用户名: 密码: 验证码:
β-榄香烯衍生物的合成及抗癌活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从姜科植物温郁金,又称温莪术的根茎中分离出的β-榄香烯是我国自行开发研制的抗肿瘤药物榄香烯乳的主要成分。近几年国内对β-榄香烯的抗癌作用及其特点、机制已有广泛的研究,结果表明其抗肿瘤作用与传统的化疗药物不同之处在于该药兼具抑制肿瘤细胞增殖和提高免疫功能的双重效应。但β-榄香烯为脂溶性化合物,临床使用的剂型只有乳剂,稳定性较差,因此在临床上只能作为二线药物。
     本文简述了β-榄香烯药理、作用机制及临床应用的研究进展。在总结β-榄香烯衍生物前期研究结果的基础上,为改善水溶性和提高抗肿瘤活性,对先导化合物β-榄香烯进行结构修饰,在其结构中引入脂环(肪)胺、杂环胺、羧酸、氨基酸,共设计并合成了84个β-榄香烯衍生物,其中78个为未见文献报道的新化合物。分为三个结构系列:13位含氮杂环、羧酸、氨基酸单取代β-榄香烯衍生物41个;13,14位含氮杂环双取代β-榄香烯衍生物19个和13,14位分别由氯和含氮杂环取代的β-榄香烯衍生物24个。经~1H-NMR、IR和MS波谱分析确证结构。考察了合成路线中β-榄香烯的氯代反应和氯代β-榄香烯的亲核取代反应的反应条件,并总结了目标化合物的图谱特征。
     用SRB法测定了所合成的84个化合物对HL-60、HeLa、SGC-7901三种人癌细胞的增殖抑制作用。对人胃癌SGC-7901细胞,79个化合物的活性高于先导化合物β-榄香烯;有4个化合物的IC_(50)值比β-榄香烯低2个数量级;25个化合物的IC_(50)值比β-榄香烯低5倍以下。对人宫颈癌HeLa细胞,78个化合物的活性高于先导化合物β-榄香烯;3个化合物的IC_(50)值比β-榄香烯低2个数量级;24个化合物的IC_(50)值比β-榄香烯低5倍以下。对人早幼粒性白血病HL-60细胞,73个化合物的活性高于先导化合物β-榄香烯;6个化合物的IC_(50)值比β-榄香烯低2个数量级;29个化合物的IC_(50)值比β-榄香烯低5倍以下。并根据以上测定结果,初步探讨了构效关系,为今后进一步研究β-榄香烯类抗肿瘤药物奠定了基础。
     用MTT法测定了β-榄香烯及13个活性较好的化合物对乳腺癌细胞株MCF-7和耐阿霉素乳腺癌细胞株MCF-7/Adr的增殖抑制作用。结果表明β-榄香烯和这些目标化合物抑制这二种细胞的IC_(50)值基本相同,说明这13个β-榄香烯衍生物对MCF-7/Adr细胞株不具有耐药性,即与阿霉素无交叉耐药性。
     为了进一步探讨β-榄香烯衍生物抑制肿瘤细胞增殖的作用机制,考察了IC_(50)值最小的三个化合物DX-42、DX-54、DX-56对K562细胞株的生长抑制和细胞毒作用。结果表明,这些化合物在低浓度条件下没有细胞毒作用;在低于5μM浓度条件下对K562细胞株也不具有诱导凋亡作用。Western blot分析法的实验结果表明化合物DX-42、DX-54、DX-56在2~4μM即可抑制AKT和mTOR激酶的磷酸化,说明其对肿瘤细胞的作用途径之一是抑制了mTOR/或AKT的活性。
     选择体外活性较强的5个化合物进行体内抑制H_(22)、S_(180)小鼠移植性肿瘤实验,这些化合物对这二种肿瘤的抑制活性均高于β-榄香烯,但根据小鼠死亡数量和体重减轻情况,其中4个化合物相对毒性较大,而化合物DX-25以25、50、100 mg·kg~(-1)·d~(-1)的剂量进行三次重复实验,对H_(22)肿瘤的平均抑制率分别为25.30%、40.85%、52.15%。对S_(180)肿瘤二次重复实验的平均抑制率分别为18.72%、35.53%和55.94%,且毒性低于β-榄香烯。
     对有较强的体外抗肿瘤活性和较低毒性的DX-25进行了进一步的研究,初步探讨其抑制肿瘤细胞增殖的作用机制。在体外实验中,对人癌细胞HL-60、SGC-7901、HeLa、BEL-7402和HepG_2有增殖抑制作用,且呈剂量和时间依赖关系;低剂量促进小鼠脾淋巴细胞增殖,高剂量抑制增殖。对荷瘤小鼠发挥抗肿瘤作用的同时,不抑制小鼠碳粒廓清能力。凋亡形态学及生化学检测证明,DX-25在高于15μM浓度条件下,能剂量和时间依赖性地将肿瘤细胞阻滞于G_0/G_1期,并诱导肿瘤细胞凋亡。诱导肿瘤细胞凋亡是其抗肿瘤机制之一,并且其诱导的肿瘤细胞凋亡可被Caspase家族抑制剂以及Caspase-3抑制剂对抗。
     本课题研究结果说明,通过在β-榄香烯结构中引入含氮原子、氧原子的极性基团来改善其水溶性,所合成的β-榄香烯衍生物中的绝大多数化合物抗癌活性有了显著提高,因此这类化合物很有研究前途,值得继续深入研究。
