-210.
    [62] Manzo M,Ricciardi G P,Casu F.Surface deformation analysis in the Ischia Island (Italy) based on space-borne radar interferometry[J].Journal of Volcanology and Geothermal Research,2006,151:399-416.
    [63] Perski Z,Hanssen R,Wojcik A,et al.InSAR analysis of terrain deformation near the Wieliczka salt mine,Poland [J].Engineering Geology,2009,106:58-67.
    [64]李德仁,周月琴等.卫星雷达干涉测量原理与应用[J].测绘科学,2000,25(1): 9-12.
    [65]刘国祥,丁晓利,陈永奇等.使用卫星雷达差分干涉技术测量香港赤腊角机场沉降场[J].科学通报,2001,46(14):1224-1228.
    [66]张红. D-InSAR与POLinSAR的方法及应用研究[D].北京:中科院遥感所, 2002.
    [67]王超,张红,刘智等.基于D-InSAR的1993-1995年苏州市地面沉降监测[J].地球物理学报, 2002,45(增刊):244-253.
    [68]王超,张红,刘智等.苏州地区地面沉降的星载合成孔径雷达干涉测量监测[J].自然科学进展, 2002,12(6) :621-624.
    [69]吴立新,高均海,葛大庆等.工矿区地表沉陷D-InSAR监测试验研究[J].东北大学学报(自然科学版), 2005,26(8) :778-782.
    [70]姜岩,高均海.合成孔径雷达干涉测量技术在矿山开采地表沉陷监测中的应用[J].矿山测量, 2003(1) :5-7.
    [71]王行风,汪云甲,杜培军.利用差分干涉测量技术监测煤矿区开采沉陷变形的初步研究[J].中国矿业, 2007,16(7):77-80.
    [72]邓喀中,姚宁等. D-InSAR监测开采沉陷的实验研究[J].金属矿山, 2009,12(7):40-44.
    [73]范洪冬. InSAR若干关键算法及其在沉陷监测中的应用[D].徐州:中国矿业大学, 2010.
    [74]盛耀彬.基于时序SAR影像的地下资源开采导致的地表形变监测方法与应用[D].徐州:中国矿业大学, 2011.
    [75]闫建伟.基于D-InSAR技术的煤矿地面沉陷监测研究[D].徐州:中国矿业大学, 2011.
    [76]张申,丁恩杰.物联网基本概念及典型应用[J].工矿自动化. 2011(01) :104-106.
    [77]张申,丁恩杰,徐钊,华钢.感知矿山与数字矿山和矿山综合自动化[J].工矿自动化, 2010(10) :129-132.
    [78]张申,丁恩杰,徐钊,华钢.感知矿山物联网的特征与关键技术[J].工矿自动化,2010(11) :117-121.
    [79]张申,丁恩杰等.感知矿山物联网与煤炭行业物联网规划建设[J].工矿自动化, 2010(11) :105-108.
    [80]张锋国.感知矿山—物联网在煤炭行业的应用[J].物联网技术, 2011(5) : 43-45.
    [81]赵文涛?董君.物联网技术在煤矿中的应用[J].微计算机信息, 2011(02) :121-124.
    [82]孙继平.煤矿物联网特点与关键技术研究[J].煤炭学报, 2011(01) :165-170.
    [83]钱建生等.基于物联网的煤矿综合自动化系统设计[J].煤炭科学技术, 2011(02) :73-76.
    [84]刘延岭.基于物联网的煤矿人员定位系统解决方案[J].煤矿机械, 2011(5):222-223.
    [85]孙彦景等.煤矿物联网络系统理论与关键技术[J].煤炭科学技术, 2011(2) :69-73.
    [86]王军号,孟祥瑞.物联网感知技术在煤矿瓦斯监测系统中的应用[J].煤炭科学技术, 2011(7) :64-69.
    [87] Goulas G, Barkayannis V, Gianoulis S et al. ERMIS: a helicopter taxi company software support system based on GPS, GSM and Web services[J]. 2006 IEEE Conference on Emerging Technologies and Factory Automation. 2006:20-22.
    [88] Hoon J, Keumwoo L, Wookwan C. Integration of GIS, GPS, and optimization technologies for the effective control of parcel delivery service [J]. Computers & Industrial Engineering. 2006(51):154-162.
