用户名: 密码: 验证码:
豌豆根瘤菌抗逆、促生性能及固氮效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
豌豆是干旱、半干旱地区一种重要的轮作倒茬作物,其固定的氮素能改良土壤并为下茬作物提供优质氮源。充分发挥其生物固氮作用,对修复干旱半干旱区的生态损伤和抑制土壤退化具有重要意义。目前在豌豆根瘤菌的基础研究方面,包括豌豆根瘤菌资源调查、采集与筛选的投入较少,限制了对豌豆共生固氮资源的利用。本研究采集甘肃、青海及陕西三省的定西、武威、庆阳、临夏、兰州、互助、格尔木及子洲八个不同生态区域根瘤样品353份,通过分离获得根瘤菌纯培养物364个,经蛭石回接初筛与土壤复筛后对筛选的豌豆根瘤菌进行抗逆、促生及固氮性能评估,同时系统性的研究了不同生态区域土壤因子对豌豆根瘤菌筛选的影响,主要研究结论如下:
     1、豌豆根系的结瘤状况与当地气候条件有关,庆阳、定西地区根瘤较少,子洲地区难以采集根瘤,而武威、兰州、格尔木地区土壤湿度较大,临夏、互助地区土壤质地疏松且降雨量充足,根瘤数量则较多。在青海互助地区发现球体状有效根瘤,直径达1cm左右。
     2、接种根瘤菌对豌豆生长具有一定的促进作用,与不接种对照相比,豌豆干物质积累量的增加2.9%-78.5%,其中菌株GDB27、GLC1及QGW19接种燕农2号与绿豌后,增幅达57%以上;且接种豌豆根瘤菌提高了植株收获后土壤氮素的有效性,黄绵土与灌淤土铵态氮含量分别增加25.5与17.7mg/kg,硝态氮增加15.7与7.9mg/kg。
     3、豌豆根瘤菌抗逆性能与菌株来源地生态环境密切相关,在盐胁迫和干旱胁迫下分离出的豌豆根瘤菌对盐分和干旱胁迫有良好的适应能力。34.5%的菌株可耐4.5%NaCl浓度,以QGW19、GWC7.3、GWWW16及GQZ5耐盐性最强;菌株普遍耐碱,但耐酸能力较弱,以GWC7.3耐碱能力最强,其次为GQZ5、QGW19、GWWW16及GLC1;菌株GLC1耐酸能力最强,其次为QGW19及GDW6;菌株可在渗透势为-0.6mPa—-0.2mPa范围的培养基中生长,当渗透势小于-0.6mPa时,根瘤菌生长明显受到抑制,48.3%菌株可在渗透势为-1.0mPa的培养基中生长,以GDB27与GQZ5耐旱能力表现最强,其次为SY12、GWC7.3、SZ32及GQC1。发现了一株功能复合型抗逆菌株GLC1,同时具备耐酸碱盐及耐旱能力。
     4、豌豆根瘤菌溶解有机磷能力较弱,但均具备分泌生长素能力。溶磷能力较强的菌株为QGW19与GLC1,其次为SY3.1、XC3.1、GWC7.3及GQZ5;10株豌豆根瘤菌分泌生长素能力较强,分别为QGW19、SY3.1、SY12、XC3.1、GWC7.3、GWWW16、GDB27、GQW28、GQZ5及GLC1。发现溶磷能力及分泌生长素能力较强的菌株QGW19、GLC1及XC3.1。
     5、豌豆根瘤菌的抗逆、分泌生长素及溶磷能力与其来源地土壤因子紧密相关,高有效氮含量及碱性土壤可以提高菌株耐盐能力,较高的速效钾含量能提高菌株的耐旱性,土壤有机质含量较高可提高菌株的耐酸能力;速效磷较高且弱碱性土壤环境会增加菌株溶解有机磷能力,而中性偏酸及高磷低氮土壤会增强菌株分泌生长素能力。
     6、根瘤菌株SY12、SY3.1及GDB27固氮能力较强,固氮量均在70mg/pot以上,且此三株菌均源于旱作农区。
Pea(Pisum sativum L.) is an important rotation crop in many arid and semi-arid parts of the world, the nitrogen benefits to the following crop are reported. Pea cultivation in arid and semi-arid agricultural regions is of great significance to rehabilitation ecological damage and inhibition soil degradation. At present time, the study on basic research including the investigation, collection and selection of resources for pea Rhizobium is less, which limit the use of pea-Rhizobium resources. In our study, 353 nodules has been collected from 8 different ecological regions in Gansu, Qinghai and Shanxi province, namely Dingxi, Wuwei, Qingyang, Linxia, Lanzhou, Huzhu, Ge’ermu and Zizhou. 364 pure cultivation were obtained by seperation and purification, the ability of stress tolerance, growth-promoting and nitrogen fixation of strains was evaluated after back-inoculation and soil selection of Rhizobium strains. Meanwhile, the the effect of soil factors of different ecological regions on strains was analyzed and discussed. The main results as follows:
     1. The status of pea root nodule is relevant to the climate conditions of sampling in different ecological regions. The nodules were less in Qingyang and Dingxi, and it was hard to collect nodule in Zizhou. There was a number of nodules in the looser and higher humidity soil in Wuwei, Lanzhou, Ge’ermu, Linxia and Huzhu. The efficiently spherical nodules, about 1cm in diameter, were found in Huzhu, Qinghai province.
     2. Inoculation with the selection strains had a role in promoting growth of pea. Compared with CK, the shoot dry weight increased by 2.9%-78.5%. The strains GDB27, GLC1 and QGW19 inoculated Yannong No.2 and Luwan, the shoot dry weight increased by over 57% compared to CK. Rhizobium inoculated pea increased soil nitrogen after harvest in Loessial soil and Irrigation-silting soil, NH4+N respectively 25.5 and 17.7 mg/kg, NO3-N 15.7 and 7.9 mg/kg.
     3. The stress-tolerant ability of pea rhizobia was closely related to their ecological environment. Pea rhizobia from salt and drought stress conditons was able to adapt to the salt and drought stress. The test on salt tolerance of 29 pea rhizobia showed 34.5% of the strains was resistant to 4.5% NaCl concentration medium. QGW19 obtained from Ge’ermu, GWC7.3 and GWWW16 obtained from Wuwei, GQZ5 obtained from Qingyang were better than other strains in stress-tolerant ability; Pea rhizobia with alkaline tolerance from northwestern generally was found, but the acid tolerance was weak, the alkaline tolerance of GWC7.3 was the better, followed by GQZ5, QGW19, GWWW16 and GLC1, the acid tolerance of GLC1 was the best, followed by QGW19 and GDW6; The study found pea rhizobia could be growth in -0.6mPa-0.2mPa of osmotic potential medium, when the osmotic potential was less than -0.6mPa, the growth of rhizobia were significantly inhibited, 48.3% of strains in the osmotic potential -1.0mPa could be growth, the drought tolerance of GDB27 and GQZ5 were found, followed by SY12, GWC7.3, SZ32 and GQC1. Strain GLC1 with the salt-tolerance, acid and alkalinity-tolerance, drought-tolerance was found.
     4. Phosphate solubilization ability of pea rhizobia were weak, but pea rhizobia were indicated with the good ability of secretetion auxin. QGW19 and GLC1 had a better phosphate solubilization ability than other strains, followed by SY3.1, XC3.1, GWC7.3, GQZ5; 10 strains, including QGW19, SY3.1, SY12, XC3.1, GWC7.3, GWWW16, GDB27, GQW28, GQZ5 and GLC1, were indicated with the good ability of secretetion auxin. QGW19, GLC1 and XC3.1 with both phosphate solubilization and secretetion auxin ability were found.
     5. The stress-tolerant and growth-promoting ability of pea rhizobia were closely related to the soil factors in seperation regions. The salt-tolerant ability of strains could be relatively increased by higher soil available nitrogen and alkaline soil, the drought-tolerant ability of strains could be relatively increased by higher soil available K content, and the acid-tolerant capacity of strains could be relatively increased by higher soil organic matter content, and the alkaline-tolerant ability of strains was mainly affected by soil pH; The phosphate solubilization ability of pea rhizobia could be relatively enhanced under high soil available P and weak alkaline soil conditions, whereas the ability of secretetion auxin could be relatively broadened under neutral soil pH and high soil P and low soil N conditions.
     6. The study also found pea Rhizobium with high nitrogen-fixing ability was usually from dry farming areas, such as, SY12、SY3.1 and GDB27 (N fixed 70mg/pot over).
引文
[1] Peoples MB, Herridge DF, and Ladha JK. Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production. Plant Soil. 1995, 174: 3-28.
    [2] Burns RC, Hardy RWF. Nitrogen fixation in bacteria and higher plants. Springer-Verlag, New York, N.Y. 1975.
    [3] Paul EA. Towards the year 2000: directions for future nitrogen research, p. 417-425. In J. R. Wilson (ed.), Advances in nitrogen cycling in agricultural ecosystems. CAB International, Wallingford, United Kingdom. 1988.
    [4] Sprent JI, Sprent P. Nitrogen fixing organisms. Pure and applied aspects. Chapman & Hall, London, United Kingdom. 1990.
    [5] Zahran HH. Rhizobium-Legume Symbiosis and Nitrogen Fixation under Severe Conditions and in an Arid Climate. American Society for Microbiology. 1999, 4: 968-989.
    [6]李新民,谷思玉,窦新田,等.不同土壤大豆接种根瘤菌剂反应的研究[J].黑龙江农业科学, 1998, 4: 1-5.
    [7]谢军红.豌豆根瘤菌高效菌株的筛选及共生匹配性研究[D].硕士论文,甘肃农业大学, 2008.
