用户名: 密码: 验证码:
苦瓜耐低温机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苦瓜(Momordica charantia L.),是葫芦科苦瓜属的一年生蔓生植物,果实具有食用和药用价值。目前研究主要集中在药用功能方面,对苦瓜的生理和育种研究报道较少。苦瓜主要分布亚热带、热带地区,喜高温,低温限制了苦瓜的种植范围和种植时节。植株在生长季节遇到低温会生长发育不良甚至死亡。本试验旨在开展苦瓜低温生理和耐低温机制研究,为苦瓜设施栽培和耐低温育种提供理论依据和指导,同时在耐低温育种方面也作了一些工作。
     本文模拟早春非加热大棚环境,研究了不同夜间低温对2个苦瓜自交系的生理生化特性的影响,以了解苦瓜对不同夜间低温的耐受程度和耐受机理;接着利用甲基化敏感多态性扩增(MSAP)技术研究了低温处理诱导的苦瓜基因组DNA的CCGG位点的甲基化模式的变化,以探讨苦瓜低温适应的分子机理。本文还调查了外源水杨酸(SA)预处理对苦瓜耐低温性的影响,以期进一步研究苦瓜的低温生理,同时也为遭遇低温时苦瓜的栽培管理措施进行有益的探讨。最后,利用7个多年多代自交纯和的优良自交系进行配组杂交,用加性-显性模型对苦瓜的耐低温性进行了遗传分析,同时对各组合的耐低温性进行鉴定,结合其它农艺性状,筛选出优良的杂交组合。实验主要结果如下:
     1.12℃夜间低温处理7d对苦瓜幼苗叶片的各项指标影响较小,几乎不引起伤害。8℃夜间低温处理7d降低了苦瓜幼苗膜稳定性、光系统Ⅱ的潜在活性(Fv/Fo)、光化学淬灭系数(qP)和PSⅡ量子产额(ΦPSⅡ),使剩余光能荧光耗散(E)比率上升,对苦瓜幼苗造成一定伤害,这种伤害在经过7d常温生长后可以得到部分或完全恢复。5℃夜间低温处理7d对苦瓜伤害最严重,不仅进一步降低了苦瓜幼苗膜稳定性、Fv/Fo、qP和ΦPSⅡ,还导致叶绿素含量、最小荧光(Fo)、最大荧光(Fm)和可变荧光(Fv)降低,叶绿素a/b比值升高,荧光耗散比率上升幅度增加,经过7d常温生长后的各指标的恢复程度在株系间有一定差别。Z-1-4的恢复程度比Y-106-5好,表现出较好的耐低温性。
     夜间低温处理下ΦPSⅡ主要受反应中心的组成而不是吸收的光能到达反应中心的效率的影响。夜间低温对光系统Ⅱ最大光化学效率(Fv/Fm)影响较小,相对来说,Fv/Fo受到夜间低温的影响较大。在研究夜间低温对植物的影响时,Fv/Fo是比Fv/Fm更敏感更适用的指标。
     2.苦瓜DNA的甲基化总体水平为22.92%-25.86%,内侧胞嘧啶的甲基化水平平均为19.63%,外侧胞嘧啶的半甲基化水平平均为4.66%。四个供试自交系的甲基化水平高低依次为:Y-106-5>Y-81.3>Z.1.4>Y-70-1。
     低温处理诱导了苦瓜基因组DNA的CCGG位点发生了甲基化模式的改变。实验成功克隆到9个至少在2个自交系中发生甲基化模式变异的片段,测序结果经过BLASTn比对,Y1、Y2、Y5三个片段在NCBI数据库中找到部分同源序列。Y1序列与长喙田菁(Sesbania rostrata)的β-1,3-葡聚糖酶mRNA序列有一定相似性。片段Y2与GCN5相关N乙酰转移酶(GNAT)有一定相似性。片段Y5与黄瓜中编码叶绿体光系统1 A亚基的psaA基因高度相似(98%)。
     3.经0.5mmol/L水杨酸处理的幼苗在低温处理后具有较高的过氧化物酶(POD)、过氧化氢酶(CAT)与超氧化物歧化酶(SOD)活性和(POD+CAT)/SOD比值,表现出较强的抗氧化活性,光合色素含量较高,Fv/Fm和ΦPSⅡ受到的影响小,膜脂过氧化程度低,受到低温的伤害较小。高浓度SA和低浓度SA预处理对苦瓜耐低温性有不同的效应。
     4.遗传分析表明:低温处理后MDA含量、叶片电导伤害率(Eb)及离体叶片低温电导伤害率(Ea)的遗传以基因显性效应为主,还受到部分加性效应的作用,环境条件对这些性状的表现也有很大影响。各性状的广义遗传力较高,狭义遗传力相对较低,宜在较高世代进行选择。部分F_1代植株具有较低的MDA含量和电导伤害率值,苦瓜耐低温性表现出较强的超中优势和超亲优势,通过杂交可以得到耐低温性比较好的材料。
     低温胁迫条件下,自交系P1、P2、P3、P6对MDA含量、Eb、Ea这三个指标或其中两个指标都具有反向加性效应,耐低温性较好,可以作为耐低温育种的良好亲本加以利用。杂交种P1×P5、P1×P6、P1×P7、P2×P3、P2×P5、P3×P5、P4×P6对三个指标都具有负向显性效应预测值,耐低温性相对较好,有一定利用价值。本课题组利用上述材料对苦瓜其它部分农艺性状进行了配合力分析,结合耐低温性和其它性状可以进行苦瓜温室品种选育。本实验所选4个组合已经过鉴定并开始进行扩大试种,其中2个组合可以作为温室栽培品种。
Bitter gourd (Momordica charantia L.) is a member of Cucurbit family. Its immature fruits are edible and have medicinal value. Present studies mainly focus on its medicinal functions, seldom on the aspects of physiology and breeding. Bitter gourd mainly distributes in tropic and subtropic areas. Low temperature limits the geographical locations and the planting season suitable for bitter gourd growth. Chilling temperature always accounts for significant losses in crop production. So this experiment aimed to study on low temperature physiology and low-temperature-resistance mechanism on this special vegetable crop. This work would help to shelter cultivation and low-temperature-resistancebreeding of bitter gourd.
     In this paper, in order to understand the low temperature tolerance and the mechanism of tolerance of bitter gourd, the effect of different low night temperature on the physiological and biochemical characteristics in two bitter gourd inbred lines was studied; then low-temperature-induced methylation pattern changes in CCGG sites of genomic DNA were analyzed by methylation-sensitive amplified polymorphism (MSAP) technique to explore the possible molecular mechanism in low temperature adaptation. The effects of exogenous salicylic acid (SA) application on