    [89] Oregan B,Moles R. The dynamics of relative attractiveness—a case study in mineral exploration and development[J]. Ecological Economics. 2004, 49(1):73-87.
    [90] Peterson E,Heidrick T, Frost E. Software review [GeoMapper?] [J]. Computers & Geosciences. 2007, 33(2):294-296.
    [91] Rex L B, Jeffery A C, Jonathan W. et al. Regional landslide-hazard assessment for Seattle, Washington, USA[J].Landslides, 2005, 2(4), 266-279.
    [92] Rizzo V, Tesauro M. SAR interferometry and field of Randazzo landslide (Easten sicily, Italy) [J]. Physics and Chemistry of the Earth (B), 2000,25(9):771-780.
    [93] Thomas G, Malcolm A, Michael J C. Landslide Hazard and Risk [M].John Wiley&Sons Ltd, 2004, 1–40.
    [94]魏华.基于GIS的矿区土地管理信息系统[D].河北:河北理工学院, 2003.
    [95] Yang G J, Wu W B, Liu Q H, et al. Design and realization of land use change investigation system based on PDA[J]. Journal of Liaoning Technical University (Natural Science Edition), 2007, 26 (4):501-504.
    [96] Lee S, Kim K. Ground subsidence hazard analysis in an abandoned underground coal mine area using probabisltic and logistic regression models. IGARSS2006, 1549-1552.
    [97] Lee, S, Choi, W. Construction of geological hazard spatial DB and development of geologicalhazard spatial information system: International Geosciences and Remote Sensing Symposium (IGARSS), v 4, 2001, 1693-1695.
    [98]韩聪.矿产资源管理系统关键技术的研究[D].吉林:吉林大学, 2007
    [99] Li S, Dowd P A, Birch, W J. Application of a knowledge and geographical information-based system to the environmental impact assessment of an opencast coal mining project[J]. Surface Mining, Reclamation and Environment, 2003, 17(14): 277– 294.
    [100] Mauro D D, Lorenzo B. MAP IT: The GIS software for field mapping with tablet pc [J]. Computers & Geosciences, 2006(32):673-680.
    [101]徐旭辉,杨武亮等.地理信息系统在无锡矿产资源管理信息中的应用[J].江苏地质, 2000(2) :105-108.
    [102]白万成,臧忠淑.基ArcView GIS的矿床定位预测系统简介[J].地质与勘探, 2004(5) :46-49.
    [103]陈练武,陈开圣基于MapGIS的矿产资源管理系统[J].西部探矿工程. 2003(7) :76-80.
    [104]杨文森.湖北省一张图管矿试点的研究与应用[J].国土资源情报. 2010(10) :70-72.
    [105]徐仁勇.基于SuperMap的重庆市南川区矿政管理一张图试点研究[J].国土资源情报, 2010(10) :66-69.
    [106]黄俊.柳州国土资源一张图管理系统设计与实现[J].安徽农业科学, 2010 (20) :978-980.
    [107]成都市国土资源局.加快一张图建设和应用,推进统筹城乡土地管理制度创新[J].国土资源信息化, 2010 (5) :24-26.
    [108] Chander G,Markham B.Revised Landsat-5 TM Radiometric Calibration Procedures and Postcalibration Dynamic Ranges [J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(11):2674-2677.
    [109] Shaban M A, and Disshit O. Improvement of classification in urban areas by the use of textural feature:the case study of Luck row city,Uttar Pradesh[J]. International Journal of Remote Sensing,2001,22(4):565-593.
    [110] Chander G, Markham B. Revised Landsat-5 TM Radiometric Calibration Procedures and Postcalibration Dynamic Ranges [J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(11):2674-2677.
    [111] Christian Fischer, Wolfgang Busch. Monitoring of Environmental changes caused by hard coal mining,Remote Sensing for Environmental Monitoring[J]. GIS Applications and Geology,Proceeding of SPIE, vo14545,2002:18-25.
    [112] Sams,J.I,G.A.Veloski.Evaluation of airborne thermal infrared imagery for locating mine drainage sites in the Lower Kettie Creek and Cooks Run Basins,Pennsylvania,USA[J].Mine Water and the Environment,2003,22(2):85-93.
    [113] Ng A. H, Chang H, Ge L L. Radar Interferometry for Ground Subsidence Monitoring Using ALOS PALSAR Data[C]. ISPRS2008. Vol.XXXVII.Part B7:67-74. Beijing 2008.