    [8] Drevon JJ, Abdelly C, Amarger N, Aouani ME, Aurag J, Gherbi H, Jebara M, Lluch C, Payre H, Schump O, Soussi M, Sifi B, Trabelsi M. An interdisciplinary research strategy to improve symbiotic nitrogen fixation and yield of common bean (Phaseolus vulgaris) in salinised areas of the Mediterranean basin. J. Biotechnol. 2001, 91: 257–268.
    [9] Soon YK, Harker KN, Clayton GW. Plant competition effects on the nitrogen economy of field pea and the subsequent crop. Soil Sci. Soc. Am. J. 2004, 68: 552-557.
    [10] Talukder MS, Solaiman ARM, Khanam D, et al. Characterization of some Rhizobium isolates and their effectiveness on pea. Bangladesh J Microbiol. 2008, 25: 45-48.
    [11]孙云越.豌豆优良品种与栽培技术[M].金盾出版社. 2000.
    [12]陈文新.豆科植物根瘤菌-固氮体系在西部大开发中的作用[J].草地学报.2004, 12(1): 1-2.
    [13]宁国赞,刘惠琴,马晓彤.豌豆根瘤菌优良菌种筛选及应用的研究[J].中国草地. 1997, 2: 48-51.
    [14]谢军红,黄高宝,郭丽琢,等.豌豆根瘤菌高效菌株的筛选及共生匹配性研究[J].甘肃农业大学, 2009, 44(1): 102-106.
    [15]马剑.接种根瘤菌对豌豆根际微生境的影响[D].硕士论文,甘肃农业大学, 2009.
    [16]郭丽琢,何亚慧.不同生态环境条件下豌豆的结瘤状况[J].安徽农业科学. 2009, 37(28): 13552-13553.
    [17]郭丽琢,何亚慧.豌豆根瘤菌的盐碱适应性鉴定[J].水土保持研究. 2009, 16(5): 270-272.
    [18]李强.豌豆根瘤菌染色体hurL基因突变对其结瘤基因表达和结瘤表型的影响[D].博士论文,中国科学院. 2003.
    [19]缪礼鸿,周俊初.豌豆根瘤菌共生基因在S. fredii中的表达及共生质粒间的相互作用[J].武汉大学学报(理学版). 2001, 47(4): 498-502.
    [20]冯杰.豌豆根瘤菌NodD操纵子之正调控机制[D].博士论文,中国科学院. 2003.
    [21]杨小二.豌豆根瘤染色体hxy基因的克隆与功能研究[D].硕士论文,华南热带农业大学, 2005.
    [22]唐咏.豌豆根瘤菌固氮结构基因向好气性固氮菌(Azotobacter vinelandii)的转移[J].沈阳农业大学学报. 1994,25(1):70-74
    [23]刁治民,王德贤,张学功.青海豌豆与蚕豆根瘤菌的初步研究[J].青海农林科技. 1996, 1: 11-15.
    [24]杨风,潘超美,王德琼.荷兰豆根瘤菌的分离、鉴定及其菌剂的研制和应用[J].热带亚热带植物学报. 1997, 5(2): 47-53.
    [25]韩善华.箭舌豌豆根瘤液泡中细菌周膜来源的研究[J].微生物学报. 1995, 35(5): 381-385.
    [26]陈文新,汪恩涛,陈文峰.根瘤菌豆科植物共生多样性与地理环境的关系[J].中国农业科学. 2004, 37(1): 81-86.
    [27]慈恩,高明.环境因子对豆科共生固氮影响的研究进展[J].西北植物学报. 2005, 25(6): 1269-1274.
    [28]陈文新,陈文峰.发挥生物固氮作用减少化学氮肥用量[J].中国农业科技导报. 2004, 6(6): 3-6.
    [29] Burris RH. Biological nitrogen fixation-past and future, p. 1-11. In NA Hegazi, M Fayez, and M Monib (ed.), Nitrogen fixation with nonlegumes. The American University in Cairo Press, Cairo, Egypt. 1994.
    [30] Vance CP. Enhanced agriculture sustainability through biological nitrogen fixation[C]// Legocki A, Phouler BH. Biological fixation of nitrogen for ecology and sustainable agriculture. Berlin: Berlin Heidelberg, 1997, 179-186.
    [31] Tate RL. Soil microbiology (symbiotic nitrogen fixation), p. 307–333. John Wiley & Sons, Inc., New York, N.Y 1995.
    [32] Brockwell J, Bottomley PJ, and Thies JE. Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant Soil 1995, 174: 143–180.
    [33] Freiberg C, Fellay R, Bairoch A, et. al. Molecular basis of symbiosis between Rhizobium and legumes. Nature. 1997, 387:394–401.
    [34]曾昭海,隋新华,胡跃高,等.紫花苜蓿-根瘤菌高效共生体系筛选及田间作用效果[J].草业学报. 2004, 13(5): 95-100.
    [35]吴海燕.花生根瘤菌高效菌株的筛选及固氮效果研究[D].硕士论文.吉林农业大学. 2002.
    [36]曾昭海.紫花苜蓿-根瘤菌高效根瘤菌筛选及田间鉴定方法研究[D].博士论文.中国农业大学. 2003.
    [37]刁治民.青海蚕豆根瘤菌共生固氮效应的研究[J].微生物学杂志. 2000, 20(3): 20-22.
    [38]徐传瑞,章建国,周俊初.大豆根瘤菌的分离和筛选[J].华中农业大学学报. 2004, 23(6): 635-638.
    [39]刘茜,赵士豪,王来福,等.甘草高效根瘤菌菌株筛选试验研究[J].河北省科学院学报. 2005, 22(1): 58-66.
    [40]房增国.豆科/禾本科间作的氮铁营养效应及对结瘤固氮的影响[D].博士论文.中国农业大学. 2004.
    [41]杜寒春.根瘤菌对禾本科作物生物的促进作用研究[D].硕士论文.南京农业大学. 2005.
    [42]焦念元.玉米花生间作复合群体中氮磷吸收利用特征与种间效应的研究[D].博士论文.山东农业大学. 2006.
    [43]雍太文.“麦/玉/豆”套作体系的氮素吸收利用特性及根际微生态效应研究[D].博士论文.四川农业大学. 2009.
    [44]王正周.豆科作物的生态作用[J].植物杂志. 1993, 2: 30-32.
    [45]周小全.豌豆早期结瘤素基因克隆与凝集素基因psl转化烟草研究[D].硕士论文.西南大学. 2008.
    [46] Tan GY, Tan WK. Interact ion betw een alfalfa cult ivars and Rhizobium strains for nitrogen fixation. Theoretical and Applied Genetics[J]. 1986, 71: 724-729.
    [47]房春红.根瘤菌与大豆、土壤间相互适应性研究[D].硕士论文.南京农业大学. 2007.
    [48]曾小红,马焕成,伍建榕,等.根瘤菌的抗旱性研究进展[J].西南林学院学报. 2005, 25(3): 80-83.
    [49]师尚礼.甘肃寒旱区苜蓿根瘤菌促生能力影响因子分析及高效促生菌株筛选研究[D].博士论文.甘肃农业大学. 2005.
    [50] Temprano FJ, Albareda M, et al. Survival of Several Rhizobium/Bradyrhizobium Strains on Different Inoculation and Inoculated Seeds[J]. Int Microbial. 2002, 5: 81-86
    [51]徐传瑞.高效固氮大豆根瘤菌的筛选和鉴定[D].硕士论文.华中农业大学. 2004.
    [52]江木兰,张学江,徐巧珍,等.大豆-根瘤菌的固氮作用[J].中国油料作物学报. 2003, 25(1): 50-53.
    [53]邱丽娟,常汝镇,孙建英,等.中国大豆品种资源的评价与利用前景[J].中国农业科技导报. 2000, 5:
    [54]窦新田,李新民,王玉峰,等.黑龙江省土著大豆根瘤菌的数量分布及共生结瘤特性[J].土壤通报. 1997, 1: 45-46.
    [55]关媛.中国湖南、湖北栽培大豆遗传多样性分析[D].硕士论文.新疆农业大学. 2004.
    [56]张永芳.大豆品种、根瘤菌株的筛选及大豆苗期固氮相关性状的QTL分析[D].硕士论文.山东师范大学. 2008.
    [57]陈强.中国部分地区大豆根瘤菌的遗传多样性和系统发育研究[D].硕士论文.四川农业大学.2009.
    [58]张伟涛,杨江科, 8天英,等.我国南北大豆产区慢生大豆根瘤菌的遗传多样性和系统发育研究[J].微生物学报. 2006, 46(1): 127-131.
    [59]杨成运,周俊初,杨江科,等.我国亚热带地区快生型大豆根瘤菌遗传多样性研究[J]. 2011, 1: 48-53.
    [60]郭春景,杨旭升,陈锡时.大豆根瘤菌与黑龙江省主栽品种共生匹配的研究[J].大豆通报. 2004, 2: 6,8.
    [61]黄芳,许修宏.不同类型土壤中大豆与根瘤菌的匹配性研究[J].东北农业大学学报. 2007, 38(2): 211-214.
    [62]马中雨.大豆根瘤菌与大豆品种共生匹配性研究[D].硕士论文.中国农业科学院. 2008.
    [63]王晶,许修宏.不同根瘤菌、大豆品种、土壤类型对固氮酶活性的影响[J].东北农业大学学报. 2008, 38(9): 36-39.
    [64]李新民,窦新田,李晓鸣.不同大豆品种田间结瘤固氮有效性的评价[J].大豆科学. 1993, 4: 42-46.
    [65]杨微.大豆应用根瘤菌剂试验[J].大豆通报. 2004. 6: 5-6.