the low-temperature tolerance of bitter gourd were investigated with a view to further study the physiological mechanism under low temperature and give some useful advice in cultivation and management when bitter gourd suffered hypothermia. Finally, based on half-diallel design, 21 F_1 hybrids were confected by 7 inbred lines of bitter gourd. Additive-dominant model was used to process genetic analysis of low-temperature tolerance. At the same time the character of low-temperature-tolerance of all F_1 materials was identified. In combination with other agronomic traits, excellent hybrid combinations were selected. The main research results were as follows:
     1. A 7-d 12℃low night temperature treatment had little impact on the physiological and biochemical indicators in bitter gourd leaves and caused little damage to bitter gourd seedlings. A 7-d 8℃low night temperature treatment reduced the stability of the membrane, PSⅡpotential activity (Fv/Fo) , the coefficient of photochemical quenching (qP) and PSⅡquantum yield (ΦPSⅡ) of the bitter gourd seedlings, and increased the part of light energy that dissipated as fluorescence (E) , resulting a certain injury. And the injury can be partially or fully restored after growing at room temperature for 7 days. A 7-d 5℃low night temperature treatment did the most serious harm to the bitter gourd seedlings. It further reduced the membrane stability, Fv/Fo, and qP andΦPSⅡ. It also led decreases in chlorophyll content, the minimal fluorescence (Fo), the maximal fluorescence (Fm) and the variable fluorescence (Fv). Increases in chlorophyll a/b ratio and E were observed. After being growed at room temperature for 7 days, all the indicators restored to a certain level. The extent of the restoration showed difference between lines. As for the two lines we tested there, Z-1-4 showed better low-temperature tolerance than Y-106-5.
     Under low night temperature,ΦPSⅡwas primarily droved by the composition state of the reaction center, rather than the efficiency of the absorbed light energy to reach the reaction center. The maximal photochemical efficiency of the PS II (Fv/Fm) was affected slightly and Fv/Fo was affected largely by the low night temperature. In the studies about effect of low night temperature on plants, Fv/Fo was a more sensitive and useful indicator than Fv/Fm.
     2. The total DNA methylation content in bitter gourd is about 22.92% -25.86%, the average internal cytosine methylation is 19.63 % and the average hemi-cytosine methylation is 4.66%. The order for the total methylation content in the four inbred lines is Y-106-5>Y-81-3>Z-1-4>Y-70-1.
     Low temperature induced methylation pattern changes at the CCGG sites in genomic DNA. Nine fragments which were observed variation in at least two inbred lines were cloned and sequenced successfully. BLASTn search revealed that fragments Y1, Y2 and Y5 showed homology to certain sequences in NCBI database. Y1 matched withβ-1, 3-glucanase mRNA in Sesbania rostrata to a certain extent. Fragment Y2 showed a certain similarity with the GCN5-related N-acetyltransferase (GNAT). Fragment Y5 exhibited high similarity (98%) with psaA which encoding chloroplast PS1A subunit in cucumber.
