用户名: 密码: 验证码:
耐盐砧木嫁接调控H_2O_2清除系统提高黄瓜幼苗耐盐性的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国设施园艺的迅速发展,土壤次生盐渍化问题日趋加剧,已成为限制我国设施蔬菜产业发展的主要障碍。黄瓜(Cucumis sativus L.)是设施栽培中的主要蔬菜作物,对盐胁迫非常敏感。前人研究表明耐盐砧木嫁接能够提高黄瓜耐盐性,但其研究主要围绕嫁接对Na+和C1-吸收运转的调控机理,而关于嫁接对盐胁迫诱导的氧化伤害调控研究相对较少。本研究从组织水平、叶绿体水平及转录水平上研究嫁接黄瓜H202清除系统对盐胁迫的响应,阐明了盐胁迫下耐盐砧木嫁接对H202清除系统的调控机制。利用基因型不同的黄瓜接穗与南瓜砧木嫁接,以及将黄瓜与南瓜进行正反嫁接试验,揭示盐胁迫下耐盐砧木对提高黄瓜耐盐性起决定作用。通过研究嫁接植株根系中ABA含量及其信号途径中相关分子(H2O2、NO和MAPK级联)的变化,探索了耐盐砧木根系中ABA在调控黄瓜耐盐性中可能的信号途径。所取得主要结果如下:
     1.以盐敏感型黄瓜品种津春2号为材料,将预喷施H202抑制剂(DPI,15μ.M)和清除剂(DMTU,5mM)的植株进行0和75 mM NaCl胁迫。研究了下黄瓜幼苗中H202含量变化及其与盐抑制黄瓜生长的关系。结果显示,预喷施H202抑制剂和清除剂降低了NaCl胁迫下黄瓜幼苗中H202和MDA含量,增加了其根系和地上部干重。相关性分析表明H202含量与根系和地上部干重呈显著负相关。此结果表明,盐胁迫诱导H202积累是盐胁迫抑制黄瓜生长的重要原因。
     2.以津春2号黄瓜和耐盐砧木超级拳王(Cucurbita moschata Duch.)分别作砧木,以津春2号黄瓜作接穗进行嫁接。研究了黄瓜自根苗、黄瓜自嫁苗和耐盐砧木嫁接苗在0和75 mM NaCl胁迫下的生长与抗氧化系统的变化。结果表明,NaCl胁迫下耐盐砧木嫁接黄瓜植株具有较高的CAT、APX、GR和MDAR酶活性、GSH/GSSG比值和铁还原/总抗氧化能力,以此减少了黄瓜组织中H202和MDA的积累,缓解了盐胁迫对黄瓜幼苗生长的抑制。
     3.研究了0、50、100 mM NaCl胁迫下黄瓜自嫁苗和耐盐砧木嫁接苗叶绿体中AsA-GSH循环及其超微结构的变化。结果显示,50、100 mM NaCl胁迫下砧木嫁接苗叶绿体中AsA-GSH循环相关酶APX、GR和DHAR活性与AsA/DHA比值,以及100 mM NaCl胁迫下MDAR活性、GSH含量及GSH/GSSG比值均显著高于自嫁苗,导致砧木嫁接苗叶绿体中H202含量较低。随盐胁迫浓度增加,自嫁苗叶绿体结构遭受破坏,尤其是在100 mM NaCl处理下,其叶绿体基粒与基质片层叠垛变薄、变模糊甚至片层断裂,而砧木嫁接苗叶绿体结构受NaCl伤害较轻。砧木嫁接使盐胁迫黄瓜叶绿体中具有较强的H202清除能力,以此保护了叶绿体超微结构和改善了黄瓜幼苗的生长与光合特性。
     4.研究了0和75mM NaCl胁迫下黄瓜自嫁苗和耐盐砧木嫁接苗叶片中H2O2含量与重要抗氧化酶(CAT.APX.GR和MDAR)活性的动态变化,以及NaCl处理120 h时嫁接黄瓜中抗氧化基因mRNA的表达。结果显示,NaCl胁迫24 h至120h,自嫁苗叶片中H2O2含量逐渐增加,72 h时达到峰值,而砧木嫁接苗中H2O2含量增加较缓慢,且始终低于自嫁苗,这与其在NaCl处理48 h至120 h始终具有较高的保护酶(CAT.APX.GR和MDAR)活性有关。NaCl胁迫下自嫁苗叶片中CAT基因和根系中cAPX基因,以及嫁接苗叶片中cAPX基因mRNA表达量的变化均与其相应酶活性的变化趋势相一致,说明这些酶的活性受到了其转录水平上的调控。
     5.分别以盐敏感型和耐盐型黄瓜品种津春2号与津育1号为接穗,以盐敏感型和耐盐型南瓜品种黑籽南瓜(Cucurbita ficifolia B.)和超级拳王为砧木。研究了不同接穗和砧木基因型对嫁接黄瓜生长和耐盐性的影响。结果表明:100 mM NaCl胁迫下,以超级拳王为砧木的嫁接苗盐害指数较低,植株生长受抑制较轻。相关性分析表明这与其较低的叶片Na+含量和根系H2O2含量,及较高的根系SOD.POD和CAT活性有关。此结果表明,与接穗相比,耐盐砧木对嫁接黄瓜的耐盐性起决定作用。
     6.将盐敏感型黄瓜津春2号和耐盐型南瓜超级拳王进行正反嫁接获得4种嫁接组合(接穗/砧木),包括黄瓜/黄瓜、南瓜/南瓜、黄瓜/南瓜、南瓜/黄瓜。研究了0和75 mM NaCl胁迫对嫁接植株根系中H2O2和MDA含量、重要抗氧化酶活性、ABA含量及其信号途径中相关分子(H202.NO和MAPK级联)的影响。结果显示,NaCl胁迫下以南瓜为砧木嫁接植株根系中ABA含量增加幅度较大,信号调节基因MAPK1和MAPK6表达显著上调。此结果表明NaCl胁迫诱导了耐盐砧木根系中ABA积累及其介导的MAPK级联信号反应。这使得耐盐砧木嫁接黄瓜根系中具有较高的H202清除酶(CAT.APX.GR和MDAR)活性用以控制根系中H2O2与MDA含量在较低水平。
     总之,本研究结果表明,盐胁迫诱导H2O2产生是盐胁迫抑制黄瓜幼苗生长的重要原因。耐盐砧木嫁接能够调控黄瓜幼苗组织和叶绿体中H2O2清除能力,从而提高其耐盐性。与接穗相比,盐胁迫下耐盐砧木对提高黄瓜耐盐性起决定作用。这可能是盐胁迫下耐盐砧木根系中ABA积累及其介导的MAPK级联信号调控的结果。
