用户名: 密码: 验证码:
内源性心脏自主神经调控在心房颤动中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1探讨外源性心脏自主神经低强度刺激(LL-VNS)对心房颤动及内源性心脏自主神经活性的影响
     2探讨经静脉途径外源性心脏自主神经低强度刺激(LL-SVCS)对心房颤动及内源性心脏自主神经活性的影响
     3探讨携带神经毒素的磁性纳米颗粒(MNPs)对心房颤动及内源性心脏自主神经活性的影响。
     方法:
     体重在20-30kg的成年犬,戊巴比妥钠(50mg/kg)麻醉,在通风的房间通过呼吸机给予正压通气。在犬下方放置控制电热垫,从而通过传感器将犬的中心体温维持在36.5±0.5℃。股动脉和股静脉分别插管用于电极置入(主动脉根部做希氏束记录)、血压记录、药物和盐水。持续监测ECG和血压。
     1、观察外源性心脏自主神经低强度刺激(LL-VNS)对心房颤动及其内源性心脏自主神经活性的影响。以90%或50%阂值(TH)进行双侧迷走神经刺激,(阈值定义:引起窦律或者房室传导减慢的最低电压值)。在心房、心耳及所有肿静脉上缝合多电极导管。在右前GP (ARGP)和左上GP(SLGP)同时行电刺激以模拟ICANS的高活性状态。分别于基线状态和ARGP+SLGP刺激时测量伴或不伴LL-VNS时各位点的有效不应期(ERP)和心房颤动(AF)的易损窗(WOV)。在ARGP和SLGP记录神经元电活动。
     2、观察经静脉途径外源性心脏自主神经低强度刺激(LL-SVCS)对心房颤动及其内源性心脏自主神经活性的影响。将多管电极导管固定于犬的心房、所有的肺静脉和右侧的星状神经节上(RSG)。再将一环形的导管置于上腔静脉,20Hz高频刺激(HFS)其毗邻的迷走神经。将微电极插入前右侧神经节丛(ARGP)记录神经活动。在基线水平,程序性的刺激得到有效不应期(ERP)和心房颤动(AF)的易损窗(WOV)在接下来的3个小时,快速心房起搏(RAP)诱发AF。在窦性心律下,每隔一小时测量相同的参数。在第4-6小时的RAP期间,以50%的阈值强度在上腔静脉处低强度刺激迷走神经(LL-SVC)。另六只犬,2小时LL-SVCS后比较在RSG和ARGP的电压(Voltage)/窦性心律(SR)反应曲线。
     3、观察携带神经毒素的磁性纳米颗粒对心房颤动及其内源性心脏自主神经活性的影响。MNPs由Fe3O4(核心),温度敏感型多聚水凝胶(壳)以及神经毒介质(NIPA-M)组成。23只犬,经右侧开胸暴露ARGP和右下GP (IRGP)。用高频刺激(HFS,20Hz,0.1ms) ARGP, IRGP引起窦性心律(SR)和心室率(VR)减慢分别作为检测ARGP和IRGP生理功能的指标。其中6只犬,将附有0.4mgNIPA-M的MNPs注射到ARGP.另4只犬,将一个柱状的磁石(2600G)放在心外膜的IRGP上。再将附有0.8mgNIPA-M的MNPs注入给IRGP供血的冠状动脉左侧回旋支上在体内当温度≥37℃时,水凝胶壳收缩,释放出NIPA-M。
     结果:
     1同时高频电刺激ARGP和SLGP刺激引起ERP缩短,ERP离散度增加以及WOV增加,且以上指标均被LL-VNS(低于阈值10%或50%的电压)抑制。假LL-VNS组没有引起上述改变。LL-VNS通过抑制ICANS发挥效应:(1)LL-VNS抑制了ARGP刺激对窦律的影响;(2)ARGP和SLGP神经电活动的频率及幅度均被LL-VNS显著抑制;(3)从肺静脉-心房连接处到心耳的ERP和WOV空间梯度被LL-VNS消除。
     2第1-3个小时进行RAP后,相对基线水平,ERP逐渐缩短,而WOV和神经活动逐渐延长(P<0.05)。第4-6小时进行LL-SVCS后,ERP、WOV和神经活动回到基线水平(与第3小时末比较P<0.05)。(2)对RSG和ARGP处刺激分别增加或减慢SR的能力可以被LL-SVCS消弱。
     3 MNPs注射入ARGP后抑制了HFS诱发的窦性心律减慢的反应(基线水平40±8%;2小时21±9%;P=0.006)。ARGP处HFS诱发AF的最低电压从5.9±0.8V(基线水平)增加到10.2±0.9V(2小时;P=0.009)。冠状动脉注入MNPs抑制了IRGP而没有抑制ARGP的功能(心室率减慢:在基线水平57±8%,在2小时20±8%;P=0.002;窦性心律减慢:基线水平31±7%,2小时33±8%;P=0.604)。普鲁士蓝染色显示MNP聚集物仅出现在IRGP,而在ARGP没有出现。
     结论:
     1 LL-VNS通过抑制ICANS内主要GP的神经活性抑制房颤的发生
     2 LL-SVCS可以显著抑制AF的可诱导性,逆转RAP中的心房电重构及ICANS重构,减弱交感神经和副交感神经对SR的影响效果。
     3注入附有NIPA-M的MNPs可以通过体外磁力定向于IRGP并释放NIPA-M来降低GP活性。这种新的靶向药物系统可用于靶向的经血管途径自主神经去支配。
Objectives:
     1 To investigate the the effect of LL-VNS on ICANS activity and the atrial fibrillation
     2 To investigate the effect of LL-SVCS on the ICANS activity and atrial fibrillation.
     3 To investigate the effects of MNPs on ICANS activity and atrial fibrillation.
     Methods:
     1 Wire electrodes inserted into both vagosympathetic trunks allowed LL-VNS at 10% or 50% below the voltage required to slow the sinus rate or atrioventricular conduction. Multielectrodecatheters were attached to atria, atrial appendages and all pulmonary veinsElectrical stimulation at theanterior right and superior left ganglionated plexi (ARGP, SLGP) was used to simulate a hyperactive state ofthe ICANS. Effective refractory period (ERP) and window of vulnerability (WOV) for AF were determined at baseline and during ARGP+SLGP stimulation in the presence or absence of LL-VNS. Neural activity was recorded from the ARGP or SLGP.
     2 In 29 anesthetized dogs, we attached multi-electrode catheters on atria, all pulmonary veins and right stellate ganglion (RSG). A basket catheter was expanded in the superior vena cava (SVC) for high frequency stimulation (HFS,20 Hz) of the adjacent vagal preganglionics. Microelectrodes inserted into the anterior right ganglionated plexi (ARGP) recorded neural activity. At baseline, programmed stimulation determined the effective refractory period (ERP) and window of vulnerability (WOV), a measure of AF inducibility. For the next 3 hours, AF was induced by rapid atrial pacing (RAP), and the same parameters were measured hourly, during sinus rhythm. During hours 4-6 of RAP, we delivered low-level vagal stimulation at the SVC (LL-SVCS),50% below that which induced slowing of the sinus rate (SR). In six other dogs, the voltage/SR response curve during RSG and ARGP stimulation was compared after 2-hour LL-SVCS.