     3. 0.5mmol/L SA pretreated seedlings had high peroxidase (POD), catalase (CAT) and Superoxide dismutase (SOD) activity and (POD + CAT)/ SOD ratio, showed strong antioxidant activity, maintained relative higher levels of photosynthetic pigments. Fv/Fm andΦPSⅡwere impacted slightly, and lipid peroxidation degree was low, indicating 0.5mmol/L can reduce the injurys caused by low temperature. Higher concentration of SA (1.0 and 1.5 mmol/L) and lower concentration of SA (0.5 mmol/L) had different effect on bitter gourd seedlings under low temperature stress.
     4. Genetic parameters indicated that the MDA content, electrolytic leakage of intact leaves (Eb) and electrolytic leakage of detached leaves (Ea) after low temperature stress were mainly dominant effect. All the traits showed some additive effect. Environmental conditions also have a significant impact on them. These indicators showed high broad heritability (H_B~2) and relative low narrow heritability (H_N~2), so that the corresponding traits should be selected at a higher generation.
     Under low temperature stress, the inbred lines P1, P2, P3 and P6 showed negative additive effect for content of MDA, Ea and Eb. They displayed relative good low temperature tolerance and could be used as good breeding parents for low temperature tolerant breeding of bitter gourd. Hybrids P1×P5, P1×P6, P1×P7, P2×P3, P2×P5, P3×P5, P4×P6 showed negative dominant effect in all the three indicators. Combining low temperature tolerance and other agronomic traits, bitter gourd variety that suitable for greenhouse cultivation can be selected. The trial cultivation of 4 hybrids had already been started. Among them 2 hybrids could be used in greenhouse cultivation.
引文
1.Rov SKB,S.Biswas,鄒超亚.低温对水稻幼苗叶绿素含量的影响.耕作与栽培,1982,1:68-70
    2.曹聪.水稻早期盐胁迫生长调控中的DNA甲基化研究.[硕士学位论文].北京:首都师范大学图书馆,2007
    3.陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用.浙江农业学报,2006,18(1):51-55
    4.陈启林,山仑,程智慧,沈允钢.低温弱光对黄瓜类囊体膜耦联状态的影响.西北农业大学学报,2000,28(6):6-11
    5.刁现民,孙敬三.植物体细胞无性变异的细胞学和分子生物学研究进展.植物学通报,1999,16(4):372-377
    6.董玉柱,刘振兰,董英山,韩方普,何孟元,郝水,刘宝.异源DNA导入水稻诱发活跃反转子Tosl7发生可遗传DNA甲基化变异.植物学报:英文版,2004,46(1):100-109
    7.范云,刘兵.胡萝卜抗冻蛋白基因的克隆及其在E.coli中的表达.中山大学学报:自然科学版,2002,41(3):52-55
    8.付胜杰,王晖,冯丽娜,李星,王坤,杨文香,刘大群.小麦与叶锈菌互作前后基因组甲基化模式分析.华北农学报,2008,4:28-31
    9.高山,林碧英,施木田.苦瓜主要农艺性状的相关性和主成分分析.上海农业学报,2004,20(4):33-36
    10.高山,林碧英,许端祥,钟开勤.低温胁迫苦瓜细胞膜稳定性的配合力和遗传参数分析.福建农业科技,2006,4:27-29
    11.郭确,潘瑞炽.不同胁迫预处理对水稻幼苗抗冷性和抗旱性的影响.植物生理学报,1986,12(4):396-401
    12.韩龙植,高熙宗,朴钟泽.水稻耐冷性遗传及基因定位研究概况与展望.中国水稻科学,2002,16(2):193-198
    13.和红云,薛琳,田丽萍,陈远良.低温胁迫对甜瓜幼苗叶绿素含量及荧光参数的影响.北方园艺,2008,4:121-127
    14.胡文海,喻景权.低温弱光对番茄叶片光合作用和叶绿素荧光参数的影响.园艺学报,2001,28(1):41-46
    15.胡文海.低温弱光对番茄生理生化影响的研究.[硕士学位论文].杭州:浙江大学图书馆,2001
    16.华扬,陈学峰,熊建华,张义平,朱英国.水稻冷胁迫诱导的甲基化差异片段 CIDM7的分离和分析.遗传,2005,27(4):595-600
    17.简令成,吴素萱.植物抗寒性的细胞学研究——小麦越冬过程中细胞结构形态的变化.植物学报,1965,13(1):1-15
    18.简令成.低温对番茄幼苗叶绿体结构的影响.植物学通报,1983,1:17-23
    19.金润洲,王景余.粳稻离体细胞的耐冷性变异与遗传.吉林农业科学,1992,2:6-9
    20.康国章,孙谷畴,王正询.水杨酸在植物抗环境胁迫中的作用.广西植物,2004,24(2):178-183
    21.李国景,刘永华,吴晓花,汪宝根,鲁忠富.长豇豆品种耐低温弱光性和叶绿素荧光参数等的关系.浙江农业学报,2005, 6:359-362
    22.李梅兰,曾广文,等.春化对白菜DNA甲基化、GA含量及蛋白质的影响.园艺学报,2002,29(4):353-357
    23.李荣富,王丽雪.低温胁迫对葡萄叶片及根系细胞亚显微结构的影响.华北农学报,1996,11(4):109-113
    24.李淑艳.低温对黄瓜保护酶体系及相关生理指标的影响.[硕士学位论文].哈尔滨:东北农业大学图书馆,2002
    25.李太贵,Visperas RM,Vergara BS.水稻抗冷性与不同生长阶段的关系.植物学报,1981,23(3):203-207
    26.林新萍.镉对苦瓜生长发育及生理代谢影响的研究.[硕士学位论文].福州:福建农林大学图书馆,2007
    27.刘建辉,崔鸿文.低温对黄瓜幼苗乙烯释放量和电解质渗出率的影响.西北农业大学学报,1994,22(4):61-65