    [66]唐颖,卢林纲,隋文志,等.根瘤菌不同接种方式对大豆根瘤分布及产量的影响[J].现代化农业. 2001, 4: 13-14.
    [67]卢林纲.黑龙江省大豆根瘤菌复合颗粒肥的研制及其应用技术研究[D].硕士论文.中国农业大学. 2005.
    [68]张红侠,冯瑞华,关大伟,等.黄土高原地区优良大豆根瘤菌的筛选与接种方式研究[J].大豆科学. 2010, 29(6): 996-1002.
    [69]朱虹,何绍江.不同保藏年代的大豆根瘤菌冻干菌种的生物学活性研究[J].土壤肥料. 2005, 3: 54-56.
    [70] Champion RA, Mathis JN. Response of soybean to inoculation with efficient and inefficient Bradyrhizobium japonicium variants. Crop Sci Sco Amercian. 1992, 32(2): 457-463.
    [71]缪礼鸿,周俊初.根瘤菌竞争结瘤的研究进展[J].华中农业大学学报. 2003, 22(1): 84-89.
    [72]孔新,刘胜利,罗赓彤等.浅谈大豆重组根瘤菌的构建与利用[J].新疆农业科学. 2003, 40(2): 84~86.
    [73]李新民,窦新田,王玉峰.大豆寄主固氮遗传育种研究进展[J].大豆科学. 1999, 18(2): 160-163.
    [74]杨江科,周俊初.潍坊、花园口土样中土著大豆根瘤菌的遗传多样性研究[J].应用与环境生物学报. 2000, 6(3): 259-262.
    [75]李红,杨苏声.盐激条件下快生大豆根瘤菌的渗透调节[J].微生物学报. 1995, 35(1): 1-5.
    [76]金一.稀土元素对快生型大豆根瘤菌生长特性及抗生物因素的影响[J].青海科技. 1994, 1(4): 9-12.
    [77]刘莉,周俊初,陈华癸.不同化合态氮浓度对大豆根瘤结瘤和固氮作用的影响[J].中国农业科学. 1998, 31(4): 87-89.
    [78]杨振廷,张富才.硼、钼微肥与二铵施在大豆上的应用效果[J].土壤肥料. 2006, 1: 46, 56.
    [79]史清亮,马玉珍,贺跃武,等.山西土著花生根瘤菌的数量分布及其共生结瘤固氮特性[J].山西农业科学. 1999, 27( 2) : 49-51.
    [80]曹凤明,徐玲玫,李力,等.花生根瘤菌的数值分类[J].微生物学通报. 1999, 26(6): 421-425.
    [81]范运梁,崔春晓,杨静,等.两株花生根瘤菌的比较研究及结瘤能力的测定[J].山东科学. 2010, 23(1): 22-27.
    [82]吴海燕,刘春光,张桂芝,等.花生根瘤菌高效菌株的筛选及固氮效应的研究Ⅰ.花生根瘤菌高效菌株的筛选及固氮效应的盆栽试验[J].吉林农业科学. 2003, 28(6): 20-25.
    [83]吴海燕,刘春光,张桂芝,等.花生根瘤菌高效菌株的筛选及固氮效应的研究Ⅱ.花生根瘤菌高效菌株的筛选及固氮效应的盆栽试验[J].吉林农业科学. 2004, 29(4): 28-34.
    [84]刘世旺,王宝林,陶佳喜.不同花生根瘤菌菌剂对花生生长的影响[J].湖北农业科学. 2006, 45(6): 743-745.
    [85]李江凌,黄怀琼.石灰性紫色土上铁对花生-根瘤菌共生固氮的影响[J].四川农业大学学报. 1997, 15(3): 323-328.
    [86]于景丽,张小平,李登煜,等. celB基因标记法研究酸性土花生接种及施钼效果[J].植物营养与肥料学报. 2006, 12( 2) : 250-253.
    [87]徐开未,张小平,陈远学,等.钼与花生根瘤菌的复配及在酸性紫色土上的接种效果[J].植物营养与肥料学报2005, 11(6) : 816- 821.
    [88]李会志,刘世奎,尹协芬,等.花生施用根瘤菌接种剂增产作用研究[J].花生学报. 2003,32(增刊): 434-438.
    [89]姚良同,杜秉海,林榕姗,等.花生根瘤菌接种与微量元素肥料配施对其生物量及氮素利用的影响.土壤肥料. 2000, 5: 39-42.
    [90]于晓波,向达兵,杨文钰,等.结瘤性状不同基因型大豆对接种花生根瘤菌Spr2-9的响应[J].大豆科学. 2010, 29(1): 41-45.
    [91]李立家,周俊初,陈华癸.导入外源DNA片段的花生根瘤菌高效基因工程菌株的构建[J]. 1994, 13(3): 219-225.
    [92]朱光富,周俊初.固氮花生根瘤菌HN14的构建[J].华中农业大学学报. 1995, 14(3): 207-212.
    [93]杨江科.花生根瘤菌遗传多样性和系统发育研究[D].博士论文.华中农业大学. 2002.
    [94]张小平.四川花生根瘤菌的遗传多样性和系统发育研究[D].博士论文.华中农业大学. 2001.
    [95]杨江科,谢福莉,周俊初.花生根瘤菌群体遗传多样性和系统发育研究[J].遗传学报. 2002,29(12): 1118-1125.
    [96]刘杰,汪玲玲,汪恩涛,等.河北地区花生根瘤菌的系统发育多样性研究[J].中国农业科学.2006, 39(2): 344-352.
    [97]刘世旺,王宝林,陶佳喜.花生根瘤菌与钼磷氮化肥混合施用对花生的增产效果[J].安徽农业科学. 2007, 31(11): 3320-3321, 3411.
    [98]马玉珍,史清亮.花生根瘤菌连续接种与钼、磷肥配合施用效果[J].土壤肥料. 1992, 3: 42-44.
    [99]陈远学,徐开未,张小平.花生根瘤菌与钼、硼复配的初步研究[J].微生物学通报. 2007, 34(3): 516-518.
    [100]喻敏,黄怀琼. Co对花生-根瘤菌共生固氮的促生作用[J].西南农业学报. 1996, 10(2): 71-75.
    [101]徐开未,张小平,陈远学,等.“根瘤菌+Mo”菌剂和AM菌剂对花生生长和产量的影响[J].中国油料作物学报. 2009, 31( 2): 228-232.
    [102]殷爱华,韩素芬.豆科树种凝集素和根瘤菌胞外多糖结合反应与结瘤的关系[J].南京林业大学学报(自然科学版). 2005, 29(5): 88-90.
    [103]师尚礼.苜蓿根瘤菌固氮研究进展及浅评[J].中国草地.2005, 27(5):63-68
    [104]韩素芬,陈景荣,谢文娟.豆科树种根瘤菌与四种豆科植物的接种试验[J].林业科学研究. 1996, 9(6): 610-615.
    [105]贾风勤,杨比伦.圣诞树和黑荆树根瘤菌的分离及回接[J].西南林学院学报. 2004, 24(4): 9-11.
    [106]蔡龙祥,蓝谷,黄维南.田菁根瘤菌的分离及特性[J].福建省农科院学报. 1994, 9(1): 31-35.
    [107]陈卫民,张执欣,张宏昌,韦革宏.甘肃中西部豆科植物根瘤菌多样性调查研究[J].干旱地区农业研究. 2006, 24(1): 183-186, 191.
    [108]赵士豪,王来福,陈文新.根瘤菌对紫花苜蓿接种效果的初步研究[J].河北省科学院学报. 2005, 22(3): 63-66.
    [109]宁国赞,刘惠琴,马晓形.中国豆科牧草根瘤菌资源的采集保藏及利用[J].草地学报. 1999, 7(2): 165-172.
    [110]陈文峰,刘杰,陈文新.木本豆科植物根瘤菌资源及多样性研究进展[J].科学技术与工程. 2004, 4(11): 954-959.
    [111] Brewin NJ, DeJong TM, Phillips DA, et al. Co-transfer of determinants for hydrogenase activity and nodulation ability in Rhizobium leguminoarum. Nature 1980, 288: 77-79.
    [112] DeJong TM, Brewin NJ, Johnston AWB, et al. Improvement of Symbiotic Properties in Rhizobium leguminosarum by Plasmid Transfer. Journal of General Microbiology. 1982, 128: 1829-1838.
    [113] Vincent JM. Inoculant production and use. p. 338-342. In Current Perspectives in Nitrogen Fixation. Proc. 4th Int. Symposium on N2 Fixation, Canberra, Australia, Austr. Acad. of Sci. Canberra. 1981.
    [114] Gibson AH, Newton WE (eds), Canberra, Aust Acad Sci, 1981, p 194-204, 266.
    [115]马晓彤,刘惠琴,宁国赞.我国根瘤菌与苜蓿共生固氮优良组合研究进展及前景[A].中国草学会.第二届中国苜蓿大会论文集, 2003.
    [116]李友国,周俊初.影响根瘤菌共生固氮效率的主要因素及遗传改造[J].微生物学通报. 2002,(6): 86-89.
    [117] Christoph F, Bisseling T. Molecular basis of symbiosis between Rhizobium and legumes. Nature. 1997, 387(7): 394-401.
    [118] Brewin NJ, van Kammen A, Horvanth B, et al. Development of the legume root nodule. Annu Rev Cell Biol, 1991(5), 7: 191-226.
    [119] Long SR. Rhizobium-legume nodulation: life tpgher in the underground.Cell, 1989, 56: 203-214.