     3 Superparamagnetic nanoparticles (MNPs) made of Fe3O4 (core), thermor-esponsive polymeric hydrogel (shell), and neurotoxic agent (N-isopropylacry-lamide monomer [NIPA-M]) were synthesized. In 23 dogs, a right thoracotomy exposed the anterior right GP (ARGP) and inferior right GP (IRGP). The sinus rate and ventricular rate slowing responses to high-frequency stimulation (20 Hz,0.1 ms) were used as the surrogate for the ARGP and IRGP functions, respectively. In 6 dogs, MNPs carrying 0.4 mg NIPA-M were injected into the ARGP. In 4 other dogs, a cylindrical magnet (2600 G) was placed epicardially on the IRGP. MNPs carrying 0.8 mg NIPA-M were then infused into the circumflex artery supplying the IRGP. The hydrogel shell reliably contracted in vitro at temperatures 37℃, releasing NIPA-M.
     Results:
     1 ARGP+SLGP stimulation induced shortening of ERP, increase of ERP dispersion and increase of AF inducibility (WOV), all of which were suppressed by LL-VNS (10% or 50% below threshold) at all tested sites. Sham LL-VNS failed to induce these changes. The effects of LL-VNS were mediated by inhibition of the 1CANS, as evidenced by (1) LL-VNS suppression of the ability of the ARGP stimulation to slow the sinus rate, (2) the frequency and amplitude of the neural activity recorded from the ARGP or SLGP was markedly suppressed by LL-VNS, and (3) the spatial gradient of the ERP and WOV from the PV-atrial junction toward the atrial appendage was eliminated by LL-VNS.
     2 During hours 1-3 of RAP, there was a progressive decrease in the ERP, increase in WOV and increase in neural activity vs. baseline (all p<0.05). With LL-SVCS during hours 4-6, ERP, WOV and neural activity returned towards baseline levels (all p<0.05, compared to the 3rd hour values). (2) The ability of RSG and ARGP stimulation to increase and decrease SR. respectively, was blunted by LL-SVCS.
     3 MNPs injected into the ARGP suppressed high-frequency stimulation-induced sinus rate slowing response (40±8% at baseline; 21±9% at 2 hours; P<0.006). The lowest voltage of ARGP high-frequency stimulation inducing atrial fibrillation was increased from 5.9±0.8 V (baseline) to 10.2±0.9 V (2 hours; P<0.009). Intracoronary infusion of MNPs suppressed the IRGP but not ARGP function (ventricular rate slowing:57±8% at baseline,20±8% at 2 hours; P<0.002; sinus rate slowing:31±7% at baseline,33±8% at 2 hours; P<0.604). Prussian Blue staining revealed MNP aggregates only in the IRGP, not the ARGP.
     Conclusions:
     1 LL-VNS suppressed AF inducibility by inhibiting the neural activity of major GP within the ICANS.
     2 LL-SVCS can significantly suppress AF inducibility and mitigate sympathetic and parasympathetic effects on SR. This transvenous approach suggests a feasible clinical method for treating AF or inappropriate sinus tachycardia.
     3 Intravascularly administered MNPs carrying NIPA-M can be magnetically targeted to the IRGP and reduce GP activity presumably by the subsequent release of NIPA-M and/or microvascular embolization. This novel targeted drug delivery system can be used intravascularly for targeted autonomic denervation.
引文
[1]Randall WC. Changing perspectives concerning neural control of the heart. In: Neurocardiology. Eds:Armour JA, Ardell JL. Oxford University Press, New York, NY 1994. Chap 1.
    [2]Ardell JL. Structure and Function of the Mammalian Intrinsic Cardiac
    [3]Neurons. In:Neurocardiology. Eds:Armour JA, Ardell JL. Oxford University Press, New York, NY 1994. Chap 5.
    [4]J.A. Armour. Potential clinical relevance of the "little brain" on the mammalian heart. Exp Physiol.2008;93:165-176.
    [5]Schauerte P, Scherlag BJ, Patterson E, Scherlag MA, Matsudaria K, Nakagawa H, Lazzara R, Jackman WM. Focal atrial fibrillation:Experimental evidence for a pathophysiological role of the autonomic nervous system. J Cardiovasc Electrop-hysiol.2001;12:592-99.
    [6]Lin J, Scherlag BJ, Lu Z, Zhang Y, Liu S, Patterson E, Jackman WM, Lazzara R, Po SS. Inducibility of atrial and ventricular arrhythmias along the ligament of Marshall:role of autonomic factors. J Cardiovasc Electrophysiol.2008; 19:955-962.
    [7]Lu Z, Scherlag BJ, Lin J, Yu L, Guo JH, Niu G, Jackman WM, Lazzara R, Jiang H, Po SS. Autonomic mechanism for initiation of rapid firing from atria and pulmonary veins:evidence by ablation of ganglionated plexi. Cardiovasc Res. 2009:84:245-252.
    [8]Tai CT, Chiou CW, Wen ZC, Hsieh MH, Tsai CF, Lin WS, Chen CC, Lin YK,Yu WC, Ding YA, Chang MS, Chen SA. Effect of phenylephrine on focal atrial fibrillation originating in the pulmonary veins and superior vena cava. J Am Coll Cardiol.2000:36:788-93.
    [9]Lu Z, Scherlag BJ, Lin J, Niu G, Fung KM, Zhao L, Ghias M, Jackman WM, Lazzara R, Jiang H, Po SS. Atrial fibrillation begets atrial fibrillation:autonomic mechanism for atrial electrical remodeling induced by short-term rapid atrial pacing. Circ Arrhythm Electrophysiol.2008; 1:184-92.
    [10]Lee KW, Everett TH 4th, Rahmutula D, Guerra JM, Wilson E, Ding C, Olgin JE. Pirfenidone prevents the development of a vulnerable substrate for atrial fibrillation in a canine model of heart failure. Circulation.2006;114:1703-12.
    [11]Zhou J, Scherlag BJ, Edwards J, Jackman WM, Lazzara R, Po SS. Gradients of atrial refractoriness and inducibility of atrial fibrillation due to stimulation of ganglionated plexi. J Cardiovasc Electrophysiol.2007; 18:83-90.
    [12]Quan KJ, Lee JH, Geha AS, Biblo LA, Van Hare GF, Mackall JA,Carlson MD:Characterization of sinoatrial parasympathetic innervation in humans. J Cardiovasc Electrophysiol.1999; 10:1060-1065.
    [13]Quan KJ, Lee JH, Van Hare GF, Biblo JA, Mackall JA, Carlson MD:Identification and characterization of atrioventricular parasympathetic innervation in humans. J Cardiovasc Electrophysiol.2002; 13:735-739.
    [14]Gagliardi M, Randall WC, Bieger D, Wurster RD, Hopkins DA, Armour JA: Activity of in vivo canine cardiac plexus neurons. Am J Physiol.1988;255:H789-800.
    [15]Armour JA, Hopkins DA. Activity of canine in situ left atrial ganglion neurons. Am J Physiol.1990;259:H1207-15.