    28.刘炜.干旱胁迫诱导的水稻基因组胞嘧啶甲基化变化.[硕士学位论文].长春:东北师范大学图书馆,2006
    29.刘政国,肖喜祝,李加振,韦娇青.苦瓜数量性状遗传距离与杂种优势关系的研究.中国农学通报,2004,20(5):199-202
    30.刘政国.苦瓜产量杂种优势与配合力研究.广西农业生物科学,2002,21(4):238-241
    31.刘祖祺,张石城.植物抗性生理学.北京:中国农业出版社.1994:43-44,81-83
    32.陆光远,伍晓明,陈碧云,高桂珍,许鲲,李响枝.油菜种子萌发过程中DNA甲基化的Msap分析.科学通报,2005,50(24):2750-2756
    33.马德华,庞金安.黄瓜对不同温度逆境的抗性研究.中国农业科学,1999,32(5):28-35
    34.聂丽娟,王子成.DNA甲基化抑制剂作用机理及其在植物发育生物学研究中的应用.核农学报,2007,21(4):362-365,386
    35.齐文波,徐中平.苦瓜素的分离纯化与抗肿瘤活性的研究.离子交换与吸附,1999,15(1):59-63
    36.任志雨,王秀峰,魏珉.不同根区温度对黄瓜幼苗矿质元素含量及根系吸收功能的影响.山东农业大学学报:自然科学版,2003,34(3):351-355
    37.申斯乐,王振伟,单晓辉,王华,李玲,林秀云,龙丽坤,翁克难,刘宝,邹广田.高压导致水稻变异品系发生DNA甲基化模式及基因组结构的改变.中国科学:C辑,2005,35(6):490-496
    38.沈文云,侯锋,吕淑珍.低温对杂交一代黄瓜幼苗生理特性的影响.华北农学报,1995,10(1):56-59
    39.孙奉良.苦瓜耐低温性指标鉴定与筛选.[硕士学位论文].武汉:华中农业大学图书馆,2003
    40.汪炳良,李水凤,曾广文,邓俭英.5-azaC对萝b茎尖DNA甲基化和开花的影响.核农学报,2005,19(4):265-268
    41.王国莉,郭振飞.低温对水稻不同耐冷品种幼苗光合速率和叶绿素荧光参数的影响.中国水稻科学,2005,4:93-95
    42.王克安,王冰.低温对黄瓜生理生化,代谢功能及形态的影响.山东农业科学,1998,4:52-55
    43.王利军,战吉成,黄卫东.水杨酸与植物抗逆性.植物生理学通讯,2002,38(6):619-622
    44.王荣萍,李淑仪,廖新荣,蓝佩玲,徐胜光.镁硼钼营养对苦瓜品质及其产量影响的研究.土壤通报,2007,38(6):1243-1245
    45.王孝宣,李树德.番茄品种耐寒性与ABA和可溶性糖含量的关系.园艺学报,1998,25(1):56-60
    46.王新虎.低温对厚皮甜瓜幼苗生长及生理生化特性的影响.[硕士学位论文].兰州:甘肃农业大学图书馆,2005
    47.王以柔,曾韶西.冷锻炼对水稻和黄瓜幼苗SOD,GR活性及GSH,AsA含量的影响.植物学报:英文版,1995,37(10):776-780
    48.王勇庆.苦瓜降血糖作用研究.湖南中医杂志,1998,14(6):54-55
    49.韦善君,孙振元,巨关升,韩蕾,余龙江.冷诱导基因转录因子CBF1的组成型表达对植物的抗寒性及生长发育的影响.核农学报,2005,19(6):465-468.
    50.温国林,陈晓光.DNA甲基化及其抑制剂研究进展.国外医学:遗传学分册,2001,24(4):180-184
    51.吴能表,吴峻岩,朱利泉,王小佳.低温对甘蓝逆境生理指标和蛋白质磷酸化的影响.园艺学报,2003,30(5):530-534
    52.向长萍,吴昌银.苦瓜营养成分分析及利用评价.华中农业大学学报,2000,19(4):388-390
    53.许勇,张海英.西瓜野生种质幼苗耐冷性的生理生化特性与遗传研究.华北农学报,2000,15(2):67-71
    54.杨金兰(2007)萝卜镉累积的基因型差异、生理响应与甲基化变化研究.[硕士学位论文].南京:南京农业大学图书馆,2007
    55.杨金兰.萝卜镉累积的基因型差异、生理响应与甲基化变化研究.[硕士学位论文],南京农业大学图书馆,2007
    56.杨玲.不同低温处理对黄瓜子叶极性脂组成的影响.园艺学报,2001,28(1):36-40
    57.杨小春.低温弱光对西葫芦幼苗叶绿素荧光参数的影响.甘肃农业科技,2006,12:10-12
    58.叶立华.锌对苦瓜生长发育及生理代谢影响的研究.[硕士学位论文].福州:福建农林大学图书馆,2005
    59.仪治本,孙毅,牛天堂,梁小红,刘龙龙,赵威军,李炳林.高粱基因组DNA胞嘧啶甲基化在杂交种和亲本间差异研究.作物学报,2005,31(9):1138-1143
    60.余中伟.苦瓜7个自交系杂种优势及配合力研究.[硕士学位论文].武汉:华中农业大学图书馆,2008
    61.曾纪晴,刘鸿先.黄瓜幼苗子叶在低温下的光抑制及其恢复.植物生理学报,1997,23(1):15-20
    62.曾韶西,王以柔,刘鸿先.低温胁迫对水稻幼苗抗坏血酸含量的影响.植物生理学报,1987,13(4):365-370
    63.曾韶西,王以柔.冷锻炼和ABA诱导水稻幼苗提高抗冷性期间膜保护系统的变化.热带亚热带植物学报,1994,2(1):44-50
    64.张称心.瓠瓜杂种一代及其亲本DNA甲基化遗传和变异的研究.[硕士学位论文].武汉:华中农业大学图书馆,2008
    65.张国斌.低温弱光对辣椒幼苗生长与光合生理特性的影响.[硕士学位论文].兰州:甘肃农业大学图书馆,2005
    66.张红宇,彭海,李云,徐培洲,汪旭东,吴先军.水稻基因组DNA胞嘧啶甲基化在单倍体和对应二倍体间的差异.科学通报,2006,51(13):1529-1535
    67.张焕青.苦瓜棚(室)冬春茬栽培技术.河北农业,2002,9:13-14
    68.张木清,陈如凯,吕建林,罗俊,徐景升.甘蔗苗期低温胁迫对叶绿素a荧光诱导动力学的影响.福建农业大学学报,1999,1:1-7
    69.张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444-448
    70.钟兰,王建波.DNA超甲基化在小麦耐盐胁迫中的作用.武汉植物学研究,2007,1:102-104
    71.朱军,季道藩.作物品种间杂种优势遗传分析的新方法.遗传学报,1993,20(3):262-271
    72.朱军.数量性状遗传分析的新方法及其在育种中的应用.浙江大学学报,2000,26(1):1-6
    73.朱其杰,高守云,蔡洙湖,纪颖彪,李长缨.黄瓜耐冷性鉴定指标及遗传规律的研究.见:李树德.中国主要蔬菜抗病育种进展.北京:科学出版社,1995,457-462
    74.邹志荣,陆帼一.低温对辣椒幼苗膜脂过氧化和保护酶系统变化的影响.西北农业学报,1994,3(3):51-56
    75.Adams RL. Eukaryotic DNA methyltransferases-structure and function. Bioessays, 1995,17(2): 139-145
    76.Agarwal S, Sairam RK, Srivastava GC, Tyagi A, Meena RC. Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Sci, 2005, 169(3): 559-570
    77.Allen DJ, Ort DR. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci, 2001, 6(1): 36-42
