用户名: 密码: 验证码:
苎麻炭疽病菌的分离鉴定及抗病基因文库的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苎麻(Bochmeria nivea L.)为荨麻科(Vrticaceae)苎麻属(Bochmeria)多年生宿根性韧皮纤维作物。苎麻炭疽病(Colletotrichum spp.)是苎麻上发生普遍而严重的病害之一,一般发病率为20%-40%,重的病叶率、病情指数分别达90%、55.0%,可造成纤维损失10%左右。国内外有关苎麻炭疽病的研究报道比较少,尤其是国外。在中国,苎麻炭疽病的研究大多集中在上世纪八九十年代。因为炭疽菌属分类系统上发生过变化,所以作为引起苎麻炭疽病的病原需要重新确认。解析苎麻炭疽病病菌的分类地位、生物学特性以及苎麻受炭疽病诱导后的抗病防御反应机理,对创建具广谱持久的抗炭疽病材料,以及从苎麻中克隆抗病基因等具有重要意义。
     本研究的主要内容为:分离和鉴定苎麻炭疽菌病病原,对病原菌的生物学特性及多态性进行研究;应用抑制差减杂交技术(SSH)构建病原诱导后特异表达的cDNA文库;从该SSHcDNA文库中筛选出与苎麻抗病相关的特异表达和增强表达的基因片段;通过GenBank数据库检索,获得差异表达片段可能的生物学信息。最后进一步分析和推测这些片段在抗病反应中的作用和与抗病的关系。了解苎麻炭疽病水平抗性所涉及的信号传导、参与抗病相关基因的表达种类与数量。初步建立苎麻炭疽病病水平抗性相关基因的表达谱;为后续基因克隆、基因功能和抗病机理的深入研究建立技术平台。
     取得的主要研究结果如下:
     1.本研究从几个苎麻主产区(湖北武汉、湖北咸宁、湖南长沙、江西宜春和四川达州)采集炭疽病菌感染组织。已经成功分离到苎麻炭疽病菌株89个,分别为:湖北武汉20个,咸宁24个,江西18个,湖南长沙21个,四川达州6个。通过形态学和分子鉴定(ITS区序列,β-tubulin)序列和Actin序列的克隆)最后初步鉴定出苎麻炭疽菌病原为Colletotrichum gloeosporioides, C. fructicola, C. siamense和C.higginsianum。
     2.用UPGMA平均聚类法对45个分离自各产区的苎麻炭疽菌菌株进行RAPD聚类分析,发现不同地域间和同一地域里,苎麻炭疽菌菌株间存在丰富的遗传多样性。在相似水平60%,供试菌株可以分为两大类:第一类,WH-4、N2-1、XN2-4。第二类,WH-1、WH-9、WH-A、WH-B、WH-C、WH-D、WH-H、WH-J、JB-1、XN1-1、XN1-6、XN2-1、XN2-4、XN3-3、XN3-4、XN4-1、XN5、JX-1、JX-4、JX-6、JX-12、JX-14、JX-15、JX-16、JX-17、JX-18、JX-19、DZ-2、DZ-3、DZ-4、DZ-5、DZ-6、HN-1、HN-2、HN-3、HN-7、HN-8、HN-9、HN-12、HN-13。
     3.代表性菌株HN-3(Colletotrichum gloeosporioides)生物学特性研究表明,菌丝在20~30℃之间可以生长,最适温度为25℃。分生孢子在20℃~30℃之间产量较高,28℃达到最高。菌丝在pH 4.0-10.0均能生长,在PDA、PSA和苎麻叶片培养基上生长最快。在牛肉膏培养基上产孢最多。菌丝对各种碳源的利用率都很高。其中对麦芽糖的利用效果最好。产孢方而,相同的氮源,碳源不同其产孢量差异很大,硝酸钾和葡萄糖的结合可以诱导大量孢子的产生,添加硝酸钙菌丝生长最快,在酵母膏为氮源的培养基里菌落直径较小,但是孢子数目巨大。维生素B2液体培养基里可以产生最多的生物量,同时也可以诱导大量分生孢子的产生。菌落在12小时光暗交替条件下生长最快,但是孢子产量却最低,而连续黑暗培养更利于孢子的生成。
     4.用抑制差减杂交技术(SSH)构建了一个富集炭疽病抗性相关基因片段的差减文库。应用反向Northern技术对该差减文库进行了筛选。筛选出的差异表达克隆经测序后合并为132个代表不同基因的EST片段。检索结果表明,在能找到与之对应的EST序列中,就EST来源来看,得分最高的一大部分来源于杨属、李属、蓖麻、葡萄树,其他也有来自大豆和长春花等。本实验所得到的所有ESTs,都没有在苎麻中报道过。抗病及防御相关序列最多,为37条,占28%;未分类序列23条,占17%;未明确分类序列有15条,约占11%;转录相关10条,占8%;转运相关和代谢相关都是7条,占5%;细胞生长及分化、蛋白质合成和转座子相关各有6条,占4%,另外还有与胞内运输相关的4条、能量相关的3条、信号传导相关的3条、蛋白质降解及贮藏相关和细胞结构相关的2条和次生代谢相关序列有1条。其中抗病相关基因中包括来自白杨树受锈病诱导的SSH文库的相关基因、金属硫蛋白、热击蛋白、PR-1.2蛋白、抗逆相关蛋白等。
Ramie (Boehmeria nivea L.), a perennial crop of bast fiber, also known as white leaf ramie belongs to Urticaceae Boehmeria.. Ramie anthracnose (Colletotrichum spp.) is one of the common and serious diseases occurred on ramie, which is caused a general incidence rate of 20%-40%. In the serious occurred period, the diseased leaves rate and disease index were reached 90% and 55.0%, respectively, causing 10% fiber loss. There are few researches on ramie anthracnose especially in abroad. In China the related reports the disease are mostly concentrated in 1980s and 1990s. It is of great significance on the analysis of biological characteristics of ramie anthracnose and the pathogen defense mechanism, for creating a broad-spectrum resistance to anthracnose and the clone of resistance genes from ramie.
