用户名: 密码: 验证码:
苜蓿中华根瘤菌CCNWSX0020抗铜基因的克隆与功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根瘤菌是土壤中广泛分布的一类能与豆科植物共生结瘤固氮的重要农业微生物资源,根瘤菌—豆科植物的共生固氮体系是生物固氮体系的重要组成。苜蓿中华根瘤菌(S. meliloti)CCNWSX0020分离自陕西凤县重金属尾矿的天蓝苜蓿(Medicago lupulin),能抗高达1.8 mM CuSO_4。本文利用Tn5-1063a转座子对S. meliloti CCNWSX0020进行随机突变,建立了一个库容达14000余个突变株库,从中筛选得到在0.8 mM CuSO_4的YMA培养基上不能生长的6株铜敏感性突变株SXa-1、SXa-2、SXc-1、SXc-2、SXn和SXy。重金属抗性表明SXc-1、SXc-2、SXn和SXy对ZnSO_4表现出一定程度的敏感性,而SXa-1和SXa-2对ZnSO_4不多敏感,暗示了SXc-1、SXc-2、SXn和SXy中的突变基因可能与阳离子转运有关或者Zn~(2+)参与这些突变株的某些代谢途径;对Pb(NO_3)_2抗性测定表明只有SXc-1、SXc-2和SXy对Pb(NO_3)_2较为敏感,其余突变株则对Pb(NO_3)_2敏感性较弱,进一步表明这三株突变株突变基因可能与二价阳离子运输有关。
     利用Tn5-1063a可以自连成环并具有自我复制的功能,对突变株的全基因组DNA进行酶切并自连,再根据Tn5-1063a两端的已知序列设计引物,对其PCR扩增,PCR产物电泳谱图显示6株突变株都只有单拷贝插入,表明突变株的铜敏感表型是由于转座子插入造成的。进而对其两翼序列进行测序,结果表明,6株突变株是由4个基因突变引起的,其中SXa-1和SXa-2是由lpxXL基因突变所致,该基因编码产物为LpxXL C28-酰基转移酶;SXc-1和SXc-2是由cueR基因突变所致,该基因是MerR家族中一种,是铜抗性基因copA和cueO的调控基;SXn是转座子插入到S. meliloti 1021的SMc02281内部,该基因编码未知膜蛋白,与Agrobacterium sp. H13-3的铜抗性蛋白CopB同源性为74.63%,以此本文把该基因定位copB;SXy由fixI1基因突变造成的,该基因是E1-E2 ATPase家族中一个基因,是一种阳离子泵,且参与细胞有氧呼吸的电子传递过程。
     根据突变株的测序结果,PCR扩增得到含启动子的全长片段,将其克隆到穿梭载体pBBR1MCS-5上,三亲杂交将各个基因转入到相应的突变株中,结果发现SXy-1可以在1.2 mM CuSO_4固体平板上恢复生长,其它突变株都可以在1.5 mM CuSO_4平板上恢复生长,进一步证明这些基因与S. meliloti CCNWSX0020的抗铜性有关。
     结瘤实验表明,lpxXL和fixI1基因的显著降低了与宿主植物的结瘤数目;盆栽实验表明,当培养基质中CuSO_4含量高于47.36 mg/kg时,与接种野生型菌株相比,所有突变株接种的宿主植物的根茎干重都显著降低,且根茎中的铜含量也显著降低,说明突变株已经影响到宿主植物的生长和对的铜吸收,也可以间接说明突变基因与铜离子的运输有关。
It is well known that symbiotic nitrogen-fixing bacteria are commonly associated with the roots of leguminous plants. Rhizobia colonize the roots of legumes where they fix atmospheric N2, some of which can be utilized for plant growth. A root nodule bacterium, S.meliloti CCNWSX0020, resistant to 1.8 mM CuSO_4 was isolated from Medicago lupulina growing in mine tailings of Fengxian county, China. Six mutants sensitve to copper-resistance were obtained after screening about 14000 mutants by mutagenesis with Tn5-1064a, they were SXa-1, SXa-2, SXc-1, SXc-2, SXn and SXy. Zinc-resistant experiment showed that SXc-1, SXc-2, SXn and SXy were sensitive to zinc, while SXa-1 and SXa-2 were not, which suggested that mutant genes of SXc-1、SXc-2、SXn and SXy were probably involved in cation transport or Zn~(2+) involved in some metabolic pathways in these mutants. Meanwhile, SXc-1、SXc-2 and SXy showed sensitivity to Pb(NO_3)_2 while other mutants were slightly sensitive, which further indicated that the mutant genes of SXc-1、SXc-2 and SXy were probably related to divalent cations transport.