β-Elemene, extracted from the essential oils of a Chinese traditional medicinal herb Curcuma Wenyujin, is the main component of Elemene Emulsion developed in China as a novel antitumor drug. Experimental studies and clinic trials have demonstrated that it possesses potent antitumor activity both in vitro and in vivo, high specificity and lower liver and renal toxicities, as well as functions of immunity enhancement. These characteristics makeβ-elemene different from the conventional chemotherapeutic drugs and it should have heen given a fascinating and expectant usage. However, due to its poor water-solubility,β-elemene can only be used to patients as emulsion, whose instability, apparent vascular stimulation and a reqirement of high concentrations to reach a therapeutic effect limited its clinical use and antitumor activities.The development of pharmacy, effect mechanism and clinical use forβ-elemene were introduced briefly. Based on the studies ofβ-elemene derivatives, eighty-four compounds containing fatty amine, aromatic heterocycles, amino acid and carboxylic acid moieties were synthesized fromβ-elemene. Among them, seventy-eight compounds have been not reported in literatures. The structures of the target compounds were confirmed by MS, ~1H-NMR and IR spectra.To assess the anti-proliferation effect ofβ-elemene derivates, experiments with 'SRB assay' were performed in vitro. The results demonstrate that majority of these derivates inhibited the proliferation of human promyelocytic leukemia HL-60, human cervical HeLa and human gastric adenocarcinoma SGC-7901 cells and their 50% inhibitive concentrations (IC_(50s)) were lower thanβ-elemene. In order to evaluate the potential of being an anticancer drug, thirteenβ-elemene derivatives among them with better activity were tested by 'MTT assay' for their anti-tumor inhibitory activity in vitro against MCF-7 and MCF-7/Adr, all of them were not multidrug resistance for Adriamycin.To further investigate the antitumor effect, the cell growth inhibition, cytotoxicity and apoptosis induction of compounds DX-42, DX-54 and DX-56, the most potent agents among these derivatives, were measured in leukemia K562 cells. The results suggest that the inhibitory effect of these compounds on tumor cell growth is not due to apoptosis induction. It seems that these compounds inhibit cell growth through mTOR and/or AK.T activity inhibition.
     Following, The inhibitory effects of five compounds with better activity on H_(22) and S_(180) solid tumor in mice were studied in vivo. Among them four compounds were of both stronger inhibition and toxicity thanβ-elemene except compound DX-25.