In recent years, with the rapid development of protected horticulture in China, soil secondary salinization has been more and more severe. It has become the main obstacle of limiting the development of vegetable production under protected horticulture. Cucumber (Cucumis sativus L.) is the main vegetables under the protected cultivation conditions, and is sensitive to salt stress. It has been reported that grafting with salt-tolerant rootstock can improve cucumber tolerance to salt stress, but these researches are mainly about the mechanism of grafting on regulating the Na+and Cl- uptake and transport, little study has been down on the research of grafting on regulating the salt-induced oxidative stress. In our present study, the mechanism of grafting with salt-tolerant rootstock on regulating the H2O2-scavenging system under salt stress were evaluated, by investigating the response of H2O2-scavenging system to salt stress at grafted cucumber organic, chloroplast, and transcript levels. The salt-tolerant rootstock was clarified to play a primary important effect in determining the salt tolerance of cucumber seedlings under salt stress, according to the experiments of grafting with different genotype cultivars of cucumber scions and pumpkin rootstocks, and reciprocal grafting between cucumber and pumpkin. We explored the possible signal pathway of ABA in salt-tolerant rootstock roots on regulating the salt tolerance of cucumber, by investigating the ABA content and some signal molecules involved in ABA signal pathway (H2O2, NO and MAPK cascades) in grafted plant roots. The main contents and results in the present study are as follows:
     1. A salt-sensitive cultivar of cucumber (cv.'Jinchun No.2') was used. Plants pre-sprayed with H2O2 inhibitor (DPI,15μM) and scavenger (DMTU.5 mM) were exposed to 0 and 75 mM NaC1 stress. The changes in H2O2 content in cucumber seedlings and what this has to do with the salt-induced growth inhibition were investigated. The results showed that pre-spraying H2O2 inhibitor and scavenger decreased the H2O2 and MDA contents, while increased the root and shoot dry weights of cucumber seedling under NaCl stress. Correlation analysis showed that H2O2 content was negatively correlated with root and shoot dry weights. This result implied that the salt-induced H2O2 accumulation was an important reason for plant growth inhibition caused by salt stress.