     Copper-sensitive phenotype of mutants were identified by the construction and screening of a transposon Tn5-1063a library and PCR. The results showed that single copy inserted into mutants, indicating that coppe-sensitive phenotype was the result of transposon insertion. Six copper-sensitive mutants were obtained and five different genes were indentified by sequencing. SXa-1 and SXa-2 were found with disruptions in the lpxXL gene, encoding LpxXL C28-acyltransferase; SXc-1 and SXc-2 were disrupted with cueR gene, which was found as regulator of copper- tolerance genes copA and cueO; SMc02281 of S. meliloti 1021 was inserted with SXn which encoded unknown membrane protein. It showed 74.63% similarity with the copper-tolerance protein in Agrobacterium sp. H13-3. Therefore, in this paper, SXn gene was lacated in copB and SXy was disrupted with fixI1 gene, belonging to E1-E2 ATPase family, involving in cellular aerobic respiration the electron transfer as a ion pump.
     The mutant genes were cloned into the vector, and through the tri-parental conjugation, each mutant gene was transferred into the corresponding mutants. The results showed that SXy-1 completely restored the growth at the concentration of 1.2 mM CuSO_4 and others could grow even at the concentration of 1.5 mM CuSO_4, furtherly suggesting that these mutant genes were related to copper-tolerance of S.meliloti CCNWSX0020.
     Nodule tests showed that lpxX and fixI1 mutant genes could remarably reduce the number of nodules of host plants. Comparing with the host plants inoculated wild S.meliloti CCNWSX0020, dry weight and copper accumulation in root as well as shoot of plants inoculated mutants obviously reduced. The findings suggested that mutants in this study affected the growth of host plants as well as absorption to copper, which indirectly indicating mutant genes were related to copper ion transport.
引文
陈文新,汪恩涛,陈文峰. 2004.根瘤菌-豆科植物共生多样性与地理环境的关系.中国农业科学, 37(1): 81~86
    陈亚刚,陈雪梅,张玉刚,龙新宪. 2009.微生物抗重金属的生理机制.生物技术通报, (10): 60-65
    慈恩,高明. 2005.环境因子对豆科共生固氮影响的研究进展.西北植物学报, 25(6): 1269-1274
    冯毓琴,曹致中. 2003.天蓝苜蓿种子休眠特性的研究.草业科学, 20(1): 20-22
    李小红,杜秉海,章晓庆,王磊,杨苏声. 2004.转座子挽救法对苜蓿中华根瘤菌与耐盐有关基因的定位.遗传学报, 31(1): 91-96
    李雅芹,何正国. 2003.中度嗜热嗜酸铁氧化细菌对Fe2+的氧化.有色金属, 55(1): 37-38
    龙健,黄昌勇. 2003.矿区重金属污染对土壤环境质量微生物学指标的影响.农业环境科学学报, 22(1): 60-63
    缪福俊,熊智,李素停,孙浩,李彪. 2010.会泽铅锌尾矿区豆科植物根瘤菌耐铅锌性及其生理生化特征研究.农业环境科学学报, 29(10):1943-1947
    聂湘平,黄铭洪. 2002.铜对大叶相思—根瘤菌共生固氮体系的影响.应用生态学报, 13(2): 137-140
    聂湘平,蓝崇钰,束文圣,张志权,黄铭洪. 2002.锌对大叶相思-根瘤菌共生固氮体系影响研究.植物生态学报, 26 (3) 264~268
    潘建芳.2007.火焰原子吸收光谱法测定奶类食品中铜锌铁锰.理化检验:化学分册, 43(3): 209-210
    韦革宏,马占强. 2010.根瘤菌—豆科植物共生体系在重金属污染地修复中的地位、应用及潜力.微生物学报, 50(11):1421-1430
    徐大勇,李峰. 2007.中度嗜热嗜酸铁氧化细菌脱除煤炭硫分研究.煤炭科学技术, 35(12): 86-88
    闫兴凤,李高平,王建党,贾玲侠. 2007.土壤重金属污染及其治理技术.微量元素与健康研究, 24(1): 52-54
    阎隆飞,张玉麟,李明启. 1997.《分子生物学》(第二版),北京:中国农业科学出版社
    张志权,束文圣. 2002.豆科植物与矿业废弃地植被恢复.生态学杂志, 21(2): 47-52.