    [120] Diaz CL, Spaink HP, Wijffelman CA, et al. Genomic requirements of Rhizobium for nodulation of white hairy roots transformed with the peak lectin gene. MPMI, 1995, 8: 348-356.
    [121] Diaz CL, Logman TJJ, Stam HC, et al. Sugar-binding activity of pea lectin expressed in white clover hairy roots. Plant Physiology, 1995, 109: 1167-1177.
    [122] Hirsch AM, Brill LM, Lim PO, et al. Steps toward defining the role of lectins in nodule development in legumes. Symbiosis, 1995, 19: 155-173.
    [123] Spaink HP, Sheeley DM, Brussel AN,et al. Genetic analysis and cellular location of Rhizobium-host specificity determining NodD Protein.Nature, 1991, 354: 125-132.
    [124] Redomond JW, Rolfe BG. Flavones induce expression of nodulation genes in Rhizobium. Nature(London), 1986, 323: 632-635.
    [125] Downie JA, Knight CD, Johnston AWB et al. Identification of genes and gene products involved in the nodulation of peas by R.leguminosarum. Mol Gen Genet, 1985, 198: 255-262.
    [126] Spaink HP, Wijffelman CA, Pees E et al. Rhizobium nodulation gene nodD as a determinant of host specificity. Nature, 1987, 328: 337-340.
    [127] Schlaman HRM, Okker RJH, Lugtenberg BJJ. Regulation of nodulation gene expression by NodD in rhizobia. J Bacteriol, 1992, 174: 5177-5182.
    [128] Firmin JL, Wilson KE, Rossen L et al. Flavonoid activation of nodulation genes in Rhizobium leguminosarum lipooligosaccharide nodulation factor. Nature, 1986, 324: 90-92.
    [129] Kosslak RM, Joshi RS, Bowen BA et al. Strain-specific inhibition of nod gene induction in Bradyrhizobium japonicum by flavonoid compounds. Appl Environ Microbiol, 1990, 56: 1333-1341.
    [130] Nutman PS. Varietal differences in the nodulation of subterranean clover. Aust. J. Agri. Res. 1967, 18: 381-425.
    [131] Krawiec S, and Riley M. Organization of the bacterial chromosome. Microbiol. Rev. 1991, 54: 502-539.
    [132] Kundig C, Hennecke H, Gottfert M. Correlated physical and genetic map of the Bradyrhiizobiutm japoniculm 110 genome. J. Bacteriol. 1993, 175: 613-622.
    [133] Weisburg WG, Burns SM, Pelletier DA, et al. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173: 697-703.
    [134] Batista S, Patriarca EJ, Tate R, et al. An Alternative Succinate (2-Oxoglutarate) Transport System in Rhizobium tropici Is Induced in Nodules of Phaseolus vulgaris. J Bacteriol. 2009, 191(16): 5057–5067.
    [135] Prell J, andPoole P. Metabolic changes of rhizobia in legume nodules. Trends Microbiol. 2006, 14: 161-168.
    [136] Yang CT, Yu GQ, Shen SJ, et al. Mutational analysis of the structure basis for the multimerization function of NifA central domain. Science in China. 2001, 44(1): 49-57.
    [137] Gu JY, Yu GQ, Zhu JB, et al. The N-terminal domain of NifA determines the temperature sensitivity fo NifA in Klebsiella pneumoniae and Enterobacter cloacae. 2000, 43(1): 8-15.
    [138] Zhao HX, XIE BE, Chen SF. Cloning and sequencing of nifBHDKENX genes of Paenibacillus massiliensis T7 and its nif promoter analysis. Science in China. 2006, 49(2): 115-122.
    [139] Basnakova G, Macaskie LE. Microbially-enhanced chemisorption of Ni2+ ions into biologically-synthesised hydrogen uranyl phosphate (HUP) and selective recovery of concentrated Ni2+ using citrate or chloride ion. Biotechnology Letters. 2001, 23(1): 67-70.
    [140] Jann B. Sozialer Status und Hup-Verhalten. Ein Feldexperiment zum Zusammenhang zwischen Status und Aggression im Strassenverkehr. Klein aber fein!. 2009, 397-410.
    [141] Scott DB, Court CB, Ronson CW, et al. Organisation of nodulation and nitrogen fixation genes on a Rhizobium trifolii symbiotic plasmid. Archives of Microbiology. 1984, 139(2-3): 151-157.
    [142] Hirsch AM, Lum MR, Fujishige NA. Microbial Encounters of a Symbiotic Kind: Attaching to Roots and Other Surfaces. Plant Cell Monographs. 2011, p106-125.
    [143] Yost CK, Clark KT, Bel KLD, et al. Characterization of the nodulation plasmid encoded chemoreceptor gene mcpG from Rhizobium leguminosarum. BMC Microbiology, 2003, Volume 3, Number 1, 1.
    [144] Das SK, Gautam US, Sandhu KV, et al. Mutation in the lysA gene impairs the symbiotic properties of Mesorhizobium ciceri. Archives of Microbiology. 2010, 192(1): 69-77.
    [145] Janczarek M, Jaroszuk-?cise? J, Skorupska A. Multiple copies of rosR and pssA genes enhance exopolysaccharide production, symbiotic competitiveness and clover nodulation in Rhizobium leguminosarum bv. Trifolii. Antonie van Leeuwenhoek. 2009, 96(4): 471-486.
    [146] Novák K, Felsberg J, BiedermannováE, et al. A mutation affecting symbiosis in the pea line Risnod27 changes the ion selectivity filter of the DMI1 homolog. Biologia Plantarum. 2009, 53(3): 451-460.
    [147]缪礼鸿,周俊初.导入外源DNA的大豆根瘤菌22-10基因工程菌株的构建与分析[J].华中农业大学学报.1993, 22(3 ): 84-89.
    [148] Bottomley P. Ecology of Rhizobium and Bradyrhizobium, 1991, p. 292–347. In G. Stacey, Burris RH, and Evans HJ(ed.), Biological nitrogen fixation. Chapman & Hall, New York, N.Y.
    [149] Peoples MB, Ladha JK, Herridge DF. Enhancing legume N2 fixation through plant and soil management. Plant Soil. 1995, 174:83–101.
    [150] Thies JE, Woomer PL, Singleton PW. Enrichment of Bradyrhizobium spp. populations in soil due to cropping of the homologous host legume. Soil Biol. Biochem. 1995, 27: 633–636.
    [151] Walsh KB. Physiology of the legume nodule and its response to stress. Soil Biol. Biochem. 1995, 27: 637–655.
    [152] Rao DLN, Sharma PC. Effectiveness of rhizobial strains for chickpea under salinity stress and recovery of nodulation on desalinization. Indian J. Exp. Biol. 1995, 33:500–504.
    [153] Cordovilla MP, Ligero F, Lluch C. The effect of salinity on N fixation and assimilation in Vicia faba. J. Exp. Bot. 1994, 45:1483–1488.
    [154] Velagaleti RR, Marsh S, Krames D, et al. Genotyping differences in growth and nitrogen fixation soybean (Glycine max (L.) Merr.) cultivars grown under salt stress. Trop. Agric. 1990, 67:169–177
    [155] Zahran HH. Conditions for successful Rhizobium-legume symbiosis in saline environments. Biol. Fertil. Soils 1991, 12:73–80.
    [156] Zahran HH, Sprent JI. Effects of sodium chloride and polyethylene glycol on root hair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta 1986, 167:303–309.
    [157] Tu JC. 1981. Effect of salinity on Rhizobium-root hair interaction, nodulation and growth of soybean. Can. J. Plant Sci. 61:231–239.
    [158] Zahran HH. Effect of sodium chloride and polyethylene glycol on rhizobial root hair infection, root nodule structure and symbiotic nitrogenmfixation in Vicia faba L. plants. Ph.D. thesis. Dundee University, Dundee, Scotland. 1986.
    [159] Abdel-Wahab HH, Zahran HH. Effects of salt stress on nitrogenase activity and growth of four legumes. Biol. Plant (Prague). 1981, 23: 16–23.
    [160] Abdel-Wahab SM, El-Mokadem MT, Helemish FA, et al. The symbiotic performance of Bradyrhizobium japonicum under stress of salinized irrigation water. Ain Shams Sci. Bull. 1991, 28B: 469–488.
    [161] Delgado MJ, Ligero F, Lluch C. Effects of salt stress on growth and nitrogen fixation by pea, faba-bean, common bean and soybean plants. Soil. Biol. Biochem. 1994, 26:371–376.
    [162] Ikeda JL, Kobaysahi M, Takahashi E. Salt stress increases the respiratory cost of nitrogen fixation. Soil Sci. Plant Nutr. 1992, 38:51–56.
    [163] Nair S, Jha PK, Babu CR. Induced salt tolerant rhizobia, from extremely salt tolerant Rhizobium gene pools, from reduced but effective symbiosis under non-saline growth. Microbios. 1993, 74:39–51.
    [164] Cordovilla MP, Ocana A, Ligero F, et al. Salinity effects on growth analysis and nutrient composition in four grain legumes-Rhizobium symbiosis. J. Plant Nutr. 1995, 18:1595–1609.
    [165] Cordovilla MP, Ligero F, Lluch C. Influence of host genotypes on growth, symbiotic performance and nitrogen assimilation in Faba bean (Vicia faba L.) under salt stress. Plant Soil. 1995, 172:289–297.
    [166] Velagaleti RR, Marsh S. Influence of host cultivars and Bradyrhizobium strains on the growth and symbiotic performance of soybean under salt stress. Plant Soil. 1989, 119:133–138.
    [167] Waldon HB, Jenkins MB, Virginia RA, et al. Characteristics of woodland rhizobial populations from surface and deepsoil environment of the Sonoran Desert. Appl. Environ. Microbiol. 1989, 55: 3058–3064.