    78.Amado L, Abranches R, Neves N, Viegas W. Development-dependent inheritance of 5-azacytidine-induced epimutations in triticale: analysis of rDNA expression patterns. Chromosome Res, 1997, 5(7): 445-450
    79.Angelopoulos K, Dichio B, Xiloyannis C. Inhibition of photosynthesis in olive trees (Olea europaea L.) during water stress and rewatering. J Exp Bot, 1996, 47(8): 1093-1100
    80.Arfan M, Athar HR, Ashraf M. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol, 2007, 164(6): 685-694
    81.Ariizumi T, Kishitani S, Inatsugi R, Nishida I, Murata N, Toriyama K. An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings. Plant Cell Physiol, 2002, 43(7): 751
    82.Babani F, Lichtenthaler HK. Light-induced and age-dependent development of chloroplasts in etiolated barley leaves as visualized by determination of photosynthetic pigments, CO_2 assimilation rates and different kinds of chlorophyll fluorescence ratios. J Plant Physiol, 1996,148 : 555-566
    83.Belkhodja R, Morales F, Abadia A, Gomez-Aparisi J, Abadia J. Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiol, 1994,104(2): 667-673
    84.Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol, 1980, 31(1): 491-543
    85.Bertamini M, Muthuchelian K, Rubinigg M, Zorer R, Nedunchezhian N. Low-night temperature (LNT) induced changes of photosynthesis in grapevine (Vitis vinifera L.) plants. Plant Physiol Biochem, 2005, 43(7): 693-699
    86.Bertamini M, Muthuchelian K, Rubinigg M, Zorer R, Velasco R, Nedunchezhian N. Low-night temperature increased the photoinhibition of photosynthesis in grapevine (Vitis vinifera L. cv. Riesling) leaves. Environ and Exp Bot, 2006,57(1-2): 25-31
    87.Bertamini M, Zulini L, Muthuchelian K, Nedunchezhian N. Low night temperature effects on photosynthetic performance on two grapevine genotypes. Biol Plantarum, 2007, 51(2): 381-385
    88.Bertin P, Bouharmont J, Kinet JM. Somaclonal variation and improvement of chilling tolerance in rice: Changes in chilling-induced chlorophyll fluorescence. Crop Sci, 1997, 37(6): 1727-1735
    89.Blasi MA, Maresca V, Roccella M, Roccella F, Sansolini T, Grammatico P, Balestrazzi E, Picardo M. Antioxidant pattern in uveal melanocytes and melanoma cell cultures. Invest Ophth Vis Sci, 1999,40(12): 3012-3016
    90.Burn JE, Bagnall DJ, Metzger JD, Dennis ES, Peacock WJ. DNA methylation, vernalization, and the initiation of flowering. Proc Natl Acad Sci, 1993, 90(1): 287-291
    91.Caramori LPC, Caramori PH, Manetti Filho J. Effect of leaf water potential on cold tolerance of Coffea arabica L. Braz Arch Biol Techn, 2002, 45: 439-443
    92.Curradi M, Izzo A, Badaracco G, Landsberger N. Molecular mechanisms of gene silencing mediated by DNA methylation. Mol Cell Biol, 2002,22(9): 3157-3173
    93.D'Ambrosio N, Arena C, De Santo AV. Temperature response of photosynthesis, excitation energy dissipation and alternative electron sinks to carbon assimilation in Beta vulgaris L. Environ Exp Bot, 2006, 55(3): 248-257
    94.Dat JF, Lopez-Delgado H, Foyer CH, Scott IM. Parallel changes in H_2O_2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol, 1998, 116(4): 1351-1357
    95. Demmig-Adams B, Adams Iii WW, Barker DH, Logan BA, Bowling DR,Verhoeven AS. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plantarum, 1996,98(2): 253-264
    