     In vitro, the studies demonstrate that DX-25 inhibited the proliferation of HL-60, HeLa, SGC-7901, human hepatoma BEL-7402 and human hepatoma HepG_2 cells in a dose-and time-dependent manner, Optic microscope and fluorescence microscope photomicroseopical observation and DNA agarose gel electrophoresis showed that DX-25 could induce apoptosis in HeLa, SGC-7901 cells and that cell cycle was arrested at G_0/G_1 period. The further studies showed that the anti-proliferation mechanism of DX-25 is inducing tumor cells apoptosis by up-regulation of caspase-3 activity.
     Based on the results, the elementary structure-activity relationships of the compound mentioned above have been explored, which may make theoretical and practical bases for future work on the project searching for the antitumor drugs containingβ-elemene moiety.
引文
[1] Sorm F, Holub M, Sykora V, et al. Terpenes ⅩLⅥ Sesquiterpenic hydrocarbons from Sweet-flag oil[J]. Coil Czech Chem Commun, 1953, 18(3): 554~560.
    [2] Weinheimer AJ, Youngblood WW, Washecheek PH, et al. Chemistry of coelenterates ⅩⅧ isolation of the elasive (-)-germaerene-A from the gorgonian, Eunieea mammosa[J]. Tetrahedron Letter, 1970, (7): 497~500.
    [3] 林启寿.中草药成分化学[M],北京:科学出版社,1977,584.
    [4] 植木宽,甲斐原守夫,坂川正之,等.Antitumor activity ofplant constituents.Ⅰ[J].药学杂志,1961,811(11):1641~1644.
    [5] 郭永沺,吴秀英,陈玉仁.温莪术挥发油中榄香烯的分离鉴定.中药通报,1983,8(3):31-33.
    [6] Pakniokar SK, Bhattacharyya SC. Structure of α-elemene[J]. Tetrahedron, 1962, 18: 1509~1517
    [7] Thomas AF. Geijerone (3-isopropenyl-4-methyl-4-vinylcyclohexanone), a new, naturally occurrence C_(12) terpenoid[J]. Helv Chim Acta, 1972, 55(7): 2429~2432.
    [8] Thomas AF. The natural occurrence of the campholenyl skeleton, another 《non-isoprenoid》 monoterpene system[J]. Helv Chim Acta, 1972, 55(3): 815~817.
    [9] Ohloff G, Famow H, Philipp W. et al. Uber germacron seine pyrolytische umwandlung[J]. Lierbigs Ann Chem, 1959, 625: 206~229.
    [10] Ganter C, Keller-Wojtkiewicz FB. Pyrolysen-und hydrierungsversuche in der elemol-und dihydrogeijeren-reihe[J]. Helv Chim Acta, 1971, 54(1): 183~206.
    [11] Sykora V, Herout V, Soma F. Terpenes LⅩⅥ. The structure of β-elemene[J]. Coll Czech Chem Commun, 1956, 21(3): 267~268.
    [12] 王万军.β-榄香烯类抗肿瘤新药的开发研究[D].大连:中国科学院大连化学物理研究所,1997.
    [13] Sykora V, Cerny J, Herout V, et al. Terpenes LV synthesis of elemene (1-methyl-1-2,4-diisopropylyclohexane) [J]. Coll Czech Chem Commun, 1954, 19(3): 566~569.
    [14] Zheng S, Yang H, Zhang S, et al. Initial study on naturally occurring products from traditional Chinese herbs and vegetables for ehemoprevention[J]. J Cell Biochem Suppl, 1997, 27(1): 106~112.
    [15] 顾康生,洪素珍,梅蔚德,等.β-榄香烯致突变实验[J].中国药理学通报,1997,13(1):94~95.
    [16] 施广霞,于丽华,刘金友,等.β-榄香烯抗肿瘤作用的实验研究[J].大连医学院学报,1994,16(2):137~140.
    [17] 梁品,吴功佩,越荣宇,等.榄香烯对宫颈癌HeLa细胞的抑制作用[J].大连医学院学报,1995,17(2):16~18.