    [168] Jenkins MB, Virginia RA, Jarrel WM. Rhizobial ecology of the woody legume mesquite (Prosopis glandulosa) in the Sonoran desert. Appl. Environ. Microbiol. 1987, 33:36–40.
    [169] Jenkins MB, Virginia RA, Jarrel WM. 1989. Ecology of fastgrowing and slow-growing mesquite-nodulating rhizobia in Chihuahua and Sonoran desert ecosystems. Soil Sci. Soc. Am. J. 1989, 53: 543–549.
    [170] Fuhrmann J, Davey CB, Wollum AG. Desiccation tolerance in clover rhizobia in sterile soils. Soil Sci. Soc. Am. J. 1986, 50: 639-644.
    [171] Shoushtari NH, Pepper IL. Mesquite rhizobia isolated from the Sonoran desert: competitiveness and survival in soil. Soil Biol. Biochem. 1985, 17: 803-806.
    [172] Orchard VA, Cook FG. Relation between soil respiration and soil moisture. Soil Biol. Biochem. 1983, 15:447-453.
    [173] Worrall VS, Roughley RJ. The effect of moisture stress on infection of Trifolium subterraneum L. by Rhizobium trifolii Dang. J. Exp. Bot. 1976, 27:1233-1241.
    [174] Pena-Cabriales JJ, Castellanos JZ. Effect of water stress on N2 fixation and grain yield of Phaseolus vulgaris L. Plant Soil 1993, 152:151-155.
    [175] Sellstedt A, Staahl L, Mattsson M, et al. Can the 15N dilution technique be used to study N2 fixation in tropical tree symbioses as affected by water deficit? J. Exp. Bot. 1993, 44:1749-1755.
    [176] Busse MD, Bottomley PJ. Growth and nodulation responses of Rhizobium meliloti to water stress induced by permeating and nonpermeating solutes. Appl. Environ. Microbiol. 1989, 55:2431–2436.
    [177] Munevar F, Wollum AG. Response of soybean plants to high root temperature as affected by plant cultivar and Rhizobium strain. Agron. J. 1982, 74:138-142.
    [178] Kishinevsky BD, Sen D, Weaver RW. Effect of high root temperature on Bradyrhizobium-peanut symbiosis. Plant Soil. 1992, 143:275-282.
    [179] Rainbird RM, Akins CA, Pate JJS. Effect of temperature on nitrogenase functioning in cowpea nodules. Plant Physiol. 1983, 73:392-394.
    [180] Piha MI, Munnus DN. Sensitivity of the common bean (Phaseolus vulgaris L.) symbiosis to high soil temperature. Plant Soil. 1987, 98: 183-194.
    [181] Hungria M, Franco AA. Effects of high temperature on nodulation and nitrogen fixation by Phaseolus vulgaris L. Plant Soil. 1993, 149:95-102.
    [182] Arayankoon T, Schomberg HH, Weaver RW. 1990. Nodulation and N2 fixation of guar at high root temperature. Plant Soil 126:209-213.
    [183] Michiels J, Verreth C, Vanderleyden J. Effects of temperature stress on bean nodulating Rhizobium strains. Appl. Environ. Microbiol. 1994, 60:1206-1212.
    [184] Roughley RJ. The influence of root temperature, Rhizobium strain and host selection on the structure and nitrogen-fixing efficiency of the root nodules of Trifolium subterraneum. Ann. Bot. 1970, 34: 631-646.
    [185] Graham PH. Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Can. J. Microbiol. 1992, 38: 475-484.
    [186] Munns DN, Keyser HH, Fogle VW, et al. Tolerance of soil acidity in symbiosis of mung bean with rhizobia. Agron. J. 1979, 71:256-260.
    [187] Eaglesham ARJ, Ayanaba A. 1984. Tropical stress ecology of rhizobia, root-nodulation and legume fixation, p. 1-35. In N. S. Subba Rao(ed.), Current developments in biological nitrogen fixation. Edward Arnold Publishers, London, United Kingdom.
    [188] Hartel PG, Alexander M. Temperature and desiccation tolerance of cowpea rhizobia. Can. J. Microbiol. 1984, 30: 820–823.
    [189] Karanja, N. K., and M. Wood. Selecting Rhizobium phaseoli strains for use with beans (Phaseolus vulgaris L.) in Kenya. Tolerance of high temperature and antibiotic resistance. Plant Soil. 1988, 112: 15-22.
    [190] Somasegaran P, Reyes VG, Hoben HJ. The influence of high temperatures on the growth and survival of Rhizobium spp. in peat inoculants during preparation, storage and distribution. Can. J. Microbiol. 1984, 30: 23-30.
    [191] Rice WA, Olsen PE. Root-temperature effects on competition for nodule occupancy between two Rhizobium neliloti strains. Bio.Fertil.Soils. 1988, 6: 137-140.
    [192] Smith CW, Soybean, Crop production evaluation,history and technology, Wilcy, New York. 1995, pp.351-357.
    [193] Correa OS, Barneix AJ. Cellular mechanisms of pH tolerance in Rhizobium loti. World J. Microbiol. Biotechnol. 1997, 13: 153-57.
    [194] Bordeleau LM, Prevost D. Nodulation and nitrogen fixation in extreme environments. Plant Soil. 1994, 161:115-124.
    [195] McLay CDA, Barton L, Tang C. 1997. Acidification potential of ten grain legume species grown in nutrient solution. Aust. J. Agric. Res. 48:1025-1032.
    [196] Tang C, Barton L, Raphael C. Pasture legume species differ in their capacity to acidify soil. Aust. J. Agric. Res. 1998, 49: 53-58.
    [197] Graham PH, Viteri SE, Mackie F, et al. Variation in acid soil tolerance among strains of Rhizobium phaseoli. Field Crops Res. 1982, 5:121-128.
    [198] Cooper JE, Wood M, Bjourson AJ. Nodulation of Lotus pedunculatus in acid rooting solution by fast-and slow-growing rhizobia. Soil Biol. Biochem. 1985, 17: 487-492.
    [199] Clarke LM, Dilworth MJ, Glenn AR. Survival of Rhizobium meliloti WSM419 in laboratory culture: effect of combined pH shock and carbon. Soil Biol. Biochem. 1993, 25:1289-1291.
    [200] Evans J, Dear B, Connor GEO. Influence of an acid soil on the herbage yield and nodulation of five annual pasture legumes. Aust. J. Exp. Agric. 1990, 30: 55-60.
    [201] Munns DN. Acid soils tolerance in legumes and rhizobia. Adv. Plant Nutr. 1986, 2:63-91.
    [202] Vargas AAT, Graham PH. Cultivar and pH effects on competition for nodule sites between isolates of Rhizobium in beans. Plant Soil. 1989, 117: 195-200.
    [203] Eaglesham ARJ. Nitrate inhibition of root nodule symbiosis in doubly rooted soybean plants. Crop Sci. 1989, 29:115–119.
    [204] Rao DLN, Sharma PC, Gill KS. Response of pigeonpea to alkalinity and Rhizobium inoculation. J. Indian Soc. Soil Sci. 1994, 42:381-384.
    [205] Buttery BR, Dirks VA. The effect of soybean cultivar, Rhizobium strain and nitrate on plant growth, nodule mass and acetylene reduction rate. Plant Soil. 1987, 98: 285-293.
    [206] Afza R, Hardarson G, Zapata F. Effect of delayed soil and foliar N fertilization on yield and N2 fixation of soybean. Plant Soil. 1987, 97:361-368.
    [207] Abdel-Wahab HH, Zahran HH, Abd-Alla MH. Root-hair infection and nodulation of four grain legumes as affected by the form and the application time of nitrogen fertilizer. Folia Microbiol. 1996, 41: 303–308.
    [208] Kucey RMN. The influence of rate and time of mineral N application on yield and N fixation by field bean. Can. J. Plant Sci. 1989, 69:427-436.
    [209] Muller SH, Pereira PAA. Nitrogen fixation of common bean (Phaseolus vulgaris L.) as affected by mineral nitrogen supply at different growth stages. Plant Soil. 1995, 177: 55-61.
    [210] Yoneyama T, Nambiar PTC, Lee KK, et al. Nitrogen accumulation in three legumes and two cereals with emphasis on estimation of N2 fixation in the legumes by the natural 15N abundance technique. Biol. Fertil. Soils. 1990, 9: 25–30.
    [211] Novak K, Skrdleta V, Nemcova M, et al. Behaviour of pea nodulation mutants as affected by increasing nitrate level. Symbiosis. 1993, 15: 195-206.
    [212] Singh B, Nair TVR. Effect of nitrogen fertilization on nodulation and nitrogen assimilation in cowpea. Crop Improv. 1995, 22:133-138.
    [213] Lopez-Garcia SL, Vazouez TE, Favelukes G, et al. Improved soybean root association of N-starved Bradyrhizobium japonicum. J.Bacteriol. 2001, 183: 7241-7254.
    [214] Pereira PAA, Bliss FA. 1989. Selection of common bean (Phaseolus vulgaris L.) for N2 fixation at different levels of available phosphorus under field and environmentally-controlled conditions. Plant Soil. 115:75-82.
    [215] Beck DP, Munns DN. Effect of calcium on the phosphorus nutrition of Rhizobium meliloti. Soil Sci. Soc. Am. J. 1985, 49:334-337.
    [216]王树起,韩晓增,乔云发,等.缺磷胁迫对大豆根瘤生长和结瘤固氮的影响[J].大豆科学. 2009, 28(6): 1000-1003.