    [114] Huang P C, Chou H P, Chen K B. A personal digital assistant-based portable radiation spectrometer [J]. Nuclear Instruments and Methods in Physics Research A. 2007(579):264-267.
    [115]陈晓玲,龚威,李平湘等译.遥感数字影像处理导论[M].北京:机械工业出版社: 2007.
    [116] CHAI Y, HE Y, QU C W. Remote sensing image fusion: newest development and perspective[J]. Ship Electronic Engineering, 2009,29(8):l-5.
    [117]党安荣,王晓栋,陈晓峰等. ERDAS IMAGINE遥感图像处理方法[M].北京:清华大学出版社, 2002.
    [118]李存军,刘良云,王纪华等.两种高保真遥感影像融合方法[J].中国图像图形学报, 2004, 9(11): 1376-1385.
    [119]贾永红.多源遥感影像数据融合技术[M].北京:测绘出版社, 2005.
    [120]窦闻,陈云浩,何辉明.光学遥感影像像素级融合的理论框架[J].测绘学报, 2009,38(2):131-137.
    [121]张庆河,邹峥嵘,余加勇.遥感影像像素级融合方法比较研究[J].测绘工程, 2008(4): 35-38.
    [122]许辉熙.遥感影像融合方法的精度评价[J].测绘与空间地理信息, 2009,32(6):11-15.
    [123]武文波,康停军,姚静.基于IHS变换和主成分变换的遥感影像融合[J].辽宁工程技术大学学报(自然科学版). 2009(1): 28-31.
    [124]赵英时.遥感应用分析原理与方法[M].北京:科学出版社, 2003.
    [125]彭瑛,张志等.鄂西聚磷区矿产开发多目标遥感监测目视解译技术[J].工矿自动化, 2009(4): 6-9.
    [126]李世平,武文波,康停军,等.基于遥感影像的矿区地形图更新方法与精度分析[J].辽宁工程技术大学学报(自然科学版) , 2008(2): 198-201.
    [127]伊茂森.神东矿区浅埋煤层关键层理论及其应用研究[D].徐州:中国矿业大学, 2008.
    [128]刘江华,程君实等.支持向量机训练算法综述[J].信息与控制, 2002, 31(1):45-50.
    [129]张森.基于支持向量机的遥感分类对比研究[D].云南:昆明理工大学, 2007.
    [130] Damoah-Afari P, Ding X L, Lu Z, et al. Detecting Ground Settlement of ShangHai Using Interferometric Synthetic Aperture Radar(INSAR) Techniques[C]. ISPRS2008. Vol. XXXVII. Part B7:117-124. .Beijing 2008.
    [131] Ketelaar VBH, Hanssen R F. Separation of different deformation regines using PS-InSAR data[C]. Proceedings of FRNGE 2003, Frascati(Italy), 2003:1-5.
    [132] Kimura A, Yamaguch Y. Detection of landslide areas using satellite radar interferometry [J].Photogrammetric Engineering & Remote Sensing, 2000(3):337-344.
    [133]邓清海,袁仁茂,马凤山等.地面沉降的GPS监测及其基于GIS的时空规律分析[J].北京大学学报(自然科学版), 2007,(02):278-281.
    [134]董玉森,Ge Linlin,Chang Hsingchun等.基于差分雷达干涉测量的矿区地面沉降监测研究[J].武汉大学学报(信息科学版),2007,32(10):888-891.
    [135]独知行,阳凡林,刘国林,温兴水. GPS与InSAR数据融合在矿山开采沉陷形变监测中的应用探讨[J].测绘科学, 2007, (01):55-59.
    [136]范景辉,李梅,郭小方等.基于PSInSAR方法和ASAR数据监测天津地面沉降的试验研究[J].国土资源遥感,2007,4:23-27.
    [137]范青松,汤翠莲,陈于等. GPS与InSAR技术在滑坡监测中的应用研究[J].测绘科学, 2006,(05):60-62.
    [138]国脉物联网技术研究中心.物联网100问[M].北京:北京邮电大学出版社, 2010.
    [139]张飞舟,杨东凯,陈智.物联网技术导论[M].北京:电子工业出版社, 2010.
    [140]喻存国,李钢,尹鹏程.徐州市矿地一体化管理信息系统建设实践[J].中国矿业2011,20(5):87-89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700