    [18] 杨骅,王先平,郁琳琳,等.榄香烯抗癌作用与诱发肿瘤细胞凋亡【J】.中华肿瘤杂志,1996,18(3):169~171.
    [19] 方琴,孙等军,王季石.榄香烯对人实体瘤与非实体瘤作用的差异性研究[J].中国药师,2004,7(8):579-581.
    [20] 虞介昌,陆韦炎,徐静娟,等.榄香烯对人癌细胞增殖的抑制作用.上海免疫学杂志,1997,17(6):353~356.
    [21] 时继慧.温莪术挥发油的实验药理研究[J].中药通报,1981,6(6):32~33.
    [22] 王堃,苏成业.β-榄香烯在大鼠体内药代动力学及体内过程[J].药学学报,2000,35(10):725~728.
    [23] 李志,王堃,陈玉仁,等.大鼠胆汁中β-榄香烯代谢产物的研究[J].药学学报,2000,35(11):829~831.
    [24] 傅乃武,全兰萍,郭永沺,等.β-榄香烯的抗肿瘤作用和药理学研究[J].中药通报,1984,9(2):35~39.
    [25] 孙煦,李德山,崔秀云,等.β-榄香烯与核酸的结合作用[J].中华医学丛刊,2004,9(9):551~555.
    [26] 邹丽娟,李杰,于丽敏,等.β-榄香烯抗癌作用与诱发肿瘤细胞凋亡的研究[J].大连医科大学学报,1998,20(2):9~10.
    [27] 周锡建,于祥生,王立祥,等.榄香烯乳对HImeg细胞系增殖抑制和诱导凋亡作用[J].中华血液学杂志,1997,18(5):263~264.
    [28] 李文秀,周梁,金小杰,等.榄香烯诱导喉癌细胞凋亡的实验观察.上海第二医科大学学报,2002,22(4):306~308.
    [29] 鲍依稀,汤为学.榄香烯对人肺癌细胞A549作用机理的初步研究[J].中国肿瘤临床,2002,29(5):338~341.
    [30] 张莉,张如慧.β-榄香烯对Tea8113细胞株诱导分化的研究[J].口腔医学研究,2002,18(5):307~309.
    [31] 孙等军,方琴,王季石。榄香烯对人肝癌细胞7402、宫颈癌细胞HeLa的凋亡诱导作用及下调Bcl-2蛋白表达[J].复旦学报:医学科学版,2001,28(5):403~405.
    [32] 徐学军,周子成,罗元辉,等.β-榄香烯诱导人肝癌细胞株SMMC-7721凋亡的研究[J].第三军医大学学报,1998,24(4):268~271.
    [33] 关文明,范钰,郭学良,等.β-榄香烯对人胃癌SGC-7901细胞凋亡及Survivin表达和Caspase酶 活性的影响[J].复旦学报:医学科学版,2003,30(5):434~438.
    [34] 黄富春,范钰,郑树.榄香烯乳对结肠癌Lovo细胞端粒酶活性、细胞凋亡及细胞周期的影响[J].医药导报,2004,23(10):712~714.
    [35] 方宁,陈代雄,王海燕,等.β-榄香烯对肿瘤细胞内钙离子的影响[J].遒义医学院学报,2002,25(1):4~5.
    [36] 张思奋,任东林,罗湛滨,等.动脉灌注榄香烯乳与直肠癌细胞的凋亡和增殖[J].肿瘤学杂志,2002,8(5):264~265.
    [37] 钱军,秦叔逵,杨爱珍,等.榄香烯乳逆转人肺癌细胞的实验研究[J].肿瘤防治研究,1996,23(5):299~301.
    [38] 胡守友,陈龙邦,王靖华,等.β-榄香烯对小鼠黑色素瘤细胞的诱导分化作用[J].南京大学学报(自然科学版),1998,34(5):550~553.
    [39] 钱振超,刘金友,赵肃荣,等.莪术瘤苗的主动免疫保护效应-莪术抗癌作用原理的探讨[J].药学学报,1981,16(12):892~896.