     The main contents of this study are as follows:Identification, characterization of ramie anthracnose and analysis of polymorphism; build induced subtractive library of expression of pathogen-specific cDNA fragments using suppression subtractive hybridization (SSH) technology. Ramie disease-related expression and gene fragments enhanced the expression of specific were screened out from the SSH cDNA library; through GenBank database searches, access to different expression of fragments of possible biological information. Finally, these fragments for further analysis and suggested the role in disease resistance and the relationship with the disease. Understand the level of resistance to anthracnose ramie involved in signal transduction, disease-related gene expression in the type and quantity. The level of initial establishment of disease resistance to anthracnose Ramie related gene expression profiles; for subsequent cloning, functional studies and disease-depth study of the mechanism of the establishment of technology platforms.
     We obtained the main outcomes as follows:
     1. In our research, we collected the pathogen-infected tissues from several main producing regions of ramie (Wuhan and Xianning of Hubei province, Changsha of Hunan province, Yichun of Jiangxi province and Dazhou of Sichuan province), and isolated 89 ramie anthracnose strains (of which 20 strains from Wuhan,24 from Xianning,18 from Jiangxi,21 from Changsha and 6 from Dazhou) from these tissues. These strains were identified basing on morphological and pathogenicity test as well as analyses of a partial sequence of the ITS,β-tubulin gene and Actin gene. Based on colony, conidial and appressoria morphology, and the molecular phylogenetics, C. fructicola, C. siamense, C gloeosporioides and C. higginsianum were identified as the causal agents of ramie anthracnose.
     2. RAPD clustering analyses among 45 strains from the main producing regions of ramie were performed using UPGMA average clustering method, the results showed abundant genetic divercity among these strains with no surprise, and at the identity level of 60%, the 45 strains were separated into two classes:the first contained WH-4, XN2-1 and XN2-4, and the second of WH-1, WH-9, WH-A, WH-B, WH-C, WH-D, WH-H, WH-J, JB-1, XN1-1, XN1-6, XN2-1, XN2-4, XN3-3, XN3-4, XN4-1, XN5, JX-1, JX-4, JX-6, JX-12, JX-14, JX-15, JX-16, JX-17, JX-18, JX-19, DZ-2, DZ-3, DZ-4, DZ-5, DZ-6, HN-1, HN-2, HN-3, HN-7, HN-8, HN-9, HN-12 and HN-13.
     3. We studied and measured the biological characteristics of a typical strain named HN-3 (C. gloeosporioides). The related results were as follows:the mycelium grew well from 20 to 30℃, best at 25℃; the yield of conidiophores came to a higher value also at the temperature from 20 to 30℃, best at 28℃. When under different pH values, the mycelium grew at pH 4.0-10.0; and different media, faster growth rates were obtained on PDA, PSA and ramie leaves (RLs) media, while most conidiophores on beef extract media (BE). Otherwise, when cultured on different media to measure its utilization ratio of different carbon and nitrogen sources, it showed high utilization ratios of every carbon sources and best of maltose, but it was not that similar if turned to sporulation. In short, we got widely different yield of conidia under the combinations of different carbon sources with one nitrogen source, e.g., a higher yield of conidia could be obtained on the medium combined of potassium nitrate (KNO3) and D-glucose; diameters on calcium nitrate [Ca(NO3)2] was high; Diameter on C-yeast was only 52.8mm, but its yield of conidia was highest by 3.16×107/ml. When adding VB2, its yield of conidia and the dry biomass of mycelia were significant higher than CK. We got a fastest growth rate in L/D condition (or, the 12-h/12-h condition) with a lowest yield of conidia, while in all dark condition, the conidia got a larger number.