    96. Ding CK, Wang C, Gross KC, Smith DL. Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta, 2002, 214(6): 895-901
    
    97. Ding ZS, Tian SP, Zheng XL, Zhou ZW, Xu Y. Responses of reactive oxygen metabolism and quality in mango fruit to exogenous oxalic acid or salicylic acid under chilling temperature stress. Physiol Plantarum, 2007,130(1): 112-121
    
    98. Drazic G, Mihailovic N. Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci, 2005,168(2): 511-517
    
    99. Eamus D. The responses of leaf water potential and leaf diffusive resistance to abscisic acid, water stress and low temperature in hibiscus esculentus: the effect of water stress and ABA pre-treatments. J Exp Bot, 1986,37(12): 1854-1862
    
    100. Ebrahim MKH, Vogg G, Osman M, Komor E. Photosynthetic performance and adaptation of sugarcane at suboptimal temperatures. J plant physiol, 1998,153(5-6):587-592
    
    101. Feng YL, Cao KF. Photosynthesis and photoinhibition after night chilling in seedlings of two tropical tree species grown under three irradiances.Photosynthetica, 2005, 43(4): 567-574.
    
    102. Finnegan EJ, Genger RK, Kovac K, Peacock WJ, Dennis ES. DNA methylation and the promotion of flowering by vernalization. Proc Natl Acad Sci, 1998 ,95:5824-5829
    
    103. Follmann H, Balzer HJ, Schleicher R. Biosynthesis and distribution of methylcytosine in wheat DNA. How different are plant DNA methyltransferases.Nucleic acid methylation. New York: AR Liss Inc, 1990, 199-209
    
    104. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL,Paul CL. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci, 1992,89(5): 1827-1831
    
    105. Ganesan V, Thomas G. Salicylic acid response in rice: influence of salicylic acid on H_2O_2 accumulation and oxidative stress. Plant Sci, 2001, 160(6): 1095-1106
    
    106. Garstka M, Drozak A, Rosiak M, Venema JH, Kierdaszuk B, Simeonova E, van Hasselt PR, Dobrucki J, Mostowska A. Light-dependent reversal of dark-chilling induced changes in chloroplast structure and arrangement of chlorophyll-protein complexes in bean thylakoid membranes. Biochim Biophys Acta, 2005, 1710(1):13-23
    
    107. Garstka M, Venema JH, Rumak I, Gieczewska K, Rosiak M, Koziol-Lipinska J,Kierdaszuk B, Vredenberg WJ, Mostowska A. Contrasting effect of dark-chilling on chloroplast structure and arrangement of chlorophyll-protein complexes in pea and tomato: plants with a different susceptibility to non-freezing temperature. Plant a,2007,226(5): 1165-1181
    
    108. Gilmartin PM, Sarokin L, Memelink J, Chua NH. Molecular light switches for plant genes. Plant Cell, 1990,2(5): 369.
    
    109. Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF.Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000, 124(4):1854-1865
    
    110. Guo B, Liang YC, Li ZJ, Guo W. Role of salicylic acid in alleviating cadmium toxicity in rice roots. J Plant Nutr, 2007a, 30(3): 427-439
    
    111. Guo B, Liang YC, Zhu YG, Zhao FJ. Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environ Pollut,2007b, 147(3): 743-749
    
    112. Gupta AS, Webb RP, Holaday AS, Allen RD. Overexpression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants). Plant Biol, 1993,103(4):1067-1073
    
    113. Havaux M, Tardy F, Lemoine Y. Photosynthetic light-harvesting function of carotenoids in higher-plant leaves exposed to high light irradiances. Planta, 1998,205(2): 242-250
    
    114. Hincha DK, Meins Jr F, Schmitt JM. [beta]-1, 3-glucanase is cryoprotective in vitro and is accumulated in leaves during cold acclimation. Plant Biol, 1997, 114(3):1077-1083
    
    115. Hola D, Kocova M, Rothova O, Wilhelmova N, Benesova M. Recovery of maize (Zea mays L.) inbreds and hybrids from chilling stress of various duration: Photosynthesis and antioxidant enzymes. J Plant Physiol, 2007, 164(7): 868-877
    
    116. Horvath E, Szalai G, Janda T. Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul, 2007, 26(3): 290-300
    117. Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng Y, Wang YC, Chan MT.Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol, 2002, 129(3): 1086-1094
    
    118. Huang RH, Liu JH, Lu YM, Xia RX. Effect of salicylic acid on the antioxidant system in the pulp of "Cara cara' navel orange (Citrus sinensis L. Osbeck) at different storage temperatures. Postharvest Biol Tec, 2008,47(2): 168-175
    
    119. Huner NPA, quist G, Sarhan F. Energy balance and acclimation to light and cold. Trends Plant Sci. 1998, 3(6): 224-230
    
    120. Janda T, Horvath E, Szalai G, Paldi E. Chapter 5 Role of salicylic acid in the induction of abiotic stress tolerance. Salicylic Acid: A Plant Hormone, 2006.
    
    121. Janda T, Szalai G, Antunovics Z, Horvath E, Paldi E. Effect of benzoic acid and aspirin on chilling tolerance and photosynthesis in young maize plants. Maydica,2000,45(1): 29-33
    
    122. Janda T, Szalai G, Tari I, Paldi E. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta, 1999,208(2): 175-180
    
    123. Jatimliansky JR, Garcia MD, Molina MC. Response to chilling of Zea mays,tripsacum dactyloides and their hybrid. Biol Plantarum, 2004,48(4): 561-567
    
    124. Kanervo E, Tasaka Y, Murata N, Aro EM. Membrane lipid unsaturation modulates processing of the photosystem II reaction-center protein Dl at low temperatures.Plant Biol, 1997,114(3): 841-849
    
    125. Kang GZ, Wang CH, Sun GC, Wang ZX. Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environ Exp Bot, 2003, 50(1): 9-15
    
    126. Kang GZ, Wang ZX, Sun GC. Participation of H_2O_2 in enhancement of cold chilling by salicylic acid in banana seedlings. Acta Bot Sin, 2003b, 45(5): 567-573
    
    127. Kang GZ, Wang ZX, Xia KF, Sun GC. Protection of ultrastructure in chilling-stressed banana leaves by salicylic acid. J Zhejiang Univ Sci B, 2007, 8(4):277-282
    
    128. Kang HM, Saltveit ME. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol Plantarum,2002, 115(4): 571-576
    
    129. King GJ. Morphological development in Brassica oleracea is modulated by in vivo treatment with 5-azacytidine. J Horti Sci, 1995, 70: 333-342
    130. Klimov W, Klevanik AV, Shuvalov VA, Kransnovsky AA. Reduction of pheophytin in the primary light reaction of photosystem II. FEBS Lett, 1977, 82(2):183-186
    
    131. Koch JR, Creelman RA, Eshita SM, Seskar M, Mullet JE, Davis KR. Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation. Plant Physiol,2000,123(2): 487-496
    
    132. Korkmaz A, Uzunlu M, Demirkiran AR. Acetyl salicylic acid alleviates chilling-induced damage in muskmelon seedlings. Can J Plant Sci, 2007, 87(3):581-585
    
    133. Kornyeyev D, Logan BA, Holaday AS. A chlorophyll fluorescence analysis of the allocation of radiant energy absorbed in photosystem 2 antennae of cotton leaves during exposure to chilling. Photosynthetica, 2002,40(1): 77-84
    
    134. Krause GH, Weis E. Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Bio, 1991,42(1): 313-349
    
    135. Krause GH. Effects of temperature on energy-dependent fluorescence quenching in chloroplasts. Photosynthetica, 1994, 27(1-2): 249-252
    
    136. Kudoh H, Sonoike K. Irreversible damage to photosystem I by chilling in the light:cause of the degradation of chlorophyll after returning to normal growth temperature. Planta, 2002,215(4): 541-548
    
    137. Lee A, Cho K, Jang S, Rakwal R, Iwahashi H, Agrawal GK, Shim J, Han O.Inverse correlation between jasmonic acid and salicylic acid during early wound response in rice. Biochem Bioph Res Co, 2004,318(3): 734-738.
    