    [40] 钱振超,王大庆,金成刚,等.瘤苗特异性主动免疫治疗及其机制的研究[J].中国肿瘤生物治疗杂志,1995,2(2):120~126.
    [41] 高志红,郭连英,沈杰,等.榄香烯或热休克对人肝癌HepG2HSP70细胞膜表达及多种基因表达的影响[J].中国免疫学杂志,2002,18(11):709~794.
    [42] 高志红,黄琳,沈杰,等.榄香烯增强瘤苗免疫原性的研究[J].中华微生物学和免疫学杂志,2002,22(4):375~378.
    [43] 屈虹,郭连英,施广霞,等.树突状细胞在榄香烯复合瘤苗主动免疫效应中的作用[J].上海免疫学杂志,2003,23(4):225~227,231.
    [44] 赵卫红,施广霞,袁小林,等.榄香烯复合瘤苗对Hea-F肝癌小鼠的免疫治疗效应及对与分泌的影响[J].中国肿瘤生物治疗杂志,2001,8(2),126~128.
    [45] 沈洁,高诗娟,郭连英,等.巨噬细胞在榄香烯复合瘤苗对Hca-F的免疫效应中的作用[J].大连医科大学学报,2002,24(1):5~6.
    [46] 李丹,屈虹,施广霞,等.榄香烯及榄香烯复合瘤苗对小鼠腹腔巨噬细胞功能的影响分析[J].大连医科大学学报,2002,24(1):1~4.
    [47] 任双义,左云飞.榄香烯对小鼠肝癌腹水瘤细胞系Hca-F25/CL-16A3的视网膜母细胞瘤抑癌蛋白及腺病毒E2启动子结合因子表达的影响[J].中华实验外科杂志,2002,19(2):112~113.
    [48] 张学军,杜权,丁秀平,等.榄香烯乳对r-DNA转录活性的影响及意义[J].中国肿瘤临床,1999, 26(6):443~444.
    [49] 周云,杜英,范魁生.榄香烯乳胸腔灌注对恶性胸水渗出液相关淋巴细胞增殖及其活性的增强作用实验研究[J].中国肿瘤临床,1997,24(9):709~712.
    [50] 齐大光,衣服新,郭文师,等.β-榄香烯协同抗CD3-抗胶质瘤双特异性抗体免疫治疗胶质瘤作用的研究[J].锦州医学院学报,2001,22(2):22~23
    [51] 考军,周文丽,楼建刚,等.榄香烯乳对恶性肿瘤患者红细胞免疫功能影响的研究.泰山医学院学报,1996,17(3):185~186.
    [52] 陈龙邦,臧静,王靖华,等.β-榄香烯对小鼠B16黑色素瘤肺转移的抑制作用[J].南京大学学报(自然科学版),1996,32(医学专辑):30~33.
    [53] 张师前,孙伟,杨东鲁,等.榄香烯乳剂抑制615小鼠U14移植瘤双向转移的实验研究.榄香烯乳注射液临床应用与基础研究论文集[C]:大连:大连金港制药厂,1996.25~26.
    [54] 陈龙邦,臧静,王靖华,等.β-榄香烯对小鼠B16黑色素瘤细胞黏附,运动和间隙连接通讯功能的影响[J].肿瘤防治研究1999,26(3):195~197.
    [55] 胡军,赵谨瑶,杨佩满,等.β-榄香烯乳剂逆转多药耐药细胞株MCF-7/ADM对阿霉素耐药性研究[J].中国微生态学杂志,2002,14(4):214~215.
    [56] 郝立宏,赵谨瑶,杨佩满,等.川芎嗪与β-榄香烯联合应用诱导K562/ADM细胞凋亡及逆转其MDR的实验研究[J].中国肿瘤临床,2005,32(1):75~76.
    [57] 王宝成,郭军,狄剑时,等.榄香烯乳剂与肿瘤多药耐药的基础研究[J].中国肿瘤临床,1996,23(2):143~146.
    [58] 范钰,林庚金,钱立平,等.榄香烯乳对胃癌SGC-7910细胞株端粒酶活性及细胞凋亡的影响[J].复旦学报:医学科学版,2001,28(1):5~8.