     2. Cucumber plants (cv.'Jinchun No.2') were self-grafted or grafted onto salt-tolerant rootstock'Chaojiquanwang'(Cucurbita moschata Duch). The changes in plant growth and antioxidant defense system of non-grafted, self-grafted, and rootstock-grafted cucumber seedlings under 0 and 75 mM NaCl stress were investigated. The results showed that cucumber plants grafted onto salt-tolerant rootstock had higher activities of CAT, APX, GR, and MDAR, GSH/GSSG ratio, and the ferric reducing ability/antioxidant power, thereby decreasing the H2O2 and MDA contents in cucumber tissue. As a result, the salt-induced growth inhibition was alleviated.
     3. Chloroplast ultrastructure and the AsA-GSH cycle system in chloroplasts of self-grafted and rootstock-grafted cucumber leaves under 0,50, and 100 mM NaC1 stress were investigated. The results showed that the activities of APX, GR, and DHAR involved in AsA-GSH cycle and AsA/DHA ratio in the chloroplasts of rootstock-grafted plants under 50 and 100 mM NaCl, as well as the MDAR activity, GSH content, and GSH/GSSG ratio under 100 mM NaCl were all significant higher than those in self-grafted plants. This resulted in the lower H2O2 content in the chloroplast of rootstock-grafted plants. With increasing levels of NaC1 concentration, the chloroplast structure of self-grafted plants was visibly damaged. Particularly under 100 mM NaCl, the stacks of grana and intergranal lamellae were thin and obscure, even fractured, whereas the damage in the chloroplast of rootstock-grafted plants were less severe. The results suggest that rootstock grafting enhances the H2O2-scavenging capacity of the AsA-GSH cycle in the chloroplasts under salt stress, thereby protecting the chloroplast structure and improving the photosynthetic performance and growth of cucumber seedlings.
     4. Changes in the time course of H2O2 content and main antioxidant enzyme (CAT, APX, GR and MDAR) activities in the leaves of self-grafted and rootstock-grafted cucumber plants under 0 and 75 mM NaCl stress, as well as the mRNA levels of antioxidant enzyme genes in grafted cucumber plants under NaCl stress for 120 h were studied. The results showed that the H2O2 content in self-grafted leaves increased gradually during NaC1 stress from 24 h to 120 h, and showing a peak at 72 h, whereas the H2O2 content in rootstock-grafted increased more slowly and kept lower all the time. This could be associated with its higher antioxidant enzyme activities during NaCl stress from 48 h to 120 h. The changes in the mRNA level of CAT and cAPX in self-grafted plants leaves and roots, respectively, and the mRNA level of cAPX in rootstock-grafted plants leaves were consistent with the changes in their enzyme activity levels under NaCl stress. This result indicated that the activities of these enzymes were regulated at their mRNA levels.