     4. We constructed a subtractive library that abundant of anthracnose-resistant interrelated gene sequences by using suppression subtractive hybridization (SSH), and the reverse Northern dot-blot method was also performed for further screening to this library. As a result of it,132 EST fragments that representative of different genes were identified by sequencing and combination the screening differential expression clones. After that, we compared these sequences in NCBI, and the outcome showed that among the matched ESTs, the higher scores mostly came from that of Populus L., Prunus, Ricinus communis and Vitis vinifera, so had Glycine max and Vinca rosea, etc., but no that from ramie. Among these ESTs,37 of them (28%) were classified as disease-resistant and defense-related; 23 (17%) for unclassified; 15 (11%) for unclear classification; 10 (8%) for transcription; 7 (5%) for both transporter and metabolism; 6 (4%) for each function of cell growth/division, protein synthesis and transposons; and some EST ralated to signal transduction, energy, protein destination and storage, cell structure, secondary metabolism eg. In these ESTs, some ESTs from Poplar cDNA sequences (SSH library infected with rust fungus), metallothionein-like protein, heat shock protein, PR-1.2 protein, pathogenesis related protein.
引文
1.蔡新忠,郑重.宋风鸣.水杨酸对水稻幼苗抗瘟性的诱导作用.植物病理学报,1996,26(1):7-12.
    2.曹季丹.桐炭疽菌的研究.森林病虫通讯,1988,(1):4-5.
    3.陈洪福. 苎麻几种常见病害及其防治.中国麻业,1986,(3):25-27.
    4. 戴芳澜.中国真菌总汇科学出版社,1979.
    5. 董继新,董海涛,李德葆.植物抗病基因研究进展[J].植物病理学报,2001,13(1):1-9.
    6.方中达主编.植病研究方法.北京:农业出版社,1979.
    7. 高雪.差异表达基因分离技术的研究进展.生物技术通报,2009,(6),71-74.
    8. 黄姿碧.应用rDNA内转录区间(ITS)序列特性作为炭疽病菌鉴定与亲缘关系研究的辅助依据.1999,硕士论文.
    9. 贾燕涛.植物抗病信号转导途径[J].植物学通报,2003,20(5):602-608.
    10.蒋建雄,张天真.利用CTABP酸酚法提取棉花组织总RNA.棉花学报,2003,15(3):166-167.
    11.李传道,朱熙樵,石峰云.杉木炭疽病的研究,病原菌的鉴定.南京林产工业学院学报,1988,(3):28-33.
    12.李瑞明,马辉刚,吴继红.苎麻炭疽病初侵染源及发生规律的研究.江西农业大学学报.1991,(1):60-64.
    13.李瑞明,马辉刚,吴继红.苎麻炭疽病研究综述.中国农学通报.1992,8(3):24-31.
    14.李瑞明,马辉刚.苎麻炭疽病发生及防治研究.植物保护学报.1993,(1):82-89.
    15.李瑞明.江西苎麻病害调查.江西植保.1987, (2):22-23.
    16.李兆锋.植物病理学原理[M].2002,226-230.
    17.李宗道.麻作的理论与技术上海科学技术出版杜.1980.
    18.刘晓云,景耀,杨俊秀.植物炭疽菌研究文献综述.西北林学院学报.1995,10(4):105-111.
    19.吕锐玲.武汉梅树及其它园艺作物炭疽病的病原多样性研究.2008.硕士论文.
    20.罗俊国.苎麻炭疽病病菌的培养性状和苎麻品种对炭疽病的抗性.湖北农业科学.1991,(12):18-19.
    21.邵力平,沈瑞林.真菌分类学.北京:中国林业出版社,1984.
    22.佘玮,邢虎成,揭雨成,陈信波.苎麻茎皮cDNA文库的构建,中国麻业科学2007,(1):16-19.
    23.王石平,刘克德,工江.用同源序列的染色体定位寻找水稻抗病基因DNA片[J].植物学报.1998,(40):42-50.
    24.工晓明,李建义.炭疽菌属的现代分类和陕西省炭疽菌属的种[D].西北农学院硕士论文.1985.
    25.工晓鸣.菜豆炭疽菌有性态研究.真菌学报,1993,12(1):41-47.
    26.吴乃虎.基因工程原理(第2版),北京:科学出版社,1998,1-10.
    27.熊和平.苎麻麻类作物育种学.中国农业科学技术出版社,2008.
    28.杨秀珠.炭疽病菌的鉴定.检疫防疫植物病原真菌鉴定研讨会刊.1998,199-232.