    [59] 范钰,林庚金,钱立平,等.β-榄香烯对胃癌SGC-7901细胞c-myc基因表达及端粒酶活性的影响[J].中国肿瘤临床,2001,28(11):848~851.
    [60] 范钰,林庚金,钱立平,等.β-榄香烯对大鼠胃癌及癌前病变DNA含量、增殖细胞核抗原表达及端粒酶活性的影响[J].复旦学报:医学科学版,2001,28(5):378~381.
    [61] 王一,方美云,姜风,等.三氧化二砷、人参皂甙和β-榄香烯对K562细胞株端粒.端粒酶系统作用机制的研究[J].中国实验血液学杂志,2004,12(3):315~320.
    [62] 林庚金,范钰,钱立平,等.卢榄香烯对大鼠胃黏膜癌变过程bcl-2基因mRNA表达及端粒酶活性的影响[J].胃肠病学,2002,7(2):83~85.
    [63] 马东礼,童善庆,肖家奇,等.榄香烯对HeLa细胞端粒酶催化亚单位基因表达的作用[J].中国癌 症杂志,2001,11(1):9~13.
    [64] 许洪升,黎军,刘军,等.榄香烯对脑肿瘤患者血清SOD活性影响的研究.中国肿瘤临床,1996,23(7):527.
    [65] 张红,张立秋,左云飞,等.榄香烯对肝癌腹水瘤细胞系Hca-F25/CL-16A3的抗肿瘤作用机理的实验研究Ⅵ榄香烯对小鼠血清中α-L-岩藻糖苷酶活性及γ谷氨酰转肽酶活性的影响[J].中药药理与临床,1997,13(6):37~38.
    [66] 唐天友,刘永彪.榄香烯对淋巴细胞辐射抗生效应的研究[J].徐州医学院学报,2002,22(1):40~42.
    [67] 陆群,朱路佳,谢梅林,等.β-榄香烯抑制大鼠血栓形成及其机理研究[J].中国现代应用药学,1999,16(4):13~16.
    [68] 毛连根,耿宝琴,雍定国,等.β-榄香烯乳对小鼠脑内接种G422模型的治疗及镇痛作用[J].实用肿瘤杂志,2001,16(4):246~247.
    [69] 秦叔逵,钱军,王琳,等.榄香烯乳治疗肺癌的临床观察[J].中国肿瘤临床,1997,24(3):231~233.
    [70] 申维玺,李卫东,马磊,等.NP方案联合榄香烯乳治疗晚期非小细胞肺癌临床研究[J].医学研究通讯,2002,3(8):62~63.
    [71] 沈德美.榄香烯乳剂联合化疗治疗晚期非小细胞肺癌的疗效观察[J].临床医学,2004,29(1):56~57.
    [72] 田韧,杨劲松,张宝国.以榄香烯乳为耐药调剂联合化疗耐药胃癌临床观察[J].肿瘤防治研究1999,26(3):215~216.
    [73] 银正民,张英.榄香烯乳氟脲嘧啶方案治疗晚期胃癌对照研究[J].中国肿瘤临床,1996,23(11):810~812.
    [74] 李学,贾立群,程志强,等.榄香烯及5-氟脲嘧啶生化调节方案治疗胃肠道腺癌临床疗效观察[J].中日友好医院学报,2004,18(1):6~9.
    [75] 肖立森,朱为民.榄香烯经动脉介入治疗原发性肝癌的临床研究总结[J].中国肿瘤临床,1996,23(10):757.
    [76] 陈俊,王峰,杨葆华,等.榄香烯联合介入治疗中晚期肝癌92例[J].介入放射学杂志,2002,11(3):210~203.
    [77] 潘慧君,周汉高,陆燕燕.榄香烯乳治疗转移性骨癌初步观察(附15例分析)[J].新医学,1998,29(9):477~478.