    [217] Sali H, Keya SO. The effect of phosphorus on nodulation, growth and dinitrogen fixation by beans. Biol. Agric. Hortic. 1983, 1: 135–144.
    [218] Hart AL. Nodule phosphorus and nodule activity in white clover N. Z. J. Agric. Res. 1989, 32: 145-149.
    [219] Hart AL. Distribution of phosphorus in nodulated white clover plants. J. Plant Nutr. 1989, 12: 159-171.
    [220] Cassman KG, Munns DN, Beck DP. Phosphorus nutrition of Rhizobium japonicum: strain differences in phosphate storage and utilization. Soil Sci. Soc. Am. J. 1981, 45: 517-520.
    [221] Cassman KG, Witney AS, Fox RL. Phosphorus requirements of soybean and cowpea as affected by mode of N nutrition. Agron. J. 1981, 73:17–22.
    [222] Jakobson I. The role of phosphorus in nitrogen fixation by young pea plants. Physiol. Plant. 1985, 64:190-196.
    [223] Almendras AS, Bottomley PJ. Influence of lime and phosphate on nodulation of soil-grown Trifolium subterraneum L. by indigenous Rhizobium trifolii. Appl. Environ. Microbiol. 1987, 53:2090–2097
    [224] Lynd JQ, Hanlon EA, Odell GV. Nodulation and nitrogen fixation by arrow leaf clover: effects of phosphorus and potassium. Soil Biol. Biochem. 1984, 16:589–594.
    [225] Sangakkara UR, Hartwig UA, Noesberger J. Soil moisture and potassium affect the performance of symbiotic nitrogen fixation in faba bean and common bean. Plant Soil. 1996, 184: 123-130.
    [226] Michael C, Duke SH. Influence if potassium-fertilization rate and form on photosynthesis and N2 fixation of alfalfa.Crop science.1981, 21: 481-485.
    [227]李新民,窦新田,刘庆学,等.黑龙江省大豆根瘤菌数量分布及接种菌在土壤中生存定殖能力的研究.黑龙江省农业科学. 1997, (5): 24-27.
    [228] Andrew HB, Mark KW, Kenneth AA. Alfalfa yield response to inoculation with recombinant strains of Rhizobiu m meliloti with an extra copy of dct A BD and/or modified nif A expression. Applied andEnvironmental Microbiology. 1994, 60: 3815-3832.
    [229] Slattery JF, Pearce DJ, Slattery WJ. Effects of resident Rhizobiuml communities and soil type on the effective nodulation of pulse legumes. Soil Biology&Biochemistry 2004, 36: 1339-1346.
    [230]丁武.影响根瘤菌竞争结瘤的生态学因素分析[J].生态学杂志. 1992, 11(4): 50-54.
    [231] Ljunggren H, Martensson A. Herbicide effect on leguminous symbiosis. p. 99-106. In Swedish Weed Conference. 1980.
    [232] Lindstro¨m K, Sorsa M, Polkunen J, et al. Symbiotic nitrogen fixation of Rhizobium (Galega) in acid soils, and its survival in soil under acid and cold stress. Plant Soil. 1985, 87:293-302.
    [233] Fisher DJ, Hayes AL. Effects of some surfactant fungicides on Rhizobium trifolii and its symbiotic relationship with white clover. Ann. Appl. Biol. 1981, 98:101-107.
    [234] Graham PH, Ocampo GC, Ruiz LD, et al. Survival of Rhizobium phaseoli in contact with chemical seed protection. Agron. J. 1980, 72:625-627.
    [235] Heinonen-Taski H, Oros G, Keckes M. The effect of soil pesticides on the growth of red clover rhizobia. Acta Agric. Scand. 1982, 32:283-288.
    [236] Rennie RJ, Howard RJ, Swanson TA, et al. The effect of seed applied pesticides on growth and N2 fixation in pea, lentil and faba bean. Can. J. Plant. Sci. 1985, 65:555-562.
    [237] Martensson AM. Effect of agrochemicals and heavy metals on fast-growing rhizobia and their symbiosis with small-seeded legumes. Soil Biol. Biochem. 1992, 24:435-445.
    [238] Mogollon T, Flores M., Cazorla M. Growth determination of Rhizobium leguminosarum biovar trifolii under action of herbicide Amitrol. An. Edafol. Agrobiol. 1986, 45:631-636.
    [239] Torralba Redonde B, Flores Rores Rodriguez M, Villar Moreno AL. The amitrol action over Rhizobium meliloti. An. Edafol. Agrobiol. 1986, 45:1079-1086.
    [240] Allen ON, Allen EK. The Leguminosae: a source book of characteristics, uses and nodulation. University of Wisconsin Press.1981, 1-40.
    [241] Chen w.x, et al. Numerical taxonomy study on fast growing soybean rhizobia and a proposal that rhizobium frdii be assigned to sinorhizobium [J]. Syst.Bacteriol. 1988, 38(34): 391-397.
    [242] Jarvis BDW, van Berkum P, et al. Transfer of rhizobium loti, R.huaknii, R. mediterraneum, and R. tianshanese to mesorhizohium[J]. Syst.Bacteriol. 1997, 47(3): 895-898.
    [243] Chen WX, et al. Rhizohium huakuii sp. nov. Isolated from the Root of Nodule of Astragalus sinicus [J]. Syst.Bacteriol. 1991, 41(2): 275-280.
    [244] Chen WX, et al. Characteristics of Rhizohium tianshancse sp.nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, people’s Republic: of China[J]. Syst. Bacteriol. 1995. 45(1): 153-159.
    [245] Chen WX, et al. Rhizobium hainanese sp.nov.,isolated from tropical legumes, [J].syst bacterial.1997,47(3): 870-873.
    [246] Wang ET, van Berkum P, Chen WX, et al. Rhizohin,huautlenese sp.nov.,a symbiont of sesbania berbacae which has a close phylogenetic relationship with rhizobium galegae[J]. Syst. Bacteriol. 1998, 48(1): 687-699.
    [247] Wang ET, van Berkum P, Chen WX, et al. Diversity of rhizobia associated with Amorphae fruticosa isolated from Chinese soil and discriplion of Mesorhizobium amorphase sp. nov[J]. Syst. Bacteriol. 1999, 49(1): 51-65.
    [248] Tan ZY, Kan FL, Chen WX, et al. Rhizobium yangling genes Sp. nov.,isolated from arid and semi-arid rogions in China. 2001, 51: 909-914.
    [249] Zhang XX, et al. The common nodulation genes of Astrgalus sinicus rhizobia are conseved despite chromosomal diversity[J]. Appl. Environ.Microhiol. 2000, 66(7): 2988- 2995.
    [250] Tajini F, Drevon JJ, Lamouchi L, et al. Response of common bean lines to inoculation: comparison between the Rhizobium tropici CIAT899 and the native Rhizobium etli 12a3 and their persistence in Tunisian soils[J]. World J Microbiol Biotechnol. 2008, 24: 407-417.
    [251] Mhamdi R, Laguerre G, Aouani ME, et al. Different species and symbiotic genotypes of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soils. FEMS Microbil Ecol. 2002, 41:77-84.
    [252] Jebara M, Drevon JJ, Aouani ME. Effects of hydroponic culture system and NaCl on interactions between common bean lines and native rhizobia from Tunisian soils. Agrononie. 2001, 21: 601-606.
    [253] Hafeez FY,Shah NH,Malik KA. Field evaluation of lentil cultivars inoculated with Rhizobium leguminosarum bv. viciae strains for nitrogen fixation using nitrogen-15 isotope dilution. Bio. Fert Soils. 2000, 31: 65-69.
    [254] Kiers ET, Hutton MG, Denison RF. Human selection and the relaxation of legume defences against ineffective rhizobia. P. Roy. Soc. 2007, 274: 3119-3126.
    [255] Naeem FI, Ashraf MM, Malik KA, et al. Competitiveness of introduced Rhizobium strains for nodulation in fodder legumes. Pak. J. Bot. 2004, 36: 159-166.
    [256] Prevost D, Bordeleau LM, Antoun H. Symbiotic effectiveness of indigenous arctic rhizobia on a temperate forage legume: Sainfoin (Onobrychis viciifolia). Plant Soil. 1987b, 104: 63-69
    [257] O?utcu H, Algur OF, Elkoca E, Kantar F. The determination of symbiotic effectiveness of Rhizobium strains isolated from wild chickpea collected from high altitudes in Erzurum. Turk. J. Agric. For. 2008, 32: 241-248.
    [258] Somasegaran P, Hoben HJ. General microbiology of Rhizobium. In‘Methods in Legume Rhizobium Technology’. pp. 1-52. USAID, Hawaii, USA. 1985
    [259]马晓彤.苜蓿根瘤菌与苜蓿品种共生匹配优良组合筛选的研究[D].硕士论文.中国农业科学院. 2009.
    [260] Vleazhahan R, Samiyappan R, Vidhysekaran P. Relationship between antagonistic activities of Pseudomonas fluorescens isolates against Rhizoctonia solani and their production of lytic enzymes Plant Disease and Protection. 1999, 106(3): 244-250.
    [261] Dileep Kumar BS, Berggren I, Martensson AM. Potential for improving pea production by co-inoculation with fluorescent Pseudomonas and Rhizobium. Plant and Soil, 2001, 229: 25-34.
    [262] Drapeau R, Fortin JA, Gagnon C. Antifungal activity of Rhizobium. Can. J. Bot. 1973, 51:681-682.
    [263] Omar SA, Abd-Alla MH. Biocontrol of fungal root rot diseases of crop plant by the use of rhizobia and bradrhizobia, Folia Microbiol. 1998, 43: 431-437
    [264] Bardin SD, Huang HC, Pinto J. Biological control of Pythium damping-off of pea and sugar beet by Rhizobium liguminosarm bv.viceae, Canadian Journal of Botany. 2004, 82(3): 291-296.