    Abd-El-Karem Y, Elbers T, Reichelt R, Steinbüche A. 2011. Heterologous expression of Anabaena sp. PCC7120 cyanophycin metabolism genes cphA1 and cphB1 in Sinorhizobium (Ensifer) meliloti 1021. Appl Microbiol Biotechnol, 89: 1177–1192
    Adaikkalam V, Swarup S. 2002. Molecular characterization of an operon,cueAR,encoding a putative P1-type ATPase and a MerR-type regulatory protein involved in copper homeostasis in Pseudomonas putida. Microbiology, 148(Pt 9):2857-2867
    Adams T K, Saydam N, Steiner F, Schaffner W, Freedman J H. 2002. Activation of Gene Expression by Metal-Responsive Signal Transduction Pathways. Environmental Health Perspectives Supplements,10(5): 813-817
    Adriano, D C. 2001. Trace Elements in the Terrestrial Environment: Biogeochemistry Bioavailability and Risks of Metals, 2nd edn. New York: Springer
    Alloing G, Travers I, Sagot B, Rudulier D L, Dupont L. 2006. Proline Betaine Uptake in Sinorhizobium meliloti: Characterization of Prb, an Opp-Like ABC Transporter Regulated by both Proline Betaine and Salinity Stress. Journal of Bacteriology, 188(17):6308–6317
    Alonso A, Sanchez P, Martinez J L. Stenotrophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrobial Agents and Chemotherapy, 2000, 44(7): 1778-1782
    Haag A F, Wehmeier S, Beck S,Victoria L, Marlow V, Fletcher V, James E K, Ferguson G P. 2009. The Sinorhizobium meliloti LpxXL and AcpXL Proteins Play Important Roles in Bacteroid Development within Alfalfa. Journal of Bacteriology, 191(14): 4681–4686
    Angle J S, McGrath, S P, Chaudri, A M, Chaney, R L, Giller, K E. 1993. Inoculation effects on legumes grown in soil previously treated with sewage sludge. Soil Biology & Biochemistry, 25: 575-580
    Athina A, Eddy J S, Marjon H J B, Leon G M G. 2001. Antioxidative properties of Lactobacillus sake upon exposure to elevated oxygen concentrations. FEMS Microbiology Letters, 203: 87-94
    Balamurugan K, Schaffner W. 2006. Copper homeostasis in eukaryotes:teetering on a tightrope. Biochim Biophys Acta, 1763(7):737-746
    Banci L, Bertini S and Ciofi-Baffoni R. 2003. Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis. Biochemistry, 42: 1939-1949
    Bang S W, Clark D S, Keasling J D. 2000. Engineering hydrogen sulfide production and cadmium removal by expression of the thiosulfate reductase gene (phsABC) from Salmonella enterica serovar typhimurium in Escherichia coli. Applied and Environmental Microbiology, 66(9): 3939-3944
    Batista S, Patriarca E J, Tate R, Drets G M, Gill1 P L. 2009. An Alternative Succinate (2-Oxoglutarate) Transport System in Rhizobium tropici Is Induced in Nodules of Phaseolus vulgaris. Journal of Bacteriology, 191(16): 5057-5067
    Bayle D, Wangler S, Weitzenegger T, Steinhilber W, Volz J, Przybylski M, Schafer K P, Sachs G, Melchers K. 1998. Properties of the P-type ATPases encoded by the copAP operons of Helicobacter pylori and Helicobacter felis.J Bacteriol,1998,180(2):317-329
    Bell L C, Page M D, Berks B C, Richardson D J, Ferguson S J. 1993. Insertion of transposon Tn5 into a structural gene of the membrane-bound nitrate reductase of Thiosphaera pantotropha results in anaerobic overexpression of periplasmic nitrate reductase activity. Journal of General Microbiology, 139:3205-3214
    Beyer W N, Pattee O H, Sileo L, Hoffman D J, Mulhern B M. 1985. Metal contamination in wildlife livingnear two zinc smelters. Environmental pollution Series A, Ecological and biological, 38(1): 63-86
    Bhattacharyya S, Pal T K, Basumajumdar A. 2009. Modulation of enzyme activities of a lead-adapted strain of Rhizopus arrhizus during bioaccumulation of lead. Folia Microbiologica, 54 (6): 505–508
    Borremans B, Hobman J L, Provoost A, Brown N L, Lelie, N van der. 2001. Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. Journal of Bacteriology, 183(19): 5651-5658
    Bradshaw D. 1987. Reclamations of land and ecology of ecosystem. In: William R J, Gilpin M E, Aber J D, eds. Restoration Ecology. Cambridge: Cambridge University Press, 53–74