    [78] 沈德美.榄香烯乳与鬼臼噻吩甙治疗脑转移的临床对比观察[J].中国肿瘤临床,1997,24(8):630~631
    [79] 王风月.榄香烯与顺铂治疗恶性胸、腹腔积液疗效比较[J].河北医药,1998,20(3):169~170.
    [80] 李琼.榄香烯乳联合顺铂治疗恶性胸腹水疗效[J].临床肺科杂志,2002,7(4):85~86.
    [81] 郑翠苹,王肖岚,张卫平.榄香烯乳联合化疗治疗急性非淋巴细胞白血病疗效观察[J].中国肿瘤临床,1999,26(3):237~240.
    [82] 郑翠苹,张卫平,徐杰.榄香烯乳加联合化疗治疗难治性急性非淋巴细胞白血病疗效观察[J].临床血液学杂志,2001,14(5):211~212.
    [83] 蒋玉洁.榄香烯乳合中药外敷治癌痛[J].安徽中医临床杂志,1998,10(4):195~196.
    [84] 章顺南,马云,骆剑明.榄香烯乳对晚期肿瘤患者生存质量与镇痛作用的临床观察[J].中国肿瘤临床与康复,2002,9(2):100~102.
    [85] 欧阳学农,陈曦,曾金雄.榄香烯与白细胞介素-2联用治疗恶性胸腔积液[J],中国肿瘤临床,1997,24(4):315.
    [86] 刘茂林,邹丽娟,崔贵明.榄香烯乳放射增敏治疗骨转移癌60例临床研究[J].中国肿瘤临床,2001,2R(12).889~891.
    [87] Maurer B, Grieder A. Sesquiterpenoids from costus root oil(Saussurea lappa Clarke) [J]. Helv. Chim. Acta, 1977, 60(7): 2177~2190.
    [88] 鞠景月.榄香烯类化合物的合成研究[D].大连:中国科学院大连化学物理研究所,1988.
    [89] 贾卫民.抗癌新药β-榄香烯及其衍生物的合成、结构和构效关系研究[D].大连:中国科学院大连化学物理研究所,1991.
    [90] 董金华.榄香烯系列抗癌化合物的研究[D].大连:中国科学院大连化学物理研究所,1995.
    [91] 褚长虎,梁鑫淼,肖红斌,等.β-榄香烯五元氮杂环衍生物及其合成方法[P].CN:1181063C,2004-12-22.
    [92] 褚长虎,梁鑫淼,肖红斌,等.β-榄香烯嘧啶类衍生物及其合成方法[P].CN:1462745A,2003-12-24.
    [93] 万伯顺,肖远胜,梁鑫淼,等.一种含氮杂环β-榄香烯酰胺类衍生物其制备及应用[P].CN:1736994A,2006-2-22.
    [94] 万伯顺,肖远胜,梁鑫淼,等.一种含氮杂环β-榄香烯哌嗪烷基类衍生物其制备及应用[P].CN:1736991A,2006-2-22.
    [95] Kollmannsberger C, Mross K, Jakob A, et al. Topotecan—a novel topoisome rase Ⅰ inhibitor: pharmacology and clinical experience[J]. Oncology, 1999, 56(1): 1~12.
    [96] Armand JP, Cunningham D, Cutsem E, et al. Clinical advances with topoisomerase I inhibitor in gastrointestinal malignancies[J]. Anti Cancer Drugs, 1999, 10(Suppl 12): S5~S11.
    [97] Sandier A, Oosterom AT. Irinotecan in cancer of the lung and cervix[J]. Anti Cancer Drugs, 1999, 10(Suppl 1): S13~S17.
    [98] Aapro M. Docetaxel versus doxorubicin in patients with metastatic breast cancer who have failed alkalating chemotherapy: a preliminary report of the randomizod phase Ⅲ trial[J]. Semin Oncol, 1998, 5 (Suppl 12): 7~11.
    [99] Manegold C. Dcetaxel(Taxotere) in non-small cell lung cancer: ongoing studies in Heidelberg and future plans[J]. Semin Oncol, 1999, 26(1): 23~27.