    [16]Ogawa M, Zhou S, Tan AY, Song J, Gholmieh G, Fishbein MC, Luo H, Siegel RJ, Karagueuzian HS, Chen LS, Lin SF, Chen PS. Left stellate ganglion and vagal nerve activity and cardiac arrhythmias in ambulatory dogs with pacing-induced congestive heart failure. J Am Coll Cardiol.2007;50:335-43.
    [17]Bettoni M, Zimmermann M. Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation.2002; 105:2753-9.
    [18]Po SS, Scherlag BJ, Yamanashi, WS, Edwards J, Zhou J, Wu R, Geng N, Lazzara R, Jackman WM. Experimental model for paroxysmal atrial fibrillation arising at the pulmonary vein-atrial junctions. Heart Rhythm.2006;3:201-208.
    [1]Randall WC. Changing perspectives concerning neural control of the heart. In: Neurocardiology. Eds:Armour JA, Ardell JL. Oxford University Press, New York, NY 1994. Chap 1.
    [2]Ardell JL. Structure and Function of the Mammalian Intrinsic Cardiac
    [3]Neurons. In:Neurocardiology. Eds:Armour JA, Ardell JL. Oxford University Press, New York, NY 1994. Chap 5.
    [4]J.A. Armour. Potential clinical relevance of the "little brain" on the mammalian heart. Exp Physiol.2008;93:165-176.
    [5]Schauerte P, Scherlag BJ, Patterson E, Scherlag MA, Matsudaria K, Nakagawa H, Lazzara R, Jackman WM. Focal atrial fibrillation:Experimental evidence for a pathophysiological role of the autonomic nervous system. J Cardiovasc Electro-physiol.2001; 12:592-99.
    [6]Lin J, Scherlag BJ, Lu Z, Zhang Y, Liu S, Patterson E, Jackman WM, Lazzara R, Po SS. Inducibility of atrial and ventricular arrhythmias along the ligament of Marshall:role of autonomic factors. J Cardiovasc Electrophysiol.2008; 19:955-962.
    [7]Lu Z, Scherlag BJ, Lin J, Yu L, Guo JH, Niu G, Jackman WM, Lazzara R, Jiang H, Po SS. Autonomic mechanism for initiation of rapid firing from atria and pulmonary veins:evidence by ablation of ganglionated plexi. Cardiovasc Res. 2009;84:245-252.
    [8]Tai CT, Chiou CW, Wen ZC, Hsieh MH, Tsai CF, Lin WS, Chen CC, Lin YK,Yu WC, Ding YA, Chang MS, Chen SA. Effect of phenylephrine on focal atrial fibrillation originating in the pulmonary veins and superior vena cava. J Am Coll Cardiol.2000;36:788-93.
    [9]Lu Z, Scherlag BJ, Lin J, Niu G, Fung KM, Zhao L, Ghias M, Jackman WM, Lazzara R, Jiang H, Po SS. Atrial fibrillation begets atrial fibrillation:autonomic mechanism for atrial electrical remodeling induced by short-term rapid atrial pacing. Circ Arrhythm Electrophysiol.2008; 1:184-92.
    [10]Lee KW, Everett TH 4th, Rahmutula D, Guerra JM, Wilson E, Ding C, Olgin JE. Pirfenidone prevents the development of a vulnerable substrate for atrial fibrillation in a canine model of heart failure. Circulation.2006; 114:1703-12.
    [11]Zhou J, Scherlag BJ, Edwards J, Jackman WM, Lazzara R, Po SS. Gradients of atrial refractoriness and inducibility of atrial fibrillation due to stimulation of ganglionated plexi. J Cardiovasc Electrophysiol.2007;18:83-90.
    [12]Quan KJ, Lee JH, Geha AS, Biblo LA, Van Hare GF, Mackall JA,Carlson MD:Characterization of sinoatrial parasympathetic innervation in humans. J Cardiovasc Electrophysiol.1999;10:1060-1065.
    [13]Quan KJ, Lee JH, Van Hare GF, Biblo JA, Mackall JA, Carlson MD:Identification and characterization of atrioventricular parasympathetic innervation in humans. J Cardiovasc Electrophysiol.2002;13:735-739.
    [14]Gagliardi M, Randall WC, Bieger D, Wurster RD, Hopkins DA, Armour JA: Activity of in vivo canine cardiac plexus neurons. Am J Physiol.1988;255:H789-800.
    [15]Armour JA, Hopkins DA. Activity of canine in situ left atrial ganglion neurons. Am J Physiol.1990;259:H1207-15.
    [16]Ogawa M, Zhou S, Tan AY, Song J, Gholmieh G, Fishbein MC, Luo H, Siegel RJ, Karagueuzian HS, Chen LS, Lin SF, Chen PS. Left stellate ganglion and vagal nerve activity and cardiac arrhythmias in ambulatory dogs with pacing-induced congestive heart failure. J Am Coll Cardiol.2007;50:335-43.
    [17]Bettoni M, Zimmermann M. Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation.2002; 105:2753-9.
    [18]Po SS, Scherlag BJ, Yamanashi, WS, Edwards J, Zhou J, Wu R, Geng N, Lazzara R, Jackman WM. Experimental model for paroxysmal atrial fibrillation arising at the pulmonary vein-atrial junctions. Heart Rhythm.2006;3:201-208.
    [19]Patterson E, Po SS, Scherlag BJ, Lazzara R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm.2005;2:624-31.
    [20]Chevalier P, Tabib A, Meyronnet D, Chalabreysse L, Restier L, Ludman V, Alies A, Adeleine P, Thivolet F, Burri H, Loire R, Francis L, Fanton L. Quantitative study of nerves of the human left atrium. Heart Rhythm.2005; 2:518-22.
    [21]Pauza DH, Skripka V, Pauziene N, Stropus R. Morphology, distribution and variability of the epicardiac neural ganglionated subplexuses in the human heart. Anatomical Record.2000;259:353-382.
    [22]Armour JA. Cardiac neuronal hierarchy in health and disease. Am J Physiol Regul Integr Comp Physiol.2004;287:R262-71.
    [23]Foreman RD, Linderoth B, Ardell JL, Barron KW, Chandler MJ, Hull SS, TerHorst GJ, DeJongste MJL, and Armour JA. Modulation of intrinsic cardiac neural activity by spinal cord stimulation:implications for its therapeutic use in angina pectoris. Cardiovasc Res.2000;47:367-75.
    [24]Armour JA, Linderoth B, Arora RC, DeJongste MJL, Ardell JL, Kingma J, Hill M, and Foreman RD. Long-term modulation of the intrinsic cardiac nervous system by spinal cord neurons in normal and ischemic hearts. Auton Neurosci.2002;95: 71-79.
    [25]Cardinal R, Page P, Vermeulen M, Bouchard C, Ardell JL, Foreman RD, Armour JA. Spinal cord stimulation suppresses bradycardias and atrial tachyarrhythmias induced by mediastinal nerve stimulation in dogs. Am J Physiol Regulatory Integrative Comp Physiol.2006;291:R1369-75.
    [26]Li S, Scherlag BJ, Yu L, Sheng X, Zhang Y, Ali R, Dong Y, Ghias M, Po SS. Low level vagosympathetic stimulation:A paradox and potential new modality for the treatment of focal atrial fibrillation. Circ Arrhythm Electrophysiol.2009;1:184-92.