    Brandt K K, Petersen A, Holm P E. 2006. Decreased abundance and diversity of culturable Pseudomonas spp.populations with increasing copper exposure in the sugar beet rhizosphere. FEMS Microbiol Ecol, 56(2):281-291
    Brown N L, Barrett S R, Camakaris J, Lee B T, Rouch D A. 1995. Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Molecular Microbiology, 17(6): 1153-1166
    Brown N L, Lee B T O, Silver S. 1994. Bacterial transport of and resistance to copper. Metal ions in biological systems, 1994, 30: 405-434
    Brown N L, Lee B T O, Silver S. 1994. Bacterial transport of and resistance to copper. Metal ions in biological systems, 30: 405-434
    Brown N L, Stoyanov J V, Kidd S P, Hobman J L. 2003. The MerR family of transcriptional regulators. FEMS Microbiol Rev, 27, 145–163
    Brown N L, Rouch D A, Lee B T O. 1992. Copper resistance determinants in bacteria. Plasmid, 27(1):41-51
    Caeiro S, Costa M H, Ramos T B, Fernandes F, Silveira N, Coimbra A, Medeiros G, Painho M. 2005. Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecological Indicators, 5: 151?169
    Caguiat J J, Watson A L, Summers A O. 1999. Cd (II)-responsive and constitutive mutants implicate a novel domain in MerR. Journal of bacteriology, 181(11): 3462-3471
    Carrasco J A, Armario P, Pajuelo E, Burgos A. 2005. Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biology & Biochemistry, 37:1131–1140
    Cervantes, Gutierrezcorna. 1994. Copper resistance mechanisms in bacteria and fungi. FRMS Microbiol Rev, 14: 121 137
    Cevheri C, Kü?ük ?, ?etin E. 2011. Fungicide, antibiotic, heavy metal resistance and salt tolerance of root nodule isolates from Vicia palaestina. African Journal of Biotechnology, 10(13):2423-2329
    Cha J S, Cooksey D A. 1991. Copper resistance in Pseudomonas syringae mediated by periplasmic andouter membrane proteins. Proc Natl Acad Sc USAi. 1991, 88(20): 8915-8919
    Chandra T S and Friedrich C G. 1986. Tn5-induced mutations affecting sulfur-oxidizing ability (Sox) of Thiosphaera pantotropha. Journal of Bacteriology,166(2):446-452
    Chen C M, Liu M C. 2006. Ecological risk assessment on a cadmium contaminated soil landfill-A preliminary evaluation based on toxicity tests on local species and site-specific information. Science of the Total Environment, 359: 120?129
    Chen W M, Wu C H, James E K, Chang J S. 2008. Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. Journal of Hazardous Materials, 151: 364–371
    Collard J M, Corbisier P, Diels L, Dong Q, Jeanthon C, Mergeay M, Taghavi S, van der Lelie D, Wilmotte A and Wuertz S. 1994. Plasmids for heavy metal resistance in Alcaligenes eutrophus CH34:Mechanisms andapplications. FEMS Microbiology Reviews,14(4):405-414
    Cooksey D A, Azad H R,Cha J S. 1990. Copper Resistance Gene Homologs in Pathogenic and Saprophytic Bacterial Species from Tomato. Appl Environ Microbiol,56(2):431-435
    Cooksey D A. 1993. Copper uptake and resistance in bacteria. Molecular Microbiology, 7(1): 1-5
    Cooksey D A. 1994. Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS microbiology reviews, 14(4): 381-386
    Cooksey D A, Azad H R. 1992. Accumulation of Copper and Other Metals by Copper-Resistant Plant-Pathogenic and Saprophytic Pseudomonads. Appl Environ Microbiol, 58 (1):274-278
    Cooksey D A. 1994. Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS microbiology reviews, 14(4): 381-386
    Crupper S S, Worrell V, Stewart G C, Iandolo J J. 1999. Cloning and expression of cadD, a new cadmium resistance gene of Staphylococcus aureus. Journal of bacteriology, 181(13): 4071-4075
    Davey M E, De Bruijn F J. 2000. A homologue of the tryptophan-rich sensory protein TspO and FixL regulate a novel nutrient deprivation-induced Sinorhizobium meliloti locus. Appl Environ Microbiol, 66(12): 5353–5359