    29.张德水,陈受宜.植物抗病性的分子生物学研究进展[J]植物病理学报.1997,27(2):97-103.
    30.张天宇.中国真菌志(第十六卷)链格孢属.北京:科学出版社,2003.
    31.赵淑清,郭剑波.植物系统获得抗性及其信号转导途径[J].中国农业科学.2003,36(7):781-787.
    32. Allen D J. The Pathology of Tropical Food Legumes:Disease Resistance in Crop Improvement,1983,150-187.
    33. Arx J A. von. Die Arten de Gattung Colletotrichum Corda. Phytopathologische Zeitschrift,1957,29,413-468.
    34. Arx J A. von. A revision of the fungi classified as Gloeosporium. Bibliotheca Mycologica,1970,24,1.
    35. Bailey J A and Jeger M J. Colletotrichum:Biology, Pathology and Control. CAB International,Wallingford,1992.
    36. Bailey J A, O'Connell R J, Pring R J and Nash C. Infection strategies of Colletotrichum species. In Colletotrichum:Biology, Pathology and Control,1992, 88-120.
    37. Baitsev A V, Deakin W J, et al. An efiector Protein of Rhizobium sp. NGR23 thwarts activation of plant defense Reactions [J]. Plant Physiology,2004,134(2): 871-879.
    38. Beligni M V, Lamattina L. Nitric oxide in plants:the history is just beginning [J]. Plant Cell Environ,2001,24:267-278.
    39. Benito E P, Prins T, Vankan J. Application of DDRT-PCR to the analysis of gene expression in a plant-fungus interaction [J]. Plant Mol Biol,1996,32:947-957.
    40. Bergmann C W, Ito Y, Singer D, Albersheim P, Darvill A G, Benhamou N, Nuss L, Salvi G, Cervone F and De Lorenzo G. Polygalacturonase-inhibiting protein accumulates in Phaseolus vulgaris L. in response to wounding, elicitors and fungal infection. Plant J,1994,5:625-634.
    41. Berthke P C, Badger M R, Jones R L. Apoplastic synthesis of nitric oxide by plant tissue [J]. Plant Cell,2004, (16); 332-341.
    42. Boengler K, Pipp F, Schaper W et al. Rapid identification of differentially expressed genes by combination of SSH and MOS. Laboratory Investigation,2003,83:759-761
    43. Buhot N, Gomes E, Marie- Louise Milat, et al. Modulation of the Biological Activity of a Tobacco LTP1 by Lipid Complexation [J]. Molecular Biology of the Cell,2004, (15):5047-5052.
    44. Chee M, Yang R, Hubbell E et al. Accessing genetic information with high-density DNA arrays. Science,1996,274:610-614.
    45. Choe S, Schmitz R J, Fujioka S, Takatsuto S, Lee M O, Yoshida S, Felsmann K A, Tax F E. Arabidopsis brassinostemid-insensitive dwarfl mutants are semidominant and defective in a glycogen synthase kinase 3β-like kinase. Plant Physiol,2002,130: 1506-1515.
    46. Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction:twenty-something years on. Nat Protoc,2006,1:581-585
    47. Chu S, DeRisi J, Eisen M et al. The transcriptional program of sporulation in budding yeast. Science,1998,282:699-705
    48. Diatchenko L, Lau Y F, Campbell A P et al. Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA,1996,93:6025-6030.
    49. Carbone I and Kohn L M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia,1999 (91):553-556.
    50. Degenhardt J, Al-Masri AN, Kurkcuoglu S, Szankowski I, Gau A E. Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Mol Gen Genomics,2005,273:326-335.
    51. Diachenko L, Lau Y C, Campbell A P et al. Suppression subtractive hybridization:A method for generating differentially regulated or tissue-specific cDNA probes and libraries.Proc. Natl Acad Sci USA,1996,93:6025-6030.
    52. Ding L W, Sun Q Y, Wang Z Y, Sun Y B, Xu Z F. Using silica particles to isolate total RNA from plant tissues recalcitrant to extraction in guanidine thiocyanate. Ana Biochem,2008,374:426-428.
    53. Dixon R A, Bailey J A, Bell J N, Bolwell G P, Cramer C L, Edwards K, Hamdan M A M S, Lamb C J, Robbins M P, Ryder T B, and Schuch W. Rapid changes in gene expression in response to microbial elicitation. Philos. Trans. R. Soc. London,1986, B314:411-426.
    54. Dufresne M, Bailey J A, Dron M, and Langin T. Clkl, a serine/threonine protein kinase-encoding gene, is involved in pathogenicity of C. lindemuthianum on common bean. Mol. Plant Microbe Interact,1998,11:99-108.