    [265] Siddipui IA, Ehteshamul Haque S, Zaki MJ. Greenhouse evaluation of rhizobia as biocontrol agent of root-infecting fungi in okra. Acta Agrobot. 2000, 53:13-22.
    [266] Nautiyal CS. Rhizosphere competence of Pseudomonas sp. NBRI9926 and Rhizobium sp. NBRI9513 involved in the suppression of chickpea(Cicer arietinum L.) pathogenic fungi. FEMS Microbiol. Ecol. 1997, 23:145-158
    [267] Chakraborty U, Purkayastha RP. Role of rhizobitoxine in protecting soybean roots from Macrophomina phaseolina infection. Can. J. Microbiol. 1984, 30: 285-289.
    [268] Bardin SD, Huang HC, Liu L, Yanke LJ. Control of pythium damping-off of canola, safflower, dry pea and sugar beet by microbial seed treatment. Can.J. Plant Pathol. 2003, 25: 268-275.
    [269]李进荣.大豆内生细菌控制大豆根部病原研究[D].硕士论文.沈阳农业大学. 2005.
    [270]王媛媛.多功能生防根瘤菌工程菌株的构建[D].硕士论文.沈阳农业大学. 2007.
    [271]赵宇枢.大豆根瘤内拮抗胞曩线虫细菌筛选及活性菌株初步研究[D].硕士论文.沈阳农业大学. 2009.
    [272] Chalk PM. Dynamics of biologically fixed N in legume-cereal rotations: a review. Australian Journal of Agricultural Research. 1998, 49: 303-316.
    [273] Herridge DE. The narrow leaved lupin(Lupinus angustifolius) as a nitrogen-fixing rotation crop for cereal production. Indices fo nitrogen fixation. Australian Journal of Agricultural Research. 1988, 39: 10003-10015.
    [274] Mariotti A. Atmospheric nitrogen is a reliable standard for 15N natural abundance measurements. Nature. 1983, 303: 685-687.
    [275] Hardy RWF, Burns RC, Holsten RD. Applocation of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biology and Biochemistry. 1973, 5: 47-81.
    [276] Hardy RWF, Holsten RD, Jackson EK, et al. The acetylene-ethylene assay for N2 fixation: Laboratory and field evaluation. Plant Physiology. 1968, 43: 1185-1207.
    [277] Doughton JA, Vallis I, Saffigna PG. An indirect method for estimating N-15 isotope fractionation during nitrogen fixation by a legume under field conditions. Plant and Soil. 1992, 144: 23-29.
    [278] Tajima S, Yamamoto Y. Enzymes of purine catabolism in soybean plants. Plant Cell Physiology. 1975, 16: 271-282.
    [279] McNeill AM, Pilbeam CJ, Harris HC, et al. Seasonal variation in the suitability of different methods for estimation biological nitrogen fixation by grain legumes under rainfed conditions. Australian Journal of Agricultural Research. 1996, 47: 1061-1073.
    [280]姚拓,张德罡,胡自治.高寒地区燕麦根际联合固氮菌研究Ⅰ:固氮菌分离及鉴定[J].草业学报. 2004, 13:106-111.
    [281] Baldani VLD, Alvarez MA, Baldani JI, et al. Establishment of inoculated Azospirillum spp.in the rhizosphere and in roots of field grown wheat and sorghum.Plant Soil. 1986, 90: 35-46.
    [282] Shintaro H, Yasuyuki H, Roman V. D, et al. High Rate of N2 Fixation by East Siberian Cryophilic Soil Bacteria as Determined by Measuring Acetylene Reduction in Nitrogen-Poor Medium Solidified with Gellan Gum. Applied And Environment Microbiology. 2009, p. 2811–2819
    [283] Unkovich M, Herridge D, Peoples M, et al. Measuring plant-associated nitrogen fixation in agricultural systems, p. 164. 2008.
    [284] Hardarson G. Methods for enhancing symbiotic nitrogen fixation. Plant and Soil. 152, 1-7.
    [285] Peoples MB et al. Application of 15N and xylem ureide methods for assessing N2 fixation of three shrub legumes periodically pruned for forage. Plant and Soil. 1996, 182: 125-137.
    [286] McAuliffe C, Chamblee D, Uribe-Arango H, et al. Influence of inorganic nitrogen on nitrogen fixation of legumes as revealed by 15N. Agronomy Journal. 1958, 50: 334-337.
    [287] Fillery I. The fate of biologically fixed nitrogen in legume-based dryland farming ststems. Australian Journal of Experimental Agriculture. 2001, 41: 361-381.
    [288] Boddey RM, Peoples MB, Palmer B, et al. Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody plants. Nutrient Cycling in Agroecosystems. 2000, 57: 235-270.
    [289] Dawson T, Mambelli S, Plamboeck A, et al. Stable isotopes in plant ecology. Annual Review Ecology and Systematics. 2002, 33: 507-559.
    [290] Shearer G, Kohl DH (1986). N2 fixation in field setting: estimation based on natural 15N abundance. Aust. J. Plant Physiol. 13:699-756.
    [291] Pate JS, Unkovich MJ, Armstrong EI, et al. Selection of reference plants for 15N natural abundance assessment of N2 fixation by crop and pasture legumes in southwest Australia. Australian Journal of Agricultural Research. 1994, 45: 133-147.
    [292]陈朝勋,席琳乔,姚拓,等.生物固氮测定方法研究进展.草原与草坪. 2005, 2: 24-29.
    [293] Bashan Y. Inoculants of plant growth-promoting bacteria for use in agriculture[J]. BiotechnologyAdvances, 1998, 16: 729-770.
    [294]黄晓东,季尚宁, Bernard Glick,等.植物促生菌的应用现状[J].现代化农业. 2002, 9: 10-11.
    [295]杨慧.溶磷高效菌株筛选鉴定及其溶磷作用研究[D].硕士论文.中国农业科学院. 2007.
    [296] Steinborn J, Roughley RJ. Sodium chloride as a cause of low numbers of Rhizobium inlegume inoculants[J]. Appl. Bactericol. 1974, 37: 93-99.
    [297]周利平,刘文杰,马焕成,等.根瘤菌菌株和接种根瘤菌植株的耐旱性研究进展[J].安徽农业科学. 2010, 38(22): 11978-11980.
    [298]陈文新.土壤中影响根瘤菌存活的因素[J].土壤学进展. 1986, (5): 17-20.
    [299]黄明勇,张小平,李登煜,等.金沙江干热河谷区土著花生根瘤菌耐旱性初步研究[J]·应用与环境生物学报. 2000, 6(3): 263-266.
    [300]迟玉成,王绛辉,樊堂群.山东省花生土著根瘤菌耐盐,耐旱性初步研究[J].花生学报. 2008, 37(1): 21-25.
    [301]常玮,王炜,屈新兰.苜蓿根瘤菌菌剂的研究[J].新疆农业科学, 2004, 41(2): 102-104.
    [302]康金花,关桂兰,沈艳芳.苜蓿根瘤菌耐盐碱性试验[J].干旱区研究. 1996, (3): 13-15.
    [303] Griffiths AP, McCormick LH. Effects of soil acidity on nodulation of Alnus glutinosa and viability of Frankia. Plant Soil. 1984, 79:429-434.
    [304] Harwani D. Biodiversity and efficiency of Bradythizobium strains are arbuscular mycorrhizoal fungi of soybean cultivars grown in Haroti region of Rajasthan. Ph.D. Thesis. Maharshi Dayanand Saraswati University, Ajmer, India. 2006.
    [305]赵宇枢,段玉玺,王媛媛,等.辽宁省根瘤菌资源抗逆性及生防潜力研究[J].大豆科学. 2009, 28(1): 113-117.
    [306]万晓红,韦革宏,杨亚珍,等.紫花苜蓿品种根瘤菌表型多样性研究[J].草地学报. 2004, 12(4): 48-49.
    [307]杨亚珍.西北干旱地区甘草根瘤菌的表型多样性及第统发育[D].硕士论文.西北农林科技大学. 2004.
    [308] Graham PH, Sadowsky MJ, Keyser HH, et al. Proposed minimal standards for the description of new genera and species of root and stem nodulating bacteria[J]. Ant. J. Syst. Bacterial. 1991, 41: 582-587.
    [309] Woese CR. Bacterial evolution. Microbial[J]. 1987, 51: 221-271.
    [310] Vandamme P, Pot B, Gillis M, et al. Polyphasic taxonomy,a consensus approach to bacterial syste-matics[J]. Microbial.Rev. 1996, 60: 407-438.
    [311] Laguerre G, Allard MR, Revoy F, et al. Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR amplified 16S rRNA genes[J]. App1y Environ.Microbial. 1994, 60:56-63.
    [312] Gtiler V, Stanisich VA. New approaches to typing and identification of bacteria using the 16S-23SrDNA spacer region[J]. Microbiol. 1996, 142: 3-16.
    [313] Huys G, Coopman R, Janssen P, et al. High-resolution genotypeic analysis of the genus Aeromonas by AFLP fingerprinting[J]. Intern System Bacteriol. 1996, 4: 572-580.
    [314] Williams JGK, Kubelik AR, Livak KJ. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res. 1990, 18: 6531-6535.
    [315] Selenska-Pobell SL, Gigova, Petrova N. Strains-specific fingerprints of Rhizobium galegae generated by PCR with arbitrary and repetitive primers[J]. J. Appl. Bacteriol. 1995, 79: 425-431.