    Delorme T A, Gagliardi J V, Angle J S, Van Berkum P, Chaney R L. 2003. Phenotypic and genetic diversity of rhizobia isolated from nodules of clover grown in a zinc and cadmium contaminated soil. Soil Sci. Soc. Am. J, 67:1746-1752
    Fairbrother A, Wenstel R, Sappington K. 2007. Framework for metals risk assessment. Ecotoxicology and Environmental Safety, 68: 145?227
    Fan L M, Ma Z Q, Liang J Q, Li H F, Wang E T, Wei G H. 2011. Characterization of a copper-resistant symbiotic bacterium isolated from Medicago lupulina growing in mine tailings. Bioresource Technology, 102(2):703-709
    Ferguson G P, Datta A, Carlson R W and Walker G C. 2005. Importance of unusually modified lipid A inSinorhizobium stress resistance and legume symbiosis. Molecular Microbiology, 56(1): 68–80
    Figueura E M A P, Lima A J G, Pereira S I A. 2005. Cadmium tolerance plasticity in Rhizobum leguminosarum bv. Viciae:glutathione as a detoxifying agent. Canadian Journal of Microbiology, 51:7-14
    Finney L A, Halloran T V. 2003. Transition metal speciation in the cell: insights from the chemistry of metalion receptors. Science, 300: 931–936
    Franke S, Grass G, Rensing C and Nies D H. 2003. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol, 185: 3804–3812
    Frostegard A, Tunlid A, Baath E. 1996. Changes in Microbial Community Structure during long-term in Cubation in Two Soils Experimentally Contaminated with Metals. Soil Biology Biochemistry, 28(1):55-63
    Gadd G M. 2010. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 156: 609-643
    Ganyu G, Smith L, Wang N, Wang H, Lu S E. 2009. Biosynthesis of an antifungal oligopeptide in Burkholderia contaminans strain MS14. Biochemical and Biophysical Research Communications, 380: 328–332
    García-Domínguez M, Lopez-Maury L, Florencio J, Reyes J C. 2000. A gene cluster involved in metal homeostasis in the cyanobacterium Synechocystis sp. strain PCC 6803. Journal of Bacteriology, 182(6): 1507-1514
    Gatti D, Mitra B, Rosen B P. 2000. Escherichia coli soft metal ion-translocating ATPases. ASBMB, 275(44): 34009-34012
    Giller K E, McGrath S P, Hirsch P R.1989. Absence of nitrogen fixation in clover grown on soil subject to long-term contamination with heavy metals is due to survival of only ineffective Rhizobium. Soil biology & biochemistry, 21(6): 841-848
    Gilmour C, Riedel G. 2009. Biogeochemistry of trace metals and metalloids in Inland Aquatic Ecosystems. Encyclopedia of Inland Waters,Vol 2, pp.7–15.
    Glick B R. 2004. Teamwork in phytoremediation. Nature biotechnology, 22(5): 526-527
    Groisman E A, Kayser J, Soncini F C. 1997. Regulation of polymyxin resistance and adaptation to low Mg2+ environments. J Bacteriol,179: 7040–7045
    Gross C, Kelleher M, Iyer V R, Brown P O, Winge D R. 2000. Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. Journal of Biological Chemistry, 275(41): 32310-32316.
    Guibaud G, Bordas F, Saaid A, Abzac P, Van Hullebusch E. 2008. Effect of pH on cadmium and lead binding by extracellular polymeric substances (EPS) extracted from environmental bacterial strains. Colloids and Surfaces B: Bio interfaces 63: 48-54
    Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol, 166: 557-580.
    Hassani B K, Astier C, Nitschke W, Ouchane S. 2010. CtpA, a Copper-translocating P-type ATPase Involved in the Biogenesis of Multiple Copper-requiring Enzymes. The Journal of Biological Chemistry, 285(25): 19330-19337
    Haukka K, Lindstrom K, Young J P W. 1998. Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Applied and Environmental Microbiology, 64(2): 419-426
    Herridge D F, Peoples M B, Boddey R M .2008. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil, 311: 1-8
    Hobman JL, Wilkie J and Brown NL. 2005. A design for life: prokaryotic metal-binding MerR family regulators. Biometals, 18: 429-436
    Hsu M J, Selvaraj K, Agoramoorthy G. 2006. Taiwan's industrial heavy metal pollution threatens terrestrial biota.2006. Environmental Pollution, 143(2): 327-334.