    55. Duke M M. The genera Vermicularia Fr. and Colletotrichum Cda. Trana. Br My col soc,1928,13:147-167.
    56. Durner J, Klessig D F. Nitric oxide as a signal in plants. Current Opinion in Plant Biology,1999,2:369-374.
    57. Eastburn D M, Gubler W D. Strawberry anthracnose:Detection and survival of Colletetrichum acutatum in soil. Plant Dis,1990,74:161-163.
    58. Ecker J R, Davis R W. Plant defense genes are regulated by ethylene [J]. Proc Natl Acad Sci USA,1987,84:5202-5206.
    59. End C V D. Cutionlytic enzymes in relative to pathogenesis [J]. Ann Rev Phytopathol, 1992,30:369-389.
    60. Epstein L, Lusnak K, and Kaur S. Transformation-mediated developmental mutants of Glomerella graminicola(Colletotrichum graminicola). Fungal Genet. Biol,1998, 23:189-203.
    61. Erika H, Anita S, Ulla P, Erich K. Primary structure and tissue-specific expression of the pathogenesis-related protein PR-1b in potato. Mol Plant Pathol,2002,3:329-345.
    62. Fenillet C, Schachermayr G, Keller B. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat [J]. The Plant J, 1997,11:45-52.
    63. Foissner I, Wendehenne D, Langebartels C. In vivo imaging of an elicitor induced nitric oxide burst in tobacco [J]. Plant J,2000,23:817-824.
    64. Freeman S, Shabi E. Cross-infection of subtropical and temperate fruits by Colletotrichum species from various hosts. Physiol. Mol. Plant Pathol,1996,49: 395-404.
    65. Freeman S. Characterization of Colletotrichum gloeosporioides isolates from avocado and almond fruits with molecular and pathogenicity tests. Applied and Environmental Microbiol,1996,62 (3):1014-1020.
    66. Garcia-Mata C, Lamattina L. Nitri oxide and ahscisic acid cross talk in guard cells. Plant Physiology,2002,128:790-792.
    67. Glazebrook J. Genes controlling expression of defense responses in Arabidopsis, 2001 status. Curr. Opin [J]. Plant Biol,2001,4:301-308.
    68. Gonzalez-Guzman M, Apostolova N, Belles J M, Barrero J M, Piqueras P, Ponce M R, M icol J L, Serano R, Rodriguez P L. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell,2002, 14:1833-1846.
    69. Green J R, Pain N A, Cannell M E, Jones G L, Leckie C L, McCready S, Mendgen K, Mitchell A J, Callow J A, and O'Connell R J. Analysis of differentiation and development of the specialised infection structures formed by biotrophic fungal plant pathogens using monoclonal antibodies. Can. J. Bot,1995,73 (Suppl.):S408-S417.
    70. Guo H, Ecker J R. The ethylene signaling pathway:new insights [J]. Current Opinion in Plant Biology,2004, (7):40-49.
    71. Gurskaya N G, Diatchenko L, Chenchik A. Equalizing cDNA subtraction based on selective suppression of polymerase chain reaction:cloning of Jurkat cell transcripts induced by phytohemaglutinin and phorbol 12-myristate 13-acetate. Anal Biochem, 1996,240 (1):90-97.
    72. Guerber J C, Liu B, Johnston P and Correll J C. Characterization of diversity in Colletotrichum acutatum sensu lato by sequence analysis of two introns, mtDNA and intron RFLPs, and mating compatibility. Mycologia,2003,95:872-895.
    73. Glass N L and Donaldson G C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology,1995,61:1323-1330.
    74. Hermann H P and Peter R D. Host plant resistance:cultivar-or parasite-specific resistance.In Plant-fungal pathogen interaction:a classical and molecular view.Springer-Vferlag Berlin Hedelberg New York,2001,71-174.
    75. Huang Y, Li H, Hutchison C E, Laskey J, Kieber J J. Biochemical and functional analysis of CTRL, a protein kinase that negatively regulates ethylene signaling in Arabidopsis [J]. Plant,2003,33:221-233.
    76. Hubank M, Schatz D G. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res,1994,22(25): 5640-5648.
    77. Huckelhoven R, Fodor J, Preis C, Kogel K H. Hypersensitive cell death and papilla formation in barley attacked by the powdery funguns are associated with hudrogen peroxide but not with salicylic accumulation. Plant Physiol,1999,119:1251-1260.
    78. Hwang C-H, Flaishman M A, and Kolattukudy P E. Cloning of a gene expressed during appressorium formation by Colletotrichum gloeosporioides and a marked decrease in virulence by disruption of this gene. Plant Cell,1995,7:183-193.
    79. Johal G S, Briggs S P. Reductase activity encoded by the Hml disease resistance gene in maize [J]. Science,1992,258:985-987.
    80. Kanazin V, Marek L F, Shoemaker R. Resistance gene analogues are conserved and cluster -ed in soybean[J]. Proc Natl Acad Sci USA,1996,93:11746-11750.