     5. Two cucumber cultivars (cv.'Jinchun No.2', a relative salt-sensitive cultivar, and 'Jinyu No.1', a relative salt-tolerant cultivar) were grafted onto two rootstocks ('Figleaf Gourd', a relative salt-sensitive cultivar, and'Chaojiquanwang', a relative salt-tolerant cultivar), respectively. The effects of scion and rootstock on plant growth and the antioxidant defense systems of cucumber were assessed. The results showed that the salt injury index of plants grafted onto Chaojiquanwang was lower and the growth reduction was less severe under 100 mM NaCl stress. Correlation analysis showed that this could be partially attributed to its lower leaf Na+content and root H2O2 content, as well as the higher activities of SOD, POD, and CAT in the roots. This result implied that the salt-tolerant rootstock played a primary important effect in determining the salt tolerance of grafted cucumber seedlings under salt stress compared with the scion genotypes.
     6. A salt-sensitive cucumber cultivar (cv.'Jinchun No.2') and a salt-tolerant pumpkin cultivar ('Chaojiquanwang') were reciprocal grafted. Four types of grafted plants (scion/rootstock) were obtained, including cucumber/cucumber, pumpkin/pumpkin, cucumber/pumpkin, and pumpkin/cucumber. The effects of 0 and 75 mM NaC1 stress on H2O2 and MDA contents, antioxidant enzyme activities, ABA content and some signal molecules involved in ABA signal pathway (H2O2, NO and MAPK cascades) in grafted plant roots were investigated. The results showed that the ABA contents increased and the expression of signal regulatory genes such as MAPK1 and MAPK6 up-regulated significantly in the grafted plants roots under NaC1 stress when pumpkin was used as rootstock. The results implied that salinity induced the production of ABA and the response of MAPK cascades mediated by ABA in salt-tolerant rootstock roots. This resulted in the higher H2O2-scavenging enzyme activities in salt-tolerant rootstock roots for controlling the H2O2 and MDA contents at lower levels.
     In conclusion, the present study suggests that the salt-induced H2O2 production result in the plant growth inhibition caused by salt stress. Grafting with salt-tolerant rootstock can improve the salt tolerance of cucumber seedlings by regulating the H2O2-scavenging system in cucumber organic and chloroplast. The salt-tolerant rootstock plays a primary important effect in determining the salt tolerance of cucumber seedlings under salt stress compared with the scion genotypes. This could be attributed to the production of ABA and the regulation of ABA-mediated MAPK cascades in salt-tolerant rootstock roots under salt stress.