    Kaonga C C, Kumwenda J, Mapoma H T. 2010. Accumulation of lead, cadmium, manganese, copper an zinc by sludge worms.Tubifex tubifex in sewage sludge. Int. J. Environ. Sci. Tech, 7 (1), 119-126
    Kershaw C J, Brown N L, Constantinidou C, Patel M D, Hobman J L. 2005. The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. Microbiology, 151:1187-1198
    Klaus T, Joerger R, Olsson E, Granqvist C. 1999. Silver-based crystalline nanoparticles, microbially fabricated. National Acad Sciences, 96(24): 13611-13614
    Koch H G., Winterstein C, Saribas A S, Alben J O, Daldal F. 2000. Roles of the ccoGHIS gene products in the biogenesis of the cbb(3)-type cytochrome coxidase.J. Mol. Biol, 297(1) 49–65
    Kuiper I, Lagendijk E L, Bloemberg G V, Lugtenberg B J J. 2004. Rhizoremediation: a beneficial plant-microbe interaction. Molecular Plant-Microbe Interactions, 17(1): 6-15
    Kuroda K, Ueda M. 2003. Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His. Applied Microbiology and Biotechnology, 63(2): 182-186
    Kuroda K, Ueda M. 2006. Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Applied microbiology and biotechnology, 70(4): 458-463
    Lakzian A, Murphy P, Turner A, Beynon J L, Giller K E. 2002. Rhizobium leguminosarum bv. viciae populations in soils with increasing heavy metal contamination: abundance, plasmid profiles, diversity and metal tolerance. Soil Biology & Biochemistry, 34, 519–529
    Lamelas C, Benedetti M F, Wilkinson K J, Slaveykova V I. 2006. Characterization of H+ and Cd2+ binding properties of bacterial exopolymers. Chemosphere, 65: 1362-1370
    Landa, E R. 2005. Microbial biogeochemistry of uranium mill tailings. Adv Appl Microbiol, 57, 113–130
    Lee S W, Glickmann E, Cooksey D A. 2001. Chromosomal locus for cadmium resistance in Pseudomonasputida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Applied and Environmental Microbiology, 67(4): 1437-1444
    Lins R D, Straatsma T P. 2001. Computer Simulation of the Rough Lipopolysaccharide Membrane of Pseudomonas aeruginosa. Biophys, 81: 1037-1046
    Liu Y G, Whitter R F. 1995. Thermal asymmetric interlaced PCR : automatable amplification and sequencing of insert end fragment from P1 and YAC clones for chromosome walking. Genomics, 25: 674 - 681
    Liu Y G, Zhang H Z, Zeng GM, Huang B R, LI X. 2006. Heavy metal accumulation in plants on Mn mine tailings. Redosphere, 16(1):131-136
    Magnani D, Solioz M. 2005. Copper chaperone cycling and degradation in the regulation of the cop operon of Enterococcus hirae. Biometals, 18: 407-412
    Martin V J J, Mohn W W. 1999. An alternative inverse PCR (IPCR) method to amplify DNA sequences flanking Tn5 transposon insertions. Journal of Microbiological Methods, 35 :163-166
    Masson-Boivin C; Giraud E, Perret X, Batut J. 2009. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol, 17(10): 458-466
    McIntyre H J, Davies H, Hore T A, Miller S H, Dufour J P, Ronson C W. 2007. Trehalose biosynthesis in Rhizobium leguminosarum bv. trifolii and its role in desiccation tolerance. Appl Environ Microbiol, 73(12) 3984-3992.