    81. Kim E Hammond-Kosack and Jonathan D G Jones. Resistance Gene-Dependent Plant Defense Responses, Plant Cell,1996,8:1773-1791.
    82. Kim H S, Diers B W. Inheritance of partial resistance to Sclerotinia stem rot in soybean [J]. Crop Sci,2000,40:55-61.
    83. Kim S H, Hamada T. Rapid and reliable method of extracting DNA and RNA from sweetpotato, Ipomoea batatas (L.). Lam Biotechnol Lett,2005,27:1841-1845
    84. Klepper L. Evolution of nitrogen oxide gases from herbicide treated plant tissues [J]. WSSA Abstracts,1975,184:70.
    85. Klepper L. Nitric oxide (NO) and nitrogen dioxide (NO) emissions from herbicide treated soybean plants [J]. Atmos Environ,1979,13:537-542.
    86. Klessig D F, Malany J. The salicylic acid signal in plant. Plant Mol Biol,1994,26 1439-1458.
    87. Klessig D F, Durner J, Noad R, Navarre D A, Wendehenne D, Kumar D, Zhou J M, Shah J, Zhang S, Kachroo R, Trifa Y, and Pontier D. Nitric oxide and salicylic acid signaling in plant defense[J]. Proc. Natl. Acad. Sei. USA,2000,97:8849-8855.
    88. Kumar G, Klessig D F. Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene, and jasmonic acid [J]. Mol Plant Microbe Interact,2000,13:347-351.
    89. Kunkel B N, and Brooks D M. Cross talk between signaling pathways in pathogen defense. Curr. Opin [J]. Plant Biol,2002,5:325-331.
    90. Kunkel B N, Bent A F, Dahlbeck D, Innes R W, and Staskawicz B J. RPSP, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Plant Cell,1993,5,865-875.
    91. Lamb C J, Dixon R A. The oxidative burst in plant disease resistance [J]. A nnu Rev Plant Physiol Plant Mol Biol,1997,48:251-275.
    92. Lamb C J, Dixon R A. The oxidative burst in plant disease resistance [J]. Annu Rev Plant Physiol Plant Mol Biol,1997,76:419-422.
    93. Lamer E E, Palmer E. Y-encoded species-specific DNA in mice:evidence that the Y chromosome exists in two polymorphicforms in inbred strains. Cell,1984,37: 171-177.
    94. Lathia K B, Yan Z, Clapshaw P A. Role of Normalization in the Elimination of Abundant Myelin Sequences in Spinal Cord cDNA Libraries Produced by Suppression Subtractive Hybridization. Cell Mol Neurobiol,2009,29:1153-1159.
    95. Latunde-Dada A O, O'Connell R J, Nash C, Pring, R J, Lucas J A, Bailey J A. Infection process and identity of the hemibiotrophic anthracnose fungus (Colletotrichum destructivum O'Gara from cowpea [Vigna unguiculata (L.)Walp.] Mycol. Res,1996,100:1133-1141.
    96. Leister D, Ballvora A, Salamini F. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants [J]. Nature Genet,1996,13:421-429
    97. Leister D, Kurth J, Laurie D A. Rapid reorganization of resistance gene homologues in cereal genomes [J]. Proc Natl Acad Sci USA,1998,95:370-375.
    98. Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science,1999,2257:967-971.
    99. Lisitsyn N, Wigler M. Cloning the difference between two complex genomes. Science,1993,259:946-950.
    100.Lukowitz W, Gillmor C S, Scheible W R. Positional cloning in Arabidopsis:why it feels good to have agenome initiative working for you. Plant Physiol,2000,123: 795-805.
    101.Mahalingam R, Gomez-Buitrago A-M, Eckardt N, Shah N, Guevara-Garcia A,Day P, Raina R, Fedoroff N V. Characterizing the stress/defense transcriotome of Arabidopsis. Genome Biology,2003,4:R20.1-14
    102.Mahe A, Grisvard J, and Dron M. Two avirulent races of Colletotrichum lindemuthianum trigger different time courses of plant defense reactions in bean. Mol. Plant Microbe Interact.1993,6:423-428.
    103.Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton K A, Dangl J L, Dietrich R A. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature genet,2001,26:403-410.
    104.Martin G B, Frary A, Wu T, Brommonschenkel S H, Chunwongse J, Spivey R, Earle E D. A member of the tomato Pto gene family confers sensitivity to fenthion resulting rapid cell death [J]. Plant Cell,1994,6:1543-1552.
    105.Mathur R S, Barnett H L, Lilly V G Sporulation of Colletotrichum lindemuthianum in culture. Phytopathology,1950,40:104-114.