    [27]Tan AY, Li H, Wachsmann-Hogiu S, Chen LS, Chen PS, and Fishbein MC. Autonomic innervation and segmental muscular disconnections at the human pulmonary vein-atrial junction:implications for catheter ablation of atrial-pulmonary vein junction. J Am Coll Cardiol.2006;48:132-43.
    [28]Malenka RC. Synaptic plasticity in the hippocampus:LTP and LTD. Cell. 1994;78:535-8.
    [29]Bear, MF, Abraham, WC. Long-term depression in hippocampus. Annu. Rev. Neurosci.1996; 19:437-462.
    [30]Kauderer BS, Kandel ER. Capture of a protein synthesis-dependent component of long-term depression. Proc Natl Acad Sci U S A.2000;97:13342-7.
    [31]Alkadhi KA, Al-Hijailan RS, Alzoubi KH. Long-term depression in the superior cervical ganglion of the rat. Brain Res.2008;1234:25-31.
    [32]Huganir RL, Greengard P. Regulation of neurotransmitter receptor desensitization by protein phosphorylation. Neuron.1990; 5:555-67.
    [33]Iwao T, Ito M, Takahashi N, Saikawa T, Sakata T. Sustained left ansae subclaviae stimulation for a 5-hour period inhibits cesium-induced ventricular arrhythmo-genesis in rabbits. J Mol Cell Cardiol.1998;30:2237-45.
    [34]Patterson E, Yu X, Huang S, Garrett M, Kem DC. Suppression of autonomic-mediated triggered firing in pulmonary vein preparations,24 hours postcoronary artery ligation in dogs. J Cardiovasc Electrophysiol.2006:17:763-70.
    [1]Haissaguerre M, Jais P, Shah DC et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 1998;339: 659-666
    [2]Cappato R, Calkins H, Chen SA, Davies W, Iesaka Y, Kalman J, Kim YH, Klein G, Natale A, Packer D, Skanes A, Ambrogi F, Biganzoli E. Up-dated Worldwide Survey on the Methods, Efficacy and Safety of Catheter Ablation for Human Atrial Fibrillation. Circ Arrhythm Electrophysiol.2010;3:32-38.
    [3]Li S, Scherlag BJ, Yu L, Sheng X, Zhang Y, Ali R, Dong Y, Ghias M, Po SS. Low-level vagosympathetic stimulation:a paradox and potential new modality for the treatment of focal atrial fibrillation. Circ Arrhythm Electrophysiol.2009;2: 645-51
    [4]Lazzara R, Scherlag BJ, Robinson MJ, Samet P. Selective parasympathetic control of the canine sinoatrial and atrioventricular nodes. Circulation Res.1973;32:383-401
    [5]Ardell JL, Randall WC. Selective vagal innervation of sinoatrial and atrioventr-icular nodes in canine heart. Am J Physiol.1986;252:H764-73.
    [6]Scherlag BJ, Yamanashi WS, Amin R, Lazzara R, Jackman WM. Experimental model of inappropriate sinus tachycardia:initiation and ablation. J Interv Card Electrophysiol.2005;13:21-29
    [7]Zhou J, Scherlag BJ, Niu G, Hou Y, Lu Z, Zhang Y, Ding Y, Lazzara R, Jackman WM, Po SS. Anatomy and physiology of the right interganglionic nerve: implications for the pathophysiology of inappropriate sinus tachycardia. J Cardio-vasc Electrophysiol.2008;19:971-6.
    [8]Schauerte P, Scherlag BJ, Scherlag MA, Goli S, Jackman WM, Lazzara R. Transvenous parasympathetic cardiac nerve stimulation:an approach for stable sinus rate control. J Cardiovasc Electrophysiol.1999; 10:1517-1524.
    [9]Scherlag BJ, Hou Y, Lin J, Jackman WM, Lazzara R, Po SS. The Cardio-Cardiac Reflex:Its Role in the Initiation, Maintenance and Ablation of Atrial Fibrillation Arising from Non-Pulmonary Vein Foci. J Cardiovasc Electrophysiol.2008;19: 519-527.
    [10]Yu L, Scherlag BJ, Li S, Xia S, Lu L, Nakagawa H, Zhang Y, Jackman WM, Lazzara R, Hong J, Po SS. Low Level Vagosympathetic Nerve Stimulation Inhibits Atrial Fibrillation Inducibility:Direct Evidence by Neural Recordings from Intrinsic Cardiac Ganglia. J Cardiovasc Electrophysiol.2010, in press.
    [11]Lu Z, Scherlag BJ, Lin J, Niu G, Fung KM, Zhao L, Ghias M, Jackman WM, Lazzara R, Jiang H, Po SS. Atrial fibrillation begets atrial fibrillation:autonomic mechanism for atrial electrical remodeling induced by short-term rapid atrial pacing. Circ Arrhythm Electrophysiol.2008;1:184-92.
    [12]Wijffels MCEF, Kirchhoff CJHJ, Dorland R et al. Atrial fibrillation begets atrial fibrillation:a study in awake chronically instrumented goats. Circulation.1995;92: 1954-1968.
    [13]Tan AY, Zhou S, Ogawa M, Song J, Chu M, Li H, Fishbein MC, Lin SF, Chen LS, Chen PS. Neural mechanisms of paroxysmal atrial fibrillation and paroxysmal atrial tachycardia in ambulatory canines. Circulation.2008; 26; 916-25.
    [14]Doshi RN, Wu TJ, Yashima M, Kim YH, Ong JJ, Cao JM, Hwang C, Yashar P, Fishbein MC, Karagueuzian HS, Chen PS. Relation between ligament of Marshall and adrenergic atrial tachyarrhythmia. Circulation.1999;24; 876-83
    [15]Patterson E, Po SS, Scherlag BJ, Lazzara R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm 2005;2:624-631.
    [16]Choi EK, Shen MJ, Han S, Kim D, Hwang S, Sayfo S, Piccirillo G, Frick K, Fishbein MC, Hwang C, Lin SF, Chen PS. Intrinsic cardiac nerve activity and paroxysmal atrial tachyarrhythmia in ambulatory dogs. Circulation.2010; 22:2615-23.
    [17]Burashnikov A, Antzelevitch C. Reinduction of atrial fibrillation immediately after termination of the arrhythmia is mediated by late phase 3 early afterdepolarization-induced triggered activity. Circulation.2003; 13:2355-60.
    [18]Bettoni M, Zimmermann M. Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation.2002; 105:2753-9.
    [19]Amar D, Zhang H, Miodownik S, Kadish AH. Competing autonomic mechanisms precede the onset of postoperative atrial fibrillation. J Am Coll Cardiol.2003;42: 1262-8.
    [20]Shen WK. How to manage patients with inappropriate sinus tachycardia. Heart Rhythm.2005;2:1015-9
    [21]Tai CT, Chiou CW, Wen ZC, Hsieh MH, Tsai CF, Lin WS, Chen CC, Lin YK, Yu WC, Ding YA, Chang MS, Chen SA. Effect of phenylephrine on focal atrial fibrillation originating in the pulmonary veins and superior vena cava. J Am Coll Cardiol.2000; 36:788-793
    [22]Markos F, Snow HM. Vagal postganglionic origin of vasoactive intestinal polypeptide (VIP) mediating the vagal tachycardia. Eur J Appl Physiol.2006;98: 419-22.