    [316] Evguenieva-Hackenberg E, Selenska-Pobell S. Variability of the end of the large subunit rDNA and presense of a new short class of rRNA in Rhizobiaceae,Lett[J]. Appl. Microbiol. 1995, 21: 402-405.
    [317]王卫卫.甘肃,宁夏根瘤菌的分离及回接鉴定[J].干旱区研究. 1996, 13(4): 25-28.
    [318] Haythem M, Moez J, Adel Z, Férid L, Mohamed EA. Symbiotic effectiveness and response to mannitol-mediated osmotic stress of various chickpea-rhizobia associations. World J. Microbiol. Biotechnol. 2008, 24: 1027-1035.
    [319] Bremner JM, Breitenbeck GA. simple method for determination of ammonium in semimicro-Kjeldahl analysis of soils and plant materials using a block digester. Commun. Soil Sci. Plant. 1983A , 14: 905-913.
    [320] Lagerwerff JV, Ogata G, Eagle HE. Control of osmotic pressure of culture solutionswith polyethylene glycol.Science. 1961, 133: 1486-1487.
    [321] Nicholas PM. Osmotic Pressure of Aqueous Polyethylene Glycol. Plant Physiol. 1989, 91: 766-769.
    [322] Burlyn EM, Merrill RK.The Osmotic Potential of Polyethylene Glycol 6000. Plant Physiol.1973, 51: 914-916.
    [323]姚拓.饲用燕麦和小麦根际促生菌特性研究及其生物菌肥的初步研制[D].博士论文.甘肃农业大学, 2002.
    [324] Thakuria D, Talukdar NC, Goswami C. Characterization and screening of bacteria f rom rhizosphere of rice grown in acidic soils of Assam [J]. Current Science . 2004, 86 (7): 978-985.
    [325]姚拓.高寒地区燕麦根际联合固氮菌研究Ⅱ固氮菌的溶磷特性和分泌植物生长素特性测定[J].草业学报. 2004, (3): 85-90.
    [326] Kulkarni SK, Dhir A. European journal of pharmacology. 2007, 569: 77-83.
    [327] Amarger N. Competition for nodule formation between effective and ineffective strains of Rhizobium melilotic. Soil Biol. Biochem. 1981, 13:475-480.
    [328] Danso SKA, Zapata F, Awonaike KO. Effect of postemergence, supplemental inoculation on nodulation and symbiotic performance of soybean (Glycine max (L.) Merrill) at three levels of soil nitrogen. Appl. Environ. Microbiol. 1990, 56:1793–1798.
    [329] Ali SF, Rawat LS, Meghvansi MK. Selection of stress-tolerant rhizobial isolates of wild legumesgrowing in dry regions of Rajasthan, India. ARPN Journal of Agricultural and Biological Science. 2009, 1:13-18.
    [330] Shamseldin A, Werner D. High salt and high pH tolerance of new isolated Rhizobium etli strains from Egyptian soils. Current Microbiology. 2005, 50: 11-16.
    [331] Ulrich A, Zaspel I. Phylogenic diversity of rhizobial strains nodulating Robinia psudoacacia L. Microbiology. 2000, 146: 2997-3005.
    [332] Mahobia V, Mahna SK. Characterization of rhizobia isolated from Prosopis cineraria in Jodhpur region, Rajasthan, India. NFT News. 2002, 5: 3-5.
    [333] Sridhar KR, Arun AB, Narula N, et al. Patterns of sole-carbon-utilazation by fast growing coastal and dune rhizobia of the Southwest coast of India. Engineering in Life Sciences. 2005, 5: 425-430.
    [334] Wei GH, Yang XY, Zhang ZX, et al. Strain Mesorhizobium sp. CCNWGX035; A stress tolerant isolate from Glycyrrhiza glabra displaying a wide host range of nodulation. Pedosphere. 2008, 18(1): 102-112.
    [335] Biswas S, Das RH, Sharma GL. Isolation and characterization of a novel cross-infective rhizobial from Sesbania aculeata (Dhaincha). Current Microbiology. 2008, 56: 48-54.
    [336] Tilman D, Cassman KG, Matson PA, et al. Agricultural sustainability and intensive production practice. Nature. 2002. 418: 671-677 doi:10.1038/nature01014.
    [337] Hayat R, Ali S, Amara U, et al. Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology. 2010, 60: 579-598.
    [338] El-Azouni. IMEffect of phosphate solubilising fungi on growth and nutrient uptake of soybean (Glycine max L.) plants. Journal of Applied Sciences Research. 2008. 4: 592–598.
    [339] Lopez-Bucio J, Hemandez-Abreu E, Sánchez-Calderón L, et al. Phosphate availability alters architecture and causes changes in hormone sensitivity in the arabidopsis root system. Plant Physiology 2002, 129: 244-256. DOI: 10.1104/pp.01093.
    [340] Turan M, Atao?lu N, Sahin F. Evaluation of the capacity of phosphate solubilizing bacteria and fungi on different forms of phosphorus in liquid culture. Journal of Sustainable Agriculture. 2006, 28: 99-108. DOI: 10.1300/J064v28n03_08
    [341] Marschner P, Solaiman Z, Rengel Z. Brassica genotypes differ in growth, phosphorus uptake and rhizosphere properties under P-limiting conditions. Soil Biology & Biochemistry. 2007, 39: 87-98.
    [342] Oberson A, Friesen DK, Rao IM, et al. Phosphorus transformations in an oxisol under contrasting land-use system: The role of the soil microbial biomass. Plant Soil.2001, 237(2): 197-210. DOI: 10.1023/A:1013301716913
    [343] Richardson AE. Prospects for using microorganisms to improve the acquisition of phosphorus by plants, Australian Journal of Plant Physiology. 2001, 28: 897-906.
    [344] Peix A, Rivas-Boyero AA, Mateos PF,et al. Growth promotion in chickpea and barley by a phosphate solubilising strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biology and Biochemistry. 2001, 33: 103-110.
    [345] Qi J and Shi SL. Preliminary study on the ability of phosphorus-solubilizing and IAA-secreting of endogenous rhizobia in seeds of different alfalfa varieties. Grassland and Turf. 2006, 5: 18-25.
    [346] Jiao RZ and Peng YH. Preliminary study on phosphate solubilizing and L-releasing abilities of Rhizobium tropici Martinez-Romero et al. strains from woody legumes. In: Proceedings of the 19th World Congress of Soil Science,‘Solutions for a Changing World’, 1-6 August 2010, Brisbane, Australia. 2010.
    [347] Ryther JH, Dunstan WM. Nitrogen, phosphorus and eutrophication in the coastal marine environment. Science. 1971, 171:1008-1013.
    [348] Thomas WH. Surface nitrogenous nutrients and phytoplankton in the northeastern Pacific. Limnology and Oceanography. 1966, 11: 393-400.
    [349] Capone DG. In: Handbook of methods in aquatic microbial ecology, edited by P.F. Kemp, B.F. Sherr, E.B. Sherr, and J.J. Cole, Boca Raton, Lewis Press. 1993, pp. 621-631.
    [350] Claire M, Michaels AF, Capone DG. The conundrum of marine N2 fixation. American Journal of Science. 2005, 305: 546-595.
    [351] Steele KW, Bonish PM, Daniel RM, et al. Effect of rhizobial strain and host plant on nitrogen isotope fractionation in legumes. Plant Physiology. 1983, 72: 1001-1004.
    [352] Wanek W, Arndt SK. Difference in delta N-15 signatures between nodulated roots and shoots of soybean is indicative of the contribution of symbiotic N-2 fixation to plant N. J. Exp. Bot. 2002, 53: 1109-1118.
    [353] Pessenda LCR, Aravena R, Melfi AJ. The use of carbon isotopes (C-13, C-14) in soil to evaluate vegetation changes during the Holocene in central Brazil. Radiocarbon. 1996, 38: 19l-201.
    [354] Pessenda LCR, Gouveia SEM, Aravena R. Radiocarbon dating of soil organic matter and humin fraction and its comparison with C ages of fossil charcoal. Radiocarbon. 2001, 43(2B): 595-601.
    [355] Fried M, Middelboe VM. Measurement of amount of nitrogen fixed by a legume crop. Plant Soil. 1977, 47: 713-715.
    [356] Danso SKA, Hardarson G, Zapata F. Misconceptions and practical problems in the use of 15N soil enrichment techniques for estimating N2 fixation. Plant and Soil. 1993, 152(1): 25-52.
    [357] Hardarson G, Hera C. Use of 15N isotope dilut ion method to quant ify nit rogen fixat ion in legumes and its potent ial use for nonlegumes [A]. In: Malik K A , Mirza M S, Ladha J K. Proceedings of the 7th International Symposium on Nitrogen Fixation with Nonlegumes[C]. The N etherlands: Kluw er Publishers. 1998, 307-312.
    [358] Malik KA, Bilal R. Survival and colonizat ion of inoculated bacteria in kallar grass rhizosphere and quantification [A ]. In: Skinner F A. Nitrogen Fixation with Non-legumes [C]. The Netherlands: Kluwer Academic Publishers. 1989. 301-310.
    [359] Bergersen FJ, Peoples ML, Turner GL. 1988. Isotopic discriminations during the accumulation of nitrogen by soybeans. Australian Journal of Plant Physiology. 1988, 15: 407-420.
    [360] Yoneyama T, Fujita K, Yoshida T, et al. Variations in natural abundance of 15N among plant parts and in 15N/14N fractionation during N2 fixation in the legumerhizobia symbiotic system. Plant and Cell Physiology. 1986, 27: 791-799.
    [361]董继珍.浅析种植大豆对培肥地力的作用[J].云南农业. 2005, 8: 24-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700