    106.Murgia I, Delledonne M, Soave C. Nitric oxide mediates iron-induced ferritin accμmol/lulation in Arabidopsis [J]. Plant J,2002,30:521-528.
    107.Nakashita H, Yasada M, NittaT. Brassinasteroil functions in abroad range of disease resistance in tomato and rice [J], Plant,2003,33(5):887-898.
    108.Navarre D A, Wendehenne D, Durner J, Noad R, Klessig D F. Nitric oxide modulates the activity of tobacco aconitase[J]. Plant Physiol,2000,122:573-582.
    109.Nikolai L, Natalya L, Wigler M. Cloning the differences between two complex genomes. Science,1993,259:946-951.
    110.Nuss L, Mahe'A, Clark A J, Grisvard J, Dron M, Cervone F, and De Lorenzo G. Differential accumulation of PGIP (polygalacturonase-inhibiting protein) mRNA in two near-isogenic lines of Phaseolus vulgaris L. upon infection with Colletotrichum lindemuthianum. Physiol. Mol. Plant Pathol,1996,48:83-89.
    111.O'Connell R J. Absence of a specialised interface between infection hyphae of Colletotrichum lindemuthianum and Phaseolus vulgaris. New Phytol,1987,107: 725-734.
    112.O'Connell R J and Bailey J A. Differences in the extent of fungal development, host cell necrosis and symptom expression during race-cultivar interactions between Phaseolus vulgaris and Colletotrichum lindemuthianum. Plant Pathol,1988,37: 351-362.
    113.0'Connell R J, Bailey J A, and Richmond D V. Cytology and physiology of infection of Phaseolus vulgaris by Colletotrichum lindemuthianum. Physiol. Plant Pathol,1985, 27:75-98.
    114.0'Connell R J, Uronu A B,Waksman G, Nash C, Keon J P R, and Bailey J A. Hemibiotrophic infection of Pisum sativum by Colletotrichum truncatum. Plant Pathol,1993,42:774-783.
    115.0'Donnell P J, Calvert C, Atzornm R. Ethylene as a signal mediating the wound response of tomato plants [J]. Science,1996,274:1914-1917.
    116.0'Donnell K and Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution,1997,7:103-116.
    117.Pieterse C, Van Wees S, Ton J, Van Pelt J A, Van Loon L C. Signaling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol,2002, 4:535-544.
    118.Pring R J, Nash C, Zakaria M, and Bailey J A. Infection processes and host-range of Colletotrichum capsici. Physiol. Mol. Plant Pathol,1995,46:137-152.
    119.Rafalski A. Applications of single nucleotide polymorphisms in crop genetics. Curr. Opin. PlantBiol,2002,5:94-100.
    120.Raskin L. Salicylate. A new hormone. Plant physiol,1992,99:799-803.
    121.Roberts R G and Snow J P. Histopathology of cotton boll rot caused by Colletotrichum capsici. Phytopathology,1984,74:390-397.
    122.Rodriguez R J and Redman R S. Molecular transformation and genome analysis of Colletotrichum species. In Colletotrichum:Biology, Pathology and Control (J. A. Bailey and M. J. Jeger, Eds),1992,47-76. CAB, Oxford.
    123.Ryals J, Uknes S, Ward E. Systemic acquired resistance [J]. Plant Physiol,1994,104: 1109-1112.
    124.Sawada K.1914. Colletotrichum Boehmeriae. In Taiwan Hakubutsu Gakkwai Kwaiho (Journ.Formosan Nat. Hist. Soc.) No.17:2. (In Japanese).
    125.Sawada K.1919. Taiwan Agricultural Research Special Report 19, (Taiwan fungi report 1)571.
    126.Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning. A Laboratory Manual Cold Spring Harbor Laboratory Press,1989.
    127.Scofield S R, Huang L, Brandt A S. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol,2005,138(4):2165-2173.
    128.Shimizu T, Endo T, Shimada T et al. Gene expression analysis of fertilized ovules in citrus 'Mukaku Kishu' by SSH/MOS methods. Plant Cell Physiol,2005,46:S28
    129.Simmond J H. A study of the species of Colletotrichum causing ripe fruit rots in Queensland. J Agr Animal Sci,1965,22:437-459.
    130.Smith H B. Signal transduction in systemic acquired resistance [J]. Plant Cell,2000, 12:179-181.
    131.Stephenson S-A, Green J R, Manners J M, and Maclean D J. Cloning and characterisation of glutamine synthetase from Colletotrichum gloeosporioides and demonstration of elevated expression during pathogenesis on Stylosanthes guianensis. Curr. Genet,1997,31:447-454.
    132.Sticher L, Mauch-Mani B, Metraux J P. Systemic acquired resistance [J]. Ann Rev Phytopathol,1997,35:235-270.