    [23]Manta S, Dong J, Debonnel G, Blier P. Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation. J Psychiatry Neurosci.2009;34:272-80.
    [24]Gallo MP, Levi R, Ramella R, Brero A, Boero O, Tota B, Alloatti G. Endothelium-derived nitric oxide mediates the anti-adrenergic effect of human vasostatin-1 in rat ventricular myocardium. Am J Physiol. Heart Circ Physiol.2007;292: H2906-H2912.
    [25]Ilebekk A, Bjorkman JA, Nordlander M.Influence of endogenous neuropeptide Y (NPY) on the sympathetic-parasympathetic interaction in the canine heart. J Cardio-vasc Pharmacol.2005;46:474-80.
    [26]Lynn M, James K, Cwthra J, Westlund R. Chronic feasibility of transvenous phrenic nerve stimulation in canines. Heart Rhythm 2010;7:S303 (Abstract).
    [27]Ponikowski P, Zhang S, Witkowski T, Hasan A, Khayat R, Bart B, Jagielski D, Zhang X. Central sleep apnea events are terminated by phrenic nerve stimulation. J Am Coll Card 2010;55:A30.E289 (Abstract)
    [28]Fan K, Yee R, Gula L, Bentley C, Scheiner A, Lam S, Wong M, Parke R, Klepfer RN, and Skanes A. Transvenous vagus nerve stimulation:a potential heart failure therapy is feasible in humans. J Am Coll Card.2010;55;A16.E152 (Abstract).
    [1]Bettoni M, Zimmermann. Autonomic tone variations before the onset of parox-ysmal atrial fibrillation. Circulation 2002; 105:2753-2759.
    [2]Amar D, Zhang H, Miodownik S, Kadish A. Competing autonomic mechanisms precedes the onset of postoperative atirial fibrillation. J Am Coll Cardiol.2003; 42:1262-1268.
    [3]Ogawa M, Zhou S, Tan AY, Song J, Gholmieh G, Fishbein MC, Lou H, Siegel RJ, Karagueuzian HS, Chen LS, Lin SF, Chen PS. Left stellate ganglion and vagal nerve activity and cardiac arrhythmias in ambulatory dogs with pacing-induced congestive heart failure. J Am Coll Cardiol.2007; 50:335-343.
    [4]Patterson E, Po SS, Scherlag B, Lazzara R. Triggered Firing in Pulmonary Veins Initiated by in vitro Autonomic Nerve Stimulation. Heart Rhythm.2005; 2:624-31.
    [5]Randall WC, Armour JA, Geis WP, Lippincott DB. Regional cardiac distribution of the sympathetic nerves. Federation Proc.1972; 31:1199-208.
    [6]Ardell JL. Structure and Function of the Mammalian Intrinsic Cardiac Neurons. In:Neurocardiology. Eds:Armour JA, Ardell JL. Oxford University Press, New York, NY 1994. Chap 5.
    [7]Pauza DH, Skripka V, Pauziene N.Morphology of the intrinsic cardiac nervous system in the dog:a whole-mount study employing histochemical staining with acetylcholinesterase. Cells Tissues Organs.2002; 172:297-320.
    [8]Scherlag BJ, Yamanashi WS, Patel U, Lazzara R, Jackman WM.. Autonomically induced conversion of pulmonary vein focal firing into atrial fibrillation. J Am Coll Cardiol.2005; 45:1878-1886.
    [9]Po SS, Scherlag BJ, Yamanashi WS, Edwards J, Zhou J, Wu R, Geng N, Lazzara R, Jackman WM. Experimental model for paroxysmal atrial fibrillation arising at the pulmonary vein-atrial junctions. Heart Rhythm.2006; 3:201-208.
    [10]Lu Z, Scherlag BJ, Lin J, Niu G, Fung KM, Zhao L, Ghias M, Jackman WM, Lazzara R, Jiang H, Po SS. Atrial fibrillation begets atrial fibrillation:autonomic mechanism for atrial electrical remodeling induced by short-term rapid atrial pacing. Circ Arrhythm Electrophysiol.2008; 1:184-92.
    [11]Lin J, Scherlag BJ, Zhou J, Lu Z, Patterson E, Jackman WM, Lazzara R, Po SS. Autonomic Mechanism to Explain Complex Fractionated Atrial Electrograms (CFAE). J Cardiovasc Electrophysiol.2007; 18:1197-205.
    [12]Po SS, Nakagawa H, Jackman WM. Localization of Left Atrial Ganglionated Plexi in Patients with Atrial Fibrillation. J Cardiovasc Electrophysiol; 2009; 20:1186-9.
    [13]Scherlag BJ, Nakagawa H, Jackman WM, Yamanashi SW, Patterson E, Po S, Lazzara R. Electrical stimulation to identify neural elements on the heart:Their role in atrial fibrillation. J Interv Card Electrophysiol.2005; 13:37-42.
    [14]Danik S, Neuzil P, Avila A, Malchano ZJ, Kralovec S, Ruskin JN, Reddy VY. Evaluation of catheter ablation of periatrial ganglionic plexi in patients with atrial fibrillation. Am J Cardiol.2008; 102:578-583.
    [15]Pokushalov E, Romanov A, Shugayev P, Artyomenko S, Shirokova N, Turov A, Katritsis DG. Selective ganglionated plexi ablation for paroxysmal atrial fibrillation. Heart Rhythm.2009; 6:1257-64.
    [16]Pokushalov E, Turov A, Shugayev P, Artyomenko S, Romanov A, Shirokova N. Catheter ablation of left atrial ganglionated plexi for atrial fibrillation. Asian Cardiovasc Thorac Ann.2008; 16:194-201.
    [17]Pokushalov E.The role of autonomic denervation during catheter ablation of atrial fibrillation. Curr Opin Cardiol.2008; 23:55-9.
    [18]Neuberger T, Schopf B, Hofmann H, Hofmann M, Rechenberg BV. Superpar-amagnetic nanoparticles for biomedical applications:Possibilities and limitations of a new drug delivery system. J Magn Magn Mater.2005; 293:483-96.
    [19]Corot C, Robert P, Idee JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev.2006; 58:1471-504.
    [20]Ito A, Shinkai M, Honda H, Kobayshi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng.2005; 100:1-11.
    [21]Kim J, Lee JE, Lee SH, Yu JH, Lee JH, Park TG, Hyeon T. Designed fabrication of a multifunctional polymer nanomedical platform from simultaneous cancer-targeted imaging and magnetically guided drug delivery. Adv Mater.2008; 20:478-83.
    [22]Dormer K, Seeney C, Lewelling K, Lian G, Gibson D, Johnson M. Epithelial internalization of superparamagnetic nanoparticles and response to external magnetic field. Biomaterials.2005; 26:2061-2072.
    [23]Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials.2005; 26:3995-4021.
    [24]Rahimi M, Youself M, Cheng Y, Meletis El, Eberhart RC, Nguyen KT. Formulation and characterization of covalently coated magnetic nanogel. J Nanosci Nanotechnol 2009; 9:4128-4134.