    Milcamps A, Ragatz D M, Lim P, Berger K A , De Bruijn F J. 1998. Isolation of carbon- and nitrogen-deprivationinduced loci of Sinorhizobium meliloti 1021 by Tn5-luxAB mutagenesis. Microbiology, 144, 3205-3218
    Mullen M D, Wolf D C, Beveridge T J, Bailey G W. 1992. Sorption of heavy metals by the soil fungi Aspergillus niger and Mucor rouxii. Soil biology & biochemistry, 24(2): 129-135
    Nies D H, Nies A, Chu L, Silver S. 1989. Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proceedings of the National Academy of Sciences, 86(19): 7351-7355
    Niner B M., Hirsch A M. 1998. How many Rhizobium genes, in addition to nod, nif/fix, and exo, are needed for nodule development and function? Symbiosis, 24: 51–102
    Nriagu J O, Pacyna J M. 1988. Quantitative assessment of world wide contamination of air, water and soils by trace metals. Nature, 333: 134–139
    Nriagu JO. 1990. Global Metal Pollution: Poisoning the Biosphere. Environment ENVTAR, 32(7): 7-32
    O′Kane C J, Gehring W J. 1987. Cahir Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci USA, 84:9123-9127
    Odermatt A, Solioz M. 1995. Two transacting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae. J Biol Chem, 270(9):4349-4354
    Odermatt A, Suter H, Krapf R, Solioz M. 1993. Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae.J Biol Chem, 268(17):12775-12779
    Outten F W, Outten C E, Hale J, O’Halloran T V. 2000. Transcriptional activation of an E. coli copper efflux regulon by the chromosomal MerR homologue, CueR. J. Biol. Chem, 275: 31024-31029
    Owen D J. 1986. Molecular cloning and characterization of sequences from the regulatory cluster of the Pseudomonas plasmid alk system. Molecular and General Genetics, 203(1):64-72
    Preisig O, Zufferey R., Hennecke H. 1996. The Bradyrhizobium japonicum fixGHIS are required for the formation of the high-affinity cbb3-type cytochrome oxidase. Arch. Microbiol, 165,297–305
    Puig S, Rees E M, Thiele D J. 2002. The ABCDs of perplasmic copper trafficking. Structure, 10(10): 1292-1295
    Reeve W G, Tiwari R P, Kale N B, Dilworth M J, Glenn A R. 2002. ActP controls copper homeostasis in Rhizobium leguminosarum bv.viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Mol Microbiol,43(4):981-991
    Reichman S M. 2007. The potential use of the legume–rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biology and Biochemistry, 39 : 2587–2593
    Rensing C, Fan B, Sharma R, Mitra B, Rosen B P. 2000. CopA:An Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci USA,2000,97(2):652-656
    Rensing C,Grass G. 2003. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev, 27(2-3):197-213
    Riccillo P M, Cecilia I, Muglia C I, Frans J D E, Bruun F J, Andrew J, Roe A J, Booth I R, Aguilar O M. 2000. Glutathione Is Involved in Environmental Stress Responses in Rhizobium tropici, Including Acid Tolerance. Journal of Bacteriology, 182(6): 1748-1753
    Riggle P J, Kumamoto C A. 2000. Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. Journal of Bacteriology, 182(17): 4899-4905
    Rouch D, Camakaris J, Lee B T, Lee O, Luke R K. 1985. Inducible plasmid-mediated copper resistance in Escherichia coli. J Gen Microbiol,131(4):939-943
    Ryan J A, Pahren H R, Lucas J B. 1982. Controlling cadmium in the human food chain: a review and rationale based on health effects. Environmental Research, 28: 251–302
    Schwan W R, Warrener P, Keunz E, Stover C K, Folger. 2005. Mutations in the cueA gene encoding a copper homeostasis P-type ATPase reduce the pathogenicity of Pseudomonas aeruginosa in mice. Int J Med Microbiol,295(4):237-242
    Silver S, Walderhaug M. 1992. Gene regulation of plasmid-and chromosome-determined inorganic ion transport in bacteria. Microbiology and Molecular Biology Reviews, 56(1): 195-228
    Silver S. 1998. Genes for all metals: a bacterial view of the periodic table the 1996 thom award lecture. Journal of industrial microbiology & biotechnology, 20(1): 1-12
    Silver S. Bacterial resistances to toxic metal ions-a review. Gene, 1996, 179(1): 9-19.