    133.Sutton B C. The Coelomycetes:fungi imperfecti with pycnidia, acervuli and stromata. Kew:CMI,1980,1-696.
    134.Sutton B C. The genus Glomerella and its anamorph Colletotrichum. In Colletotrichum- Biology, Pathology and Control, CAB International,1992,1-26.
    135.Takatsuji H. Zinc-finger transcription factors in plants. Cell Mol Life Sci,1998, 54:582-596.
    136.Talanova V V, Titov A F, Topchieva L V, Malysheva I E, Venzhik Y V, Frolova S A. Expression of genes encoding the WRKY transcription factor and heat shock proteins in wheat plants during cold hardening. Dokl Biol Sci,2008,423:440-442.
    137.Tamura K, Dudley J, Nei M, Kumar S. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0,2007, Molecular Biology and Evolution 24: 1596-1599.
    138.Tanksley S D, Gan al M W, M artin G B. Chromosome landing:a paradigm for map-based gene cloning in plants with large genomes, Trends Gene,1995,11(2): 63-68.
    139.Templeton M D, Rikkerink E H, Solon S L and Crowhurst R N. Cloning and molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase-encoding gene and cDNA from the plant pathogenic fungus Glomerella cingulata. Gene.1992,122:225-230.
    140.Thompson J D, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res.1997,25 (24):4876-4882.
    141.Thrower L B. Terminology for plant parasites. Phytopathol. Zeit,1966,56:258-259.
    142.Torres M A, Dang J L, Jones J D. Arabidopsis gp phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defences respongse. Proc Natl Acad Sci USA,2002,99,517-522.
    143.Uknes S. Winter A M, Delaney T et al. Biological induction systemic acquired resistance in Arabidopsis. MPMI,1993,6:692-698.
    144.Von Arx J A. Die arten der guttung Colletotrichum. Phytopathol Z,1957,29:413-468
    145.Walker J C. Onion smudge. J. Agric. Res,1921,20:685-721.
    146.Waller J M. Colletotrichum diseases of perennial and other cash crops. Colletotrichum:biology, pathology and control. CABI, Wallingford,1992,167-185.
    147.Wan J, Matthew B W, Li C et al. Efficacy of SSH PCR in isolating differentially expressed genes. BMC Genomics,2002,3:12-18
    148.Wang T, Lu Y L. The principle and application of suppression subtractive hybridization. Foreign Medical Science (Molecular Biology Section),1998,20(6): 271-275.
    149.Wendehenne D, Durner J, Klessig DF. Nitric oxide:a new player in plant signaling and defence response. Current Opinion in Plant Biology.2004,7:449-455.
    150.Wharton P S, and Julian A M. A cytological study of compatible and incompatible interactions between Sorgum bicolor and Colletotrichum sublineolum. New Phytol. 1996,14:25-34.
    151.Wijesundera R L C, Bailey J A, and Byrde R J W. Production of pectin lyase by Colletotrichum lindemuthianum in culture and infected bean (Phaseolus vulgaris) tissue. J. Gen. Microbiol,1984,130:285-290.
    152.Wijesundera R L C, Bailey J A, Byrde R J W, and Fielding A H. Cell wall degrading enzymes of Colletotrichum lindemuthianum:Their role in the development of bean anthracnose. Physiol. Mol. Plant Pathol,1989,34:403-413.
    153.Wojtaszek P, Trethowan J, and Bolwell G P. Specificity in the immobilisation of cell wall proteins in response to different elicitor molecules in suspension-cultured cells of French bean(Phaseolus vulgaris L.). Plant Mol. Biol,1995,28:1075-1087.
    154.Xu Q, Wen X P, Tao N G,HuZY, Yue H L, Deng X X. Extraction of high quality of RNA and construction of a suppression subtractive hybridization (SSH) library from chestnut rose (Rosa roxburghii Tratt). Biotechnol Lett,2006,28:587-591.
    155.Yang X B, Tebeest D O. Green treefrogs as vectors of Colletotrichum gloeosporioides. Plant disease,1992,72:1266-1269.
    156.Yang Y, Shah J, Klessig D F. Signal perception and transduction in plant defense responses [J]. Gene Develop,1997,11:1621-1639.
    157.Yang Y L, Liu Z Y, Cai L, Hyde K D, Yu Z N, and Mckenzie E H C. Colletotrichum anthracnose of Amaryllidaceae. Fungal Diversity,2009,39:123-146.
    158.Yu D, Liu Y, Fan B, Klessig D F, Chen Z. Is the high basal level of salicylic acid important for disease resistance in potato [J]. Plant Physiol,1997,115:343-349.
    159.Zeier J, Delledonne M, Mishina T, Severi E, Sonoda M, Lamb C. Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions. Plant Physiol, 2004,136:2875-2886.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700