    [25]Rahimi M, Kilaru S, El Hajj Sleiman G, Saleh A, Rudkevich D, Nguyen KT. Synthesis and characterization of thermo-sensitive nanoparticles for drug delivery applications. J. Biomed. Nanotechnol.2008; 4:482-90.
    [26]Salehi R, Arsalani N, Davaran S, Entezami AA. Synthesis and characterization of thermosensitive and pH-sensitive pol (N-isopropylacrylamide-acrylamide-vinylpyrrolidone) for use in controlled release of naltrexone. J Biomed Mater Res A. 2009; 89:919-28.
    [27]Wakamatsu H, Yamamoto K, Nakao A, and Aoyagi T. Preparation and characterization of temperature-responsive nanoparticles conjugated with N-Isopro-pylacrilamide-based functional copolymer. J Magn Magn Mater.2006; 302:327-333.
    [28]Wadajkar A, Koppolu B, Rahimi M, Nguyen KT. Cytotoxic evaluation of N-isopropylacrylamide monomers and temperature-sensitive poly(N-isopropylac-rylamide) nanoparticles. J Nanopart Res.2009; 11:1375-1382.
    [29]Chastek T, Wadajkar A, Nguyen KT, Hudson SD, Chastek T. Polyglycol-templated Synthesis of Poly(N-Isopropyl Acrylamide) Microgels with Improved Biocompa-tibility. Colloid Polym Sci.2010; 288:105-114.
    [30]Zhou J, Scherlag BJ, Edwards J, Jackman WM, Lazzara R, Po SS. Gradients of atrial refractoriness and inducibility of atrial fibrillation due to stimulation of ganglionated plexi. J Cardiovasc Electrophysiol.2007; 18:83-90.
    [31]Hou Y, Scherlag BJ, Lin J, Lu Z, Truong K, Patterson E, Lazzara R, Jackman W, Po SS. Ganglionated plexi modulating extrinsic cardiac autonomic nervous inputs: Effects on sinus rate, AV conduction, refractoriness and AF inducibility. J Am Coll Cardiol.2007; 50:61-68.
    [32]Hou Y, Scherlag BJ, Zhou J, Song J, Patterson E, Lazzara R, Jackman WM, Po SS. Interactive Atrial Neural Network:Determining the Connections between Gangli-onated Plexi. Heart Rhythm.2007; 4:56-63.
    [33]Asmatulu R, Zalich MA, Claus RO, Riffle JS. Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields. J Magn Magn Mater.2005; 292:108-109.
    [34]Pelton R. Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci. 2000; 85:1-33.
    [35]Niu G, Scherlag BJ, Lu Z, Ghias M, Zhang Y, Patterson E, Dasari TW, Zacharias S, Lazzara R, Jackman WM, Po SS. An acute experimental model demonstrating 2 different forms of sustained atrial tachyarrhythmias. Circ Arrhythm Electrophysiol. 2009; 2:384-92.
    [36]Brashear A. The safety and tolerability of botulinum toxin for the treatment of cervical dystonia. Expert Opin Drug Saf.2005; 4:241-249.
    [37]Brin MF. Development of future indications for BOTOX. Toxicon.2009; 54:668-74.
    [38]Tanil H, Hashimoto K. Effect of acrylamide and related compounds on glycolytic enzymes of rat brain. Toxicol Lett.1985; 26:79-84.
    [39]Howland RD. The etiology of acrylamide neuropathy:enolase, phosphofructok-inase and glyceraldehyde-3-phosphotase dehydrogenase activities in peripheral nerve, spinal cord, brain and skeletal muscle of acrylamide-intoxicated cats. Toxicol Appl Pharmacol.1981; 60:324-33.
    [40]LoPachin RM. Acrylamide neurotoxicity:neurological, morhological and molecular endpoints in animal models. Adv Exp Med Biol.2005; 561:21-37.
    [41]LoPachin RM, Ross JF, Reid ML, Das S, Mansukhani S, Lehning EJ. Neurological evaluation of toxic axonopathies in rats:acrylamide and 2,5-hexanedione. Neuroto-xicology.2002; 23:95-110.
    [42]Lopachin RM, Gavin T. Acrylamide-induced nerve terminal damage:relevance to neurotoxic and neurodegenerative mechanisms. J Agric Food Chem.2008;56: 5994-6003.
    [43]Benjamin EJ, Wolf PA, D'Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death:The Framingham Heart Study. Circulation. 1998; 98:946-52.
    [44]Hirose M, Leatmanoratn Z, Laurita KR, Carlson MD. Partial vagal denervation increases vulnerability to vagally induced atrial fibrillation. J Cardiovasc Electrop-hysiol.2002; 13:1272-9.
    [45]Oh S, Zhang Y, Bibevski S, Marrouche NF, Natale A, Mazgalev TN. Vagal denervation and atrial fibrillation inducibility:epicardial fat pad ablation does not have long-term effects. Heart Rhythm.2006; 3:701-8.
    [1]Scheinman, M. M, Morady, F., Hess, D. S.,& Gonzalez, R. (1982).Catheter-induced ablation of the atrioventricular junction to controlrefractory supravent-ricular arrhythmias. JAMA,248,851-855.
    [2]Huang, S. K., Bharati, S., Graham, A. R., Lev, M., Marcus, F. I.,& Odell, R. C. (1987). Closed chest catheter desiccation of theatrioventricular junction using radiofrequency energy——Anewmethod of catheter ablation. Journal of the American College of Cardiology,9,349-358.
    [3]Jackman, W. M., Wang, X. Z., Friday, K. J., Fitzgerald, D. M.,Roman, C, Moulton, K., et al. (1991). Catheter ablation of atrioventricular junction using radiofrequency current in 17 patients. Comparison of standard and large-tip catheter electrodes. Circulation,83,1562-1576.
    [4]Jackman, W. M., Wang, X., Friday, K. J., Roman, C. A., Moulton, K. P., Beckman, K. J., et al. (1991). Catheter ablation of accessory atrioventricular pathways (Wolff-Parkinson-White syndrome) by radiofrequency current. The New England Journal of Medicine,324,1605-1611.
    [5]Haissaguerre, M., Gaita, F., Fischer, B., Commenges, D.,Montserrat, P., d'Ivernois, C., et al. (1992). Elimination of atrioventricular nodal reentrant tachycardia using discrete slowpotentials to guide application of radiofrequency energy. Circulation, 85,2162-2175.
    [6]Jackman, W. M., Wang, X., Friday, K. J., Roman, C. A., Moulton, K. P., Beckman, K. J., et al. (1992). Treatment of supraventricular tachycardia due to atrioventricular nodal reentry, by radiofrequency catheter ablation of slow-pathway conduction. The New England Journal of Medicine,327,313-318.
    [7]Cosio, F. G, Lopez-Gil, M., Goicolea, A., Arribas, F.,& Barroso, J. L. (1993). Radiofrequency ablation of the inferior vena cavatricuspid valve isthmus in common atrial flutter. The American Journal of Cardiology,71,705-709.