    Simon R, Priefer U, Puhler A. 1983. A brod host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gram negative bacteria. Biotechno, 1:784-791
    Snyder S, Kim D, McIntosh T J. 1999. Lipopolysaccharide bilayer structure: effect of chemotype, core mutations, divalent cations, and temperature. Biochemistry,38:10758–10767
    Solioz M,Vulpe C.1996. CPx-type ATPases:a class of P-type ATPases that pump heavy metals. Trends Biochem Sci, 21(7):237-241
    Sriprang R, Hayashi M; Yamashita H, Ono K, Saeki, Murooka Y. 2002. A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. Journal of biotechnology, 2002, 99:279-293
    Teitzel G M, Geddie A, De Long S K, Kirisits M J, Whiteley M, Parsek M R. 2006. Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J. Bacteriol, 188:7242-7256
    Tetaz T J,Luke R K. 1983. Plasmid-controlled resistance to copper in Escherichia coli. J Bacteriol, 154(3):1263-1268
    Thaden J T, Lory S, Gardner T S. 2010. Gardner Quorum-sensing regulation of a copper toxicity system in Pseudomonas Aeruginosa. J. Bacteriol, 192(10): 2557 - 2568
    Trevors J T.1987. Copper resistance in bacteria. Microbiol Sci, 4(1):29-31
    Veldhuis N A, Gaeth A P, Pearson R B, Gabriel K, Camakaris J. 2009. The multi-layered regulation of copper translocating P-type ATPases. Biometals, 22:177-190
    Wang C X, Kemp G, Fonseca I O D, Equi R C, Sheng X Y, Charles T C, Sobral B W S. 2010. Sinorhizobium meliloti 1021 Loss-of-Function Deletion Mutation in chvI and Its Phenotypic Characteristics. MPMI, 23(2):153–160
    Wani P A, Khan S, Zaidi A. 2008. Effect of Metal-Tolerant Plant Growth-Promoting Rhizobium on the Performance of Pea Grown in Metal-Amended Soil. Arch Environ Contam Toxicol, 55:33–42
    Wei G H, Fan L M, Zhu W F, Fu Y, Yu J, Tang M. 2009. Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China. Journal of Hazardous Materials, 162(1): 50-56
    Wei W, Jiang J and Yang S S. 2004. Mutagenesis and complementation of relA from Sinorhizobium meliloti 042BM as a salt tolerance involvement gene. Annals of Microbiology, 54 (3), 317-324
    White J P, Prell J, Ramachandran V K, and Poole P S. 2009. Characterization of a gamma-aminobutyric acid transport system of Rhizobium leguminosarum bv. viciae 3841. Journal of Bacteriology, 191(5):1547-1555
    Williams A, Wilkinson A, Krehenbrink M, Russo D M, Zorreguieta A, Downie J A. 2008. Glucomannan-mediated attachment of Rhizobium leguminosarum to pea root hairs is required forcompetitive nodule infection. Journal of Bacteriology, 190(13):4706-4715
    Wittenberg J B. 1974. The role of leghemoglobin in nitrogen fixation by bacteroids isolated from soybean root nodules. The Journal of biological chemistry, 249(13): 4057-4066
    Wosten M M, Kox L F, Chamnongpol S, Soncini F C,and Groisman E A. 2000. A signal transduction system that responds to extracellular iron. Cell, 103: 113–125
    Wu S, Xia X H, Lin C Y. 2010. Levels of arsenic and heavy metals in the rural soils of Beijing and their changes over the last two decades (1985–2008). Journal of Hazardous Materials, 179: 860-869
    Wu Y G, Xu Y N, Zhang G H and Hu S H. 2010. Evaluation of ecological risk and primary empirical research on heavy metals in polluted soil over Xiaoqinling gold mining region, Shaanxi, China. Transactions of Nonferrous Metals Society of China, 20:688-694
    Wu G, Kang H B, Zhang X Y, Shao H B, Chu L Y, Ruan C J. 2010. A critical review on the bioremoval of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities. J. Hazard. Mater, 174,1-8
    Wu L, Lin S L. 2006. Copper tolerance and copper uptake of Lotus purshianus (Benth.) Clem. & Clem. and its symbiotic Rhizobium loti derived from a copper mine waste population. New Phytologist, 116, 531-539
    Yanez L, Ortiz D, Calderon J, Batres L , Carrizales L, Mejía J, Martínez L, Nieto EG, and Barriga F D. 2002. Overview of human health and chemical mixtures: problems facing developing countries. Environ Health Perspect, 110(Suppl6):901–909
    Younis M. 2007. Responses of Lablab purpureus-rhizobium symbiosis to heavy metals in pot and field experiments. World Journal of Agricultural Sciences, 3(1): 111-122
    Yuqi, Wang YQ , Wang L L, Sun Y R, Chen Y C, Zhu L, Guo L X, Luo B, Wang H H. 2007. Disrupted ompC Causes Osmosis Sensitivity of Escherichia coli in Alkaline Medium. Journal of Genetics and Genomics, 34(12): 1131-1138
    Zauqian A D, Imas T and Susilowati D N. 2006. Characterization of Lipopolysaccharides of Bradyrhizobium japonicum KDR 15 Heavy Metal Tolerant. Hayati Journal of Biosciences, 13(3)
    Zhuang X, Chen J, Shim H, Bai Z. 2007. New advances in plant growth-promoting rhizobacteria for bioremediation. Environment international, 33(3): 406-413

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700