    138. Lee HS, Huang PL, Huang PL, Bourinbaiar AS, Chen HC, Kung HF. Inhibition of the integrase of human immunodeficiency virus (HIV) type 1 by anti-HIV plant proteins MAP30 and GAP31. Proc Natl Acad Sci USA, 1995, 92(19): 8818-8822.
    
    139. Li DP, Xu YF, Sun LP, Liu LX, Hu XL, Li DQ, Shu HR. Salicylic acid, ethephon,and methyl jasmonate enhance ester regeneration in 1-MCP-treated apple fruit after long-term cold storage. JAgr Food Chem, 2006, 54(11): 3887-3895
    
    140. Liao CT, Lin CH. Effect of flood stress on morphology and anaerobic metabolism of Momordica charantia. Environ Exp Bot, 1995, 35(1): 105-113
    
    141. Liao CT, Lin CH. Photosynthetic responses of grafted bitter melon seedlings to flood stress. Environ Exp Bot, 1996, 36(2): 167-172.
    
    142. Liao CTA, Lin CHO. Effect of flooding stress on photosynthetic activities of Momordica charantia. Plant physiol bioch, 1994, 32(4): 479-485.
    143. Lichtenthaler HK. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol, 1987,148(2): 350-382
    
    144. Link G. Photocontrol of plastid gene expression. Plant Cell Environ, 1988, 11(5):329-338
    
    145. Liu B, Piao H, Zhao F, Zhao J, Liu Z, Huang B. DNA methylation changes in rice induced by Zizania Latifolia (Griseb.) DNA introgression. Hereditas, 1999, 131(1):75-78
    
    146. Llorente F, Lopez-Cobollo RM, Catala R, Martinez-Zapater JM, Salinas J. A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J, 2002, 32(1): 13-24
    
    147. Loake G, Grant M. Salicylic acid in plant defence—the players and protagonists.Curr Opin Plant Biol, 2007, 10(5): 466-472
    
    148. Lyons JM, Graham D, Raison JK. Low temperature stress in crop plants: the role of the membrane. New York: Academic Press, 1979, 231-253
    
    149. Martienssen RA, Colot V. DNA Methylation and epigenetic inheritance in plants and filamentous fungi. Science, 2001, 293(5532): 1070-1074
    
    150. Matzke MA, Mette MF, Aufsatz W, Jakowitsch J, Matzke AJM. Host defenses to parasitic sequences and the evolution of epigenetic control mechanisms. Genetica,1999,107(1): 271-287
    
    151. Maxwell K, Johnson GN. Chlorophyll fluorescence-a practical guide. J Exp Bot.2000, 51(345): 659-668
    
    152. Melis A. Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci, 1999, 4(4): 130-135
    
    153. Mora-Herrera ME, Lopez-Delgado H, Castillo-Morales A, Foyer CH. Salicylic acid and H_2O_2 function by independent pathways in the induction of freezing tolerance in potato. Physiol Plantarum, 2005, 125(4): 430-440
    
    154. Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K,Shinozaki K. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Letters, 1999, 461(3): 205-210
    
    155. Nemeth M, Janda T, Horvath E, Paldi E, Szalai G Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci,2002, 162(4): 569-574
    
    156. O'Neill GA, Aitken SN, Adams WT. Genetic selection for cold hardiness in coastal Douglas-fir seedlings and saplings. Can J For Res, 2000, 30(11): 1799-1807
    157. Oakeley EJ, Podesta A, Jost JP. Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation. Proc Natl Acad Sci, 1997, 94(21):11721-11725
    
    158. Oberhuber W, Edwards GE. Temperature dependence of the linkage of quantum yield of photosystem II to CO_2 fixation in C4 and C3 plants. Plant Physiol, 1993,101(2): 507-512
    
    159. Orlova IV, Serebriiskaya TS, Popov V, Merkulova N, Nosov AM, Trunova TI,Tsydendambaev VD, Los DA. Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants. Plant Cell Physiol, 2003,44(4): 447-450
    
    160. Oxborough K, Baker NR. An evaluation of the potential triggers of photoinactivation of photosystem II in the context of a Stern-Volmer model for downregulation and the reversible radical pair equilibrium model. Philos Trans R Soc Lond B Biol Sci. 2000, 355(1402): 1489-1498
    
    161. Lootens P, Van Waes J, Carlier L. Effect of a short photoinhibition stress on photosynthesis, chlorophyll a fluorescence, and pigment contents of different maize cultivars. Can a rapid and objective stress indicator be found? Photosynthetica.2004,42(2): 187-192
    
    162. Pastenes C, Horton P. Effect of high temperature on photosynthesis in beans (I.oxygen evolution and chlorophyll fluorescence). Plant Physiol, 1996, 112(3):1245-1251
    
    163. Pennycooke JC, Jones ML, Stushnoff C. Down-regulating α-galactosidase enhances freezing tolerance in transgenic petunia. Plant Physiol, 2003,133(2): 901-909
    
    164. Phillips RL, Kaeppler SM, Olhoft P. Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Natl Acad Sci, 1994, 91(12): 5222-5226
    
    165. Plazek A RM, Hura K. Relationship between quantum efficiency of PSII and cold-induced plant resistance to fungal pathogens. Acta Physiol Plantarum, 2004,26(2): 141-148
    
    166. Popova L, Pancheva T, Uzunova A. Salicylic acid: Properties, biosynthesis and physiological role. Bulg J Plant Physiol, 1997, 23: 85-93
    