    [8]Moe, G. K. (1962). On the multiple wavelet hypothesis of atrial fibrillation. Archives Internationales de Pharmacodynamie et de Therapie,140,183-188.
    [9]Allessie, M., Lammers, W. J. E. P., Bonke, F. I. M.,& Hollen, J. (1985). Experimental evaluation of Moe's multiple wavelet hypothesis of atrial fibrillation. In D. P. Zipes & Jalife (Eds.), Cardiac electrophysiology and arrhythmias (pp. 265-275). New York:Grune and Stratton.
    [10]Cox, J., Boineau, J. P., Scheussler, R. B., Ferguson, T. B., Jr., Cain, M. E., Lindsay, B. D., et al. (1991). Successful surgical treatment of atrial fibrillation. Review and clinical update. JAMA,266,1976-1980.
    [11]Swartz, J. F., Pellersels, G., Silvers, J., Patten, L.,& Cervantez, D. (1994). A catheter-based curative approach to atrial fibrillation in humans. Circulation,90, 1-335. abstract. J. of Cardiovasc. Trans. Res. (2011) 4:35-4139
    [12]Haissaguerre, M., Jais, P., Shah, D. C., Gencel, L., Pradeau, V., Garrigues, S., et al. (1996). Right and left atrial radiofrequency catheter therapy of paroxysmal atrial fibrillation. Journal of Cardiovascular Electrophysiology,7,1132-1134.
    [13]Jais, P., Haissaguerre, M., Shah, D. C., Chouairi, S., Gencel, L., Hocini, M., et al. (1997). A focal source of atrial fibrillation treated by discrete radiofrequency ablation. Circulation,95,572-576.
    [14]Haissaguerre, M., Jais, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., et al. (1998). Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. The New England Journal of Medicine,339,659-666.
    [15]Pappone, C., Oreto, G., Rosanio, S., Vicedomini, G., Tocchi, M., Gugliotta, F., et al. (2001). Atrial electroanatomic remodeling after circumferential radiofrequency pulmonary vein ablation:Efficacy of an anatomic approach in a large cohort of patients with atrial fibrillation. Circulation,104,2539-2544.
    [16]Cha, Y. M., Munger, T. M., Asirvatham, S. J., Friedman, P. A., Monahan, K. H.,& Packer, D. L. (2005). Impact of left atrial size on the outcome of wide area circumferential ablation vs lassoguided pulmonary vein isolation. Heart Rhythm,2, S192.
    [17]Verma, A., Marrouche, N. F.,& Natale, A. (2004). Pulmonary vein antrum isolation: Intracardiac echocardiography-guided technique. Journal of Cardiovascular Electro-physiology,15,1335-1340.
    [18]Tsai, C. F., Tai, C. T., Hsieh, M. H., Lin, W. S., Yu, W. C., Ueng, K. C., et al. (2000). Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava:Electrophysiological characteristics and results of radiofrequency ablation. Circulation,102,67-74.
    [19]Hwang, C., Wu, T. J., Doshi, R. N., Peter, C. T.,& Chen, P. S.(2000). Vein of Marshall cannulation for the analysis of electrical activity in patients with focal atrial fibrillation. Circulation,101,1503-1505.
    [20]Lindsay, B. D., Marchlinski, F. E., McCarthy, P. M., Mont, J. L., Morady, F., Nademanee, K., et al. (2007). Heart rhythm society; European heart rhythm association; European cardiac arrhythmia society; American college of cardiology; American heart association; society of thoracic surgeons. HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up. Europace,9, 335-379.
    [21]Nademanee, K., Schwab. M. C, Kosar, E., et al. (2004). A new approach for catheter ablation of atrial fibrillation:Mapping of the electrophysiologic substrate. Journal of the American College of Cardiology,43,2044-2053.
    [22]O'Neill, M. D., Jais, P., Takahashi, Y., Jonsson, A., Sacher, F., Hocini, M., et al. (2006). The stepwise ablation approach for chronic atrial fibrillation-evidence for a cumulative effect. Journal of Interventional Cardiac Electrophysiology,16, 153-167.
    [23]Cappato, R., Calkins, H., Chen, S. A., Davies, W., Iesaka, Y.,Kalman, J., et al. (2010). Up-dated worldwide survey on the methods, efficacy and safety of catheter ablation for human atrial fibrillation. Circulation Arrhythmia and Electrophysiology, 3,32-38.
    [24]Ardell, J. L. Intrathoracic neuronal regulation of cardiac function. In:Basic and Clinical Neurocardiology.eds. Armour JA, Ardell Jl. Oxford Press.2004. chapter 4, Figure 4—1.
    [25]Armour, J. A., Murphy, D. A., Yuan, B. X., MacDonald, S.,& Hopkins, D. A. (1997). Gross and microscopic anatomy of the human intrinsic cardiac nervous system. The Anatomical Record,247,289-298.
    [26]Pauza, D. H., Skripka, V., Pauziene, N.,& Stropus, R. (2000). Morphology, distribution, and variability of the epicardiac neural ganglionated subplexuses in the human heart. The Anatomical Record,259,353-382.
    [27]Zhang, Y., Scherlag, B. J., Lu, Z., Niu, G, Ghias, M., Yamanashi, W. S., et al. (2009). Comparison of atrial fibrillation inducibility by electrical stimulation of either the extrinsic or the intrinsic autonomic nervous systems. Journal of Interventional Cardiac Electrophysiology,24,5-10.
    [28]Kaijser, L.,& Sachs, C. (1985). Autonomic cardiovascular responses in old age. Clinical Physiology and Functional Imaging,5,347-357.
    [29]Smith, F. M., McGuirt, A. S., Hoover, D. B., Armour, J. A.,& Ardell, J. L. (2001). Chronic decentralization of the heart differentially remodels canine intrinsic cardiac neuron muscarinic receptors. American Journal of Physiology. Heart and Circulatory Physiology,281, H1919-H1930.
    [30]Schauerte, P., Scherlag, B. J., Patterson, E., Jackman, W. M.,& Lazzara, R. (2001). Focal atrial fibrillation:experimental evidence for a pathophysiologic role of the autonomic nervous system. Journal of Cardiovascular Electrophysiology,12, 592-599.
    [31]Scherlag, B. J., Yamanashi, W. S., Patel, U., Lazzara, R.,& Jackman, W. M. (2005). Autonomically induced conversion of pulmonary vein focal firing into atrial fibrillation. Journal of the American College of Cardiology,45,1575-1880.
    [32]Po, S. S., Scherlag, B. J., Yamanashi, W. S., Edwards, J., Zhou, J., Wu, R., et al. (2006). Experimental model for paroxysmal atrial fibrillation arising at the pulmonary vein-atrial junctions. Heart Rhythm,3,201-208.
    [33]Patterson, E., Po, S. S., Scherlag, B. J.,& Lazzara, R. (2005). Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm,2, 624-631.
    [34]Patterson, E., Lazzara, R., Szabo, B., Liu, H., Tang, D., Li, Y. H., et al. (2006). Sodium-calcium exchange initiated by the Ca2+transient:An arrhythmia trigger within pulmonary veins. Journal of the American College of Cardiology,47, 1196-1206.