引文
1.白丽萍,周宝利,霍尚峰,李志文,崔娜.盐胁迫下嫁接茄幼苗渗透调节能力和内源ABA含量的变化.北方园艺,2009:1-3
    2.白丽萍,周宝利,李宁,陈作民,刘宪敏.嫁接茄子对NaCl胁迫的反应.植物生理学通讯,2005,41:31-33
    3.陈建勋,王晓峰.植物生理学实验指导.广州:华南理工大学出版社,2002,122-129
    4.陈淑芳,朱月林,刘友良,胡春梅,张古文.NaCl胁迫对番茄嫁接苗叶片ABA和多胺含量的影响.园艺学报,2006,33:58-62
    5.陈淑芳,朱月林,刘友良,李式军.NaCl胁迫对番茄嫁接苗保护酶活性、渗透调节物质含量及光合特性的影响.园艺学报,2005,32.609-613
    6.冯永军,陈为峰,张蕾娜,吴安民.设施园艺土壤的盐化与治理对策.农业工程学报,2001,17:111-114
    7.高光林,姜卫兵,汪良驹,韩浩章,戴美松.砧木对盐处理下‘丰水’梨幼树光合特性的影响.园艺学报,2003,30:2580-262
    8.高俊杰,张琳,秦爱国,于贤昌.氯化钠胁迫下嫁接黄瓜叶片SOD和CATmRNA基因表达及其活性.应用生态学报,2008,19:1754-1758
    9.高俊杰.低温胁迫和盐胁迫下嫁接黄瓜(Cucumis sativus L.)抗氧化的分子机制.[博士学位论文].泰安:山东农业大学图书馆,2008
    10.郭文忠,刘声锋,李丁仁,赵顺山.设施蔬菜土壤次生盐渍化发生机理的研究现状与展望.土壤,2004,36.25-29
    11.胡秀丽.H2O2,Ca2+/CaM在ABA诱导的玉米叶片抗氧化防护中的作用及其信号转导.[博士学位论文].南京:南京农业大学图书馆,2006
    12.黄远.耐盐砧木嫁接提高黄瓜耐盐性的效果及机理研究.[博士学位论文].武汉:华中农业大学图书馆,2010
    13.江元清,凌毅,赵武玲.真核mRNA的3'非翻译区转录后水平调控作用研究进展.植物学通报,2001,18:3-10
    14.李合生.现代植物生理学.北京高等教育出版社.2002,206-261
    15.李宁,周宝利,白丽萍,付亚文,霍尚峰.盐胁迫下嫁接茄子中几种保护酶活性的变化.辽宁农业科学,2006,1:10-12
    16.刘德,吴凤芝.哈尔滨市郊蔬菜大棚土壤盐分状况及其影响.北方园艺,1998,6:1-3
    17.刘曦.红肉脐橙(Citrus sinensis Osbeck cv. Cara Cara navel orange)果实品质性 状差异形成机理研究.[博士学位论文].武汉:华中农业大学图书馆,2010
    18.刘秀芬,李美茹,薛玉花.廊坊永清蔬菜大棚土壤盐分状况分析.北方园艺,2010,9:71-72
    19.刘正鲁,朱月林,胡春梅,魏国平,杨立飞,张古文.氯化钠胁迫对嫁接茄子生长、抗氧化酶活性和活性氧代谢的影响.应用生态学报,2007,18:537-541
    20.刘志伟,黄冠华.氧化钠不同浓度对夏玉米生长和吸氮的影响.植物营养与肥料学报,2004,10:123-126
    21.罗正荣,胡春根,蔡礼鸿.嫁接及其在植物繁殖和改良中的作用.植物生理学通讯,1996,32:59-63
    22.马海燕.葡萄生长过程中内源激素含量变化的研究.[硕士学位论文].西安:西北农林科技大学图书馆,2007
    23.马丽清,韩振海,周二峰,许学峰.盐胁迫对珠美海棠和山定子膜保护酶系统的影响.果树学报,2006,23:495-499
    24.沈根祥,杨建军,黄沈发,姚政,唐浩.塑料大棚盐渍化土壤灌水洗盐对水环境污染负荷的研究.农业工程学报,2005,21:124-127
    25.史跃林,刘佩瑛,罗庆熙.黑籽南瓜砧对黄瓜抗盐性的影响研究.西南农业大学学报,1995,17:232-236
    26.孙令强,耿广东,王倩,张素勤.设施蔬菜土壤次生盐渍化原因及解决途径.西北园艺,2005,1:4-6
    27.王丽萍,崔美香,孟艳玲.NaCl胁迫对黄瓜幼苗生长及抗氧化系统的影响.西北农业学报,2007,16:170-173
    28.王学征,李秋红,吴凤芝.NaCl胁迫下栽培型番茄Na+、K+吸收、分配和转运特性.中国农业科学,2010,43:1423-1432
    29.魏国平,朱月林,刘正鲁,杨立飞,张古文.NaCl胁迫对茄子嫁接苗生长和离子分布的影响.西北植物学报,2007,27:1172-1178
    30.魏国强,朱祝军,方学智,李娟,程俊.NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢的影响.中国农业科学,2004,37:1754-1759
    31.吴雪霞,张永平,查丁石.NaCl胁迫对茄子幼苗生长和光合特性的影响.浙江农业学报,2010,2:193-197