    [103] Cheradame S, Chazal M, Fchel JL, et al. Varoable intrinsic sensitivity of humen tumor cell line to raltitrexed(Tomudex) and folypolyglutamate synthetase activity[J]. Anti Cancer Drugs, 1999, 10(5): 505~510.
    [100] Blackledge G. New developments in cancer treatment with the novel thymidylate synthase inhibitor raltitrexed(Tomudex) [J]. British J Cancer, 1999, 77(Suppl2): S29~37.
    [101] Qing CH, Zhang JS, Ding J. In vitro cytotoxicity of salvicine, a novel diterpenoid quinone[J]. Acta Pharmacol Sinica, 1999, 20(4): 297~302.
    [102] Zhang JS, Ding J, Tang QM, et al. Synthesis and antitumor activity of novel diterpenquinone salvicine and the analogs[J]. Bioorg Med Chem Left, 1999, 9(18): 2731~2736.
    [103] United Stated Pharmacopeial Convention[M]. INC. Pipobroman. USP ⅩⅪ, 1985, 843.
    [104] 黄英奎.国外新药介绍[J].国外药学(合成药,生化药,制剂分册),1984,6:359~360.
    [105] [J].1983,17,626.
    [106] 卢步峰,于丽敏,边春香。等.β-榄香烯吗素抗肿瘤作用的实验研究[J].中国组织化学与细胞化学杂志,2000,9(1):78~82.
    [107] Ferte J, Kühnel JM, Chapuis G, et al. Flavonoid-related modulators of multidrug resistance: synthesis, pharmacological activity, and structure-activity relationship[J]. J Med Chem, 1999, 42(3): 478~489.
    [108] 翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社,2000,358~362.
    [109] Sun Q, Gatto B, Yu Chiang, et al. synthesis and evaluation of terbenzimidazoles as Topoisomerase Ⅰ inhibitors[J]. JMed Chem, 1995, 38(18): 3638~3844
    [110] Hegde SG, Vogel MK, Saddler J, et al. The reaction of hypochlorous acid with olefins a convenient synthesis of allylic chlorides[J]. Tetrahedron Lett, 1980, 21(5): 441~444
    [111] Walling C, Thaler W. Positive halogen compound Ⅲ. allylic chlorination with t-butyl hypochlorite the stereochemistry of allyic radicals[J]. J Am Chem Soc, 1961, 83(13): 3877-3884
    [112] Clarke HT, Gillespie HB, Weisshaus SZ. The action of formaldehyde on amins and amino acids[J]. J Am Chem Soc, 1933, 55(6): 4571~4587
    [113] Philip S, Ritsa S, Dominic S, et al. New colorimetric cytotoxicity assay for anticancer-drug screening[J].J Natl Cancer Inst, 1990, 82(13): 1107~1112.
    [114] Rubistein LV, Shoemaker RH, Paull KD, et al. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines[J]. J Natl Cancer Inst, 1990, 82(13): 1113~1117.
    [115] Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet, 2005, 37(1): 19~24.
    [116] Morgensztern D, Mcleod HL. PI3K/Akt/mTOR pathway as a target for cancer therapy. Anti-cancer Drugs, 2005, 16(8): 797-804.
    [117] Dai J, Weinberg R, Waxman S, et al. Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the Glutathione Redox System. Blood, 1999, 93(1):268~277.
    [118] Sun SY, Rosenberg LM, Wang X, et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of Rapamycin inhibition. Cancer Res, 2005, 65(16): 7052~7058.
    [119] Majno G, Joris I. Apoptosis, oncosis, and necrosis, An overview of cell death[J]. Am J Pathol, 1995,146(1):3~15.
    
    [120] Nagata S. Apoptotic DNA fragmentation[J]. Exp Cell Res, 2000, 10(1): 12~18.
    
    [121] Joza N. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death[J].Nature, 2001, 410: 549~554.
    [122] Harris MH, Thompson CB. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability[J]. Cell Death Differ, 2000, 7: 1182~1191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700