    167. Radwan DEM, Lu G, Fayez KA, Mahmoud SY. Protective action of salicylic acid against bean yellow mosaic virus infection in Vicia faba leaves. J Plant Physiol,2008, 165(8): 845-857
    
    168. Raskin I. Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Bio,1992,43(1): 439-463
    169. Richards EJ, Elgin SCR. Epigenetic Codes for heterochromatin formation and silencing rounding up the usual suspects. Cell, 2002, 108(4): 489-500
    
    170. Rohacek K BM. Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica, 1999, 37(3):339-363
    
    171. Romero I, Fernandez-Caballero C, Goni O, Escribano MI, Merodio C,Sanchez-Ballesta MT. Functionality of a class I beta-1, 3-glucanase from skin of table grapes berries. Plant Sci, 2008, 174(6): 641-648
    
    172. Ronemus MJ, Galbiati M, Ticknor C, Chen J, Dellaporta SL.Demethylation-induced developmental pleiotropy in Arabidopsis. Science, 1996,273(5275): 654-657
    
    173. Saikia R, Singh T, Kumar R, Srivastava J, Srivastava AK, Singh K, Arora DK.Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea. Microbiol Res, 2003, 158(3):203-213
    
    174. Samis K, Bowley S, McKersie B. Pyramiding Mn-superoxide dismutase transgenes to improve persistence and biomass production in alfalfa. J Exp Bot, 2002, 53(372):1343-1350
    
    175. Sato Y, Murakami T, Funatsuki H, Matsuba S, Saruyama H, Tanida M. Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings. J Exp Bot, 2001, 52(354): 145-151
    
    176. Scheid OM, Jakovleva L, Afsar K, Maluszynska J, Paszkowski J. A change of ploidy can modify epigenetic silencing. Proc Natl Acad Sci, 1996, 93(14):7114-7119
    
    177. Scott IM, Clarke SM, Wood JE, Mur LAJ. Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiol, 2004,135(2): 1040-1049
    
    178. Sowinski P, Rudzinska-Langwald A, Adamczyk J, Kubica I, Fronk J. Recovery of maize seedling growth, development and photosynthetic efficiency after initial growth at low temperature. J Plant Physiol, 2005, 162(1): 67-80
    
    179. Steimer A, Amedeo P, Afsar K, Fransz P, Scheid OM, Paszkowski J. Endogenous targets of transcriptional gene silencing in Arabidopsis. Plant Cell, 2000, 12(7):1165-1178
    
    180. Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem,2002, 277(40): 37741-37746
    181. Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an -AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE,a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci, 1997,94(3): 1035-1039
    
    182. Strauss AJ, Kruger GHJ, Strasser RJ, van Heerden PDR. The role of low soil temperature in the inhibition of growth and PSII function during dark chilling in soybean genotypes of contrasting tolerance. Physiol Plantarum, 2007, 131(1):89-105
    
    183. Sundbom E, Strand M, Hallgren JE. Temperature-induced fluorescence changes: a screening method for frost tolerance of potato {Solarium Sp.). Plant Physiol, 1982,70(5): 1299-1302
    
    184. Tasgin E, Atici O, Nalbantoglu B, Popova LP. Effects of salicylic acid and cold treatments on protein levels and on the activities of antioxidant enzymes in the apoplast of winter wheat leaves. Phytochemistry, 2006, 67(7): 710-715
    
    185. Thalmair M, Bauw G, Thiel S, Doehring T, Langebartels C, Sandermann Jr H.Ozone and ultraviolet B effects on the defense-related proteins beta-1, 3-glucanase and chitinase in tobacco. Plant Physiol, 1996,148(1): 222-228
    
    186. Van Heerden PDR, Tsimilli-Michael M, Kruger GHJ, Strasser RJ. Dark chilling effects on soybean genotypes during vegetative development: parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation.Physiol Plantarum, 2003,117(4): 476-491.
    
    187. Van Leeuwen F, van Steensel B. Histone modifications: from genome-wide maps to functional insights. Genome Biol, 2005, 6(6): 113
    
    188. Wassenegger M, Pelissier T. A model for RNA-mediated gene silencing in higher plants. Plant Mol Biol, 1998, 37(2): 349-362
    
    189. Wassenegger M. RNA-directed DNA methylation. Plant Mol Biol, 2000, 43(2):203-220
    
    190. Worrall D, Elias L, Ashford D, Smallwood M, Sidebottom C, Lillford P, Telford J,Holt C, Bowles D. A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science, 1998, 282(5386): 115-117
    
    191. Adams Ww Iii, Demmig-Adams B, Verhoeven AS, Barker DH.Photoinhibition'during winter stress: involvement of sustained xanthophyll cycle-dependent energy dissipation. Aust J Plant Physiol, 1994, 22: 261-276
    192. Li XG, Meng QW, Jiang GQ, Zou Q. The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle. Photosynthetica, 2003,41(2): 259-265
    
    193. Xiong LZ, Xu CG, Saghai Maroof MA, Zhang Q. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet, 1999,261(3): 439-446
    
    194. Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice.Plant Biol, 1996,110(1): 249-257
    
    195. Yamaguchi T, Nakayama K, Hayashi T, Yazaki J, Kishimoto N, Kikuchi S, Koike S. cDNA microarray analysis of rice anther genes under chilling stress at the microsporogenesis stage revealed two genes with DNA transposon Castaway in the 5'-flanking region. Biosci Biotechnol Biochem, 2004, 68(6): 1315-1323
    
    196. Yu CW, Murphy TM, Sung WW, Lin CH. H_2O_2 treatment induces glutathione accumulation and chilling tolerance in mung bean. Funct Plant Biol, 2002, 29(9):1081-1087
    
    197. Zlatev ZS, Yordanov IT. Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulg J Plant Physiol, 2004, 30(3-4): 3-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700