    32.吴雪霞,朱为民,朱月林,陈建林,朱龙英.NaCl胁迫对不同品种番茄幼苗生长和叶绿素荧光特性的影响.西南农业学报,2007,20:379-382
    33.徐胜利,陈青云,陈小青.盐胁迫下嫁接伽师甜瓜植株生长与多胺以及多胺氧化酶活性的关系.果树学报,2006,26:260-265
    34.许兴,李树华,惠红霞,米海莉.NaCI胁迫对小麦幼苗生长、叶绿素含量及Na+、 K+吸收的影响.西北植物学报,2002,22:278-284
    35.杨立飞,朱月林,胡春梅,刘正鲁,张古文.NaCl胁迫对嫁接黄瓜膜脂过氧化、渗透调节物质含量及光合特性的影响.西北植物学报,2006,26:1195-1200
    36.杨立飞,朱月林,胡春梅,张古文,刘正鲁.NaCI胁迫下营养液栽培嫁接西瓜生长动态及叶片生理生化特性的研究.西南农业学报,2005,18:439-443
    37.杨松杰,张富春,刘世贵.盐渍化土壤改良利用新方法——植物耐盐基因的遗传转化.世界林业研究,2006,21:14-19
    38.杨秀玲,郁继华,李雅佳,李建建张韵.NaCI胁迫对黄瓜种子萌发及幼苗生长的影响.甘肃农业大学学报,2004,35:6-9.
    39.于贤昌,王立江.蔬菜嫁接的研究与应用.山东农业大学学报,1998,29:249-256.
    40.郁继华,杨秀玲,许耀照,张国斌.NaCl胁迫对黄瓜自根苗和嫁接苗光合速率的影响.植物营养与肥料学报,2004,10:554-556
    41.喻景权.“十一五”我国设施蔬菜生产和科技进展及其展望.中国蔬菜,2011,(2):11-23
    42.袁祖华,蔡雁平.盐胁迫下嫁接黄瓜幼苗有机渗透调节物质含量及膜脂过氧化水平研究湖南农业大学学报(自然科学版),2007,33:180-182
    43.张新春,庄炳昌,李自超.植物耐盐性研究进展.玉米科学,2002,10:50-56
    44.张云起,刘世琦,王海波.耐盐砧木嫁接对西瓜幼苗抗盐特性的影响.上海农业学报,2004,20:62-64
    45.张真和,陈青云,高丽红,王娟娟,沈军,李中民,张雪艳.我国设施蔬菜产业发展对策研究(上).蔬菜,2010a,(5):1-3
    46.张真和,陈青云,高丽红,王娟娟,沈军,李中民,张雪艳.我国设施蔬菜产业发展对策研究(下).蔬菜,2010b,(6):1-3
    47.赵会玉,海梅荣,达布希拉图,陆萍,郭登羽,周新惟.NaCl胁迫下渗透调节物质对黄瓜生长和生理特性的影响.安徽农业科学.2010,38:10004-10006
    48.赵许朋,杨立,杨双燕,汤绍虎.ABA对盐胁迫下番茄幼苗生理特性的影响.安徽农业科学,2010,38:14833-14835
    49.朱进.嫁接提高黄瓜幼苗耐盐性的生理机制研究.[博士学位论文].武汉:华中农业大学图书馆,2007
    50.朱士农,郭世荣,张爱慧,李军.NaCl胁迫对西瓜嫁接苗叶片抗氧化酶活性及光合特性的影响.西北植物学报,2008,28:2285-2291
    51. Almansa M S, Hernandez J A, Jimenez A, Botella M A, Sevilla F. Effect of salt stress on the superoxide dismutase activity in leaves of Citrus limonum in different rootstock-scion combinations. Biol Plant,2002,45:545-549
    52. Alpaslan M and Gunes A. Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants. Plant Soil,2001,236:123-128
    53. Apel K and Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol,2004,55:373-399
    54. Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. J Plant Physiol,2006,141:391-396
    55. Asada K. The water-water cycle in chloroplasts:Scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol,1999,50: 601-639
    56. Ashraf M. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv,2009,27:84-93
    57. Attia H, Arnaud N, Karray N, Lachaal M. Long-term effects of mild salt stress on growth, ion accumulation and superoxide dismutase expression on Arabidopsis rosette leaves. Physiol Plant,2008,132:293-305
    58. Badawi G H, Yamauchi Y, Shimada E, Sasaki R, Kawano N,Tanaka K, Tanaka K. Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci,2004,166: 919-928.