    [35]Lemola, K., Chartier, D., Yeh, Y. H., Dubuc, M., Cartier, R., Armour, J. A., et al. (2008). Pulmonary vein region ablation in experimental vagal atrial fibrillation: Role of pulmonary veins versus autonomic ganglia. Circulation,117,470-477.
    [36]Pappone, C., Santinelli, V., Manguso, F., Vicedomini, G., Gugliotta, F., Augello, G., et al. (2004). Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation,109, 327-334.
    [37]Scherlag, B. J., Nakagawa, H., Jackman, W. M., Yamanashi, W. S., Patterson, E., Po, S., et al. (2005). Electrical stimulation to identify neural elements on the heart: Their role in atrial fibrillation. Journal of Interventional Cardiac Electrophysiology, 13,37—42.
    [38]Nakagawa, H., Yokoyama, K., Scherlag, B. J., Katari, V., Aoyama, H., Foresti, S., et al. Ablation of autonomic ganglia In:A Practical Approach to Catheter Ablation of Atrial fibrillation. Eds:Calkins H, Jais P, Steinberg JS. Wolters Kluwer/Lippincott Williams & Wilkins. Philadelphia 2008, Chap.14.
    [39]Danik, S., Neuzil, P., d'Avila, Malchano, Z. J., Kralovec, S., Ruskin, J. N., et al. (2008). Evaluation of catheter ablation of periatrial ganglionic plexi in patients with atrial fibrillation. The American Journal of Cardiology,102,578-583.
    [40]Mehall, J. R., Kohut, R. N., Jr., Schneeberger, E. W., Taketani, T., Merrill, W. H.,& Wolf, R. K. (2007). Intraoperative epicardial electrophysiologic mapping and isolation of autonomic ganglionic plexi. The Annals of Thoracic Surgery,83, 538-541.
    [41]Matsutani, N., Takase, B., Ozeki, Y., Machara, T.,& Lee, R. (2008). Minimally invasive cardiothoracic surgery for atrial fibrillation:A combined Japan-US experience. Circulation Journal,72,434-436.
    [42]Onorati, F., Curcio, A., Santorpino, G, Torcella, D., Mastrokobinto, P., Tuca, B., et al. (2008). Routine ganglionic plexi ablation during Maze procedure improves hospital and early follow-up results of mitral surgery. The Journal of Thoracic and Cardiovascular Surgery,36,408—418.
    [43]Doll, N., Pritzwald-Stegmann, P., Czesla, M., Kempfert, J., Stenzel, M. A., Borger, M. A., et al. (2008). Ablation of ganglionic plexi during combined surgery for atrial fibrillation. The Annals of Thoracic Surgery,86,1659-1663.
    [44]Tai, C. T., Chiou, C. W., Wen, Z. C., Hsieh, M. H., Tsai, C. F., Lin, W. S., et al. (2000). Effect of phenylephrine on focal atrial fibrillation originating in the pulmonary veins and superior vena cava. Journal of the American College of Cardiology,36,788-793.
    [45]Li, S., Scherlag, B. J., Yu, L., Sheng, X., Zhang, Y., Ali, R., et al. (2009). Low-level vagosympathetic stimulation:A paradox and potential new modality for the treatment of focal atrial fibrillation. Circulation Arrhythmia and Electrophysiology, 2,645-651.
    [46]Sha, Y., Scherlag, B. J., Yu, L., Sheng, X., Lazzara, R.,& Po, S. S. (2010). Low level right vagosympathetic stimulation suppressed atrial fibrillation inducibility at both atrial and all PV sites. Heart Rhythm,7, S293. abstract.
    [47]Yu, L., Scherlag, B. J., Sha, Y, Li, S., Ghias, M., Lazzara, R., et al. (2010). Low level vagal nerve stimulation causes suppression of neurally based sinus tachycardia and atrial fibrillation inducibility:A transvenous approach. Heart Rhythm,7, S418. abstract.
    [48]Lu, Z., Scherlag, B. J., Lin, J., et al. (2008). Atrial fibrillation begets atrial fibrillation:Autonomic mechanism for atrial electrical remodeling induced by short-term rapid atrial pacing. Circulation Arrhythmia and Electrophysiology,1, 184-192.
    [49]Sheng, X., Scherlag, B. J., Yu, L., Li, S., Ghias, M., Po, S. S., et al. (2010). Prevention and reversal of autonomic remodeling and atrial fibrillation inducibility by low level vagal nerve stimulation. Heart Rhythm,7, S168. abstract.
    [50]Corti, A., Mannarino, C., Mazza, R., Angelone, T., Longhi, R.,& Tota, B. (2004). Chromogranin A N-terminal fragments vasostatin-1 and the synthetic CGA 7-57 peptide act as cardiostatins on the isolated working frog heart. General and Comparative Endocrinology,136,217-224.
    [51]Liang, F., Dillen, L., Zhang, X. Y., Coen, E. P., Hogue-Angeletti, R., Claeys, M., et al. (1995). Vasostatins, N-terminal products of chromogranin A, are released from the stimulated calf spleen, in vitro. Acta Physiologica Scandinavica,155,23-30.
    [52]Pierioni, M., Corti, A., Tota, B., Curnis, F., Angelone, T., Colombo, B., et al. (2007). Myocardial production of chromogranin A in human heart:A new regulatory peptide of cardiac function. European Heart Journal,28,1117-1127.
    [53]Gallo, M. P., Levi, R., Ramella, R., Brero, A., Boero, O., Tota, B., et al. (2007). Endothelium-derived nitric oxide mediates the antiadrenergic effect of human vasostatin-1 in rat ventricular myocardium. American Journal of Physiology Heart and Circulatory Physiology,292, H2906-H2912.
    [54]Ziolo, M. T., Kohr, M. J.,& Wang, H. (2008). Nitric oxide signaling and the regulation of myocardial function. Journal of Molecular and Cellular Cardiology,45, 625-632.
    [55]Singh, S., Johnson, P. I., Javed, A., Gray, T. S., Lonchyna, V. A.,& Wurster, R. D. (1999). Monoamine- and histamine-synthesizing enzymes and neurotransmitters within neurons of adult human cardiac ganglia. Circulation,99(3),411-419.
    [56]Mravec, B., Ondicova, K., Valaskova, Z., Gidron, Y,& Hulin, I. (2009). Neurobiological principles in the etiopathogenesis of disease:When diseases have a head. Medical Science Monitor,15, RA6-RA16.
    [57]Armour, J. A. (2008). Potential clinical relevance of the'little brain'on the mammalian heart. Experimental Physiology,93,165-176.
    [58]Pavlov, V. A. (2008). Cholinergic modulation of inflammation. International Journal of Clinical and Experimental Medicine,1,203-212.
    [59]Xiong, J., Xue, F. S., Liu, J. H., Xu, Y. C., Liao, X., Zhang, Y. M.,et al. (2009). Transcutaneous vagus nerve stimulation may attenuate postoperative cognitive dysfunction in elderly patients. Medical Hypotheses,73(6),938-941.
    [60]Yu, L., Scherlag, B. J., Sha, Y, Sheng, X., Ghias, M., Patterson,E., et al. (2010). Low level electromagnetic fields suppresses atrial fibrillation inducibility. Heart Rhythm,7, S93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700