    59. Benzie I F F and Strain J J. The ferric reducing ability of plasma as a measure of "antioxidant power":the FRAP assasy. Anal Bioehem,1996,239:70-76
    60. Bor M, Ozdemir F, Tukan I. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritime L. Plant Sci,2003,164:77-84
    61. Borsani O, Valpuesta V, Botella M A. Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell Tiss Organ Cul,2003,73:101-115
    62. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Bioehem, 1976,72:248-254
    63. Brennan T and Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol,1977,59:411-416
    64. Bright J, Desikan R, Hancock J T, Weir I S, Neill S J. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J,2006, 45:113-122
    65. Castillo F J and Greppin H. Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album L. leaves after ozone exposure. Environ Exp Bot,1988,28:232-233
    66. Chandler P M and Robertson M. Gene expression regulated by abscisic acid and its relation to stress tolerance. Ann Rev Plant Physiol Plant Mol Biol,1994,45: 113-141.
    67. Chen G, Fu X, Lips S H, Sagi M. Control of plant growth resides in the shoot, and not in the root, in reciprocal grafts of flacca and wild-type tomato (Lycopersicon esculentum), in the presence and absence of salinity stress. Plant Soil,2003,256: 205-215
    68. Colla G, Rouphael Y, Cardarelli M, Rea E. Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. HortScience,2006,41:622-627
    69. Colla G, Rouphael Y, Cardarelli M, Rea E. Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. HortScience,2006,41:622-627
    70. Colla G, Rouphael Y, Cardarelli M, Salerno A, Rea E. The effectiveness of grafting to improve alkalinity tolerance in watermelon. Environ Exp Bot,2010a,68:283-291
    71. Colla G, Rouphael Y, Leonardi C, Bie Z L. Role of grafting in vegetable crops grown under saline conditions. Sci Hortic,2010b,127:147-155
    72. Cuartero J, Bolarin M C, Asins M J, Moreno V. Increasing salt tolerance in the tomato. JExp Bot,2006,57:1045-1058
    73. Dasgan H Y, Aktas H, Abak K, Cakmak I. Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses. Plant Sci, 2002,163:695-703.
    74. Davenport R J, James R A, Zakrisson-Plogander A, Tester M, Munns R J. Control of sodium transport in durum wheat. Plant Physiol,2005,137:807-18
    75. Davenport S B, Gallego S M, Benavides M P, Tomaro M L. Behaviour of antioxidant defense system in the adaptive response to salt stress in Helianthus annuus L. cells. Plant Growth Regul,2003,40:81-88
    76. Desikan R, Griffiths R, Hancock J, Neill S. A new role for an old enzyme:nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA,2002,99: 16314-16318
    77. Dhindsa R S, Plumb-Dhindsa P, Thorpe T A. Leaf senescence:correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. JExp Bot,1981,32:93-101
    78. Du C X, Fan H F, Guo S R, Tezuka T, Li J. Proteomic analysis of cucumber seedling roots subjected to salt stress. Phytochemistry,2010,71:1450-1459
    79. Edelstein M, Ben-Hur M, Cohen R Y, Burger Y, Ravina I. Boron and salinity effects on grafted and non-grafted melon plants. Plant Soil,2005,269:273-284
    80. Elkahoui S, Hemandez J A, Abdelly C, Ghrir R, Limam F. Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Sci,2005,168:607-613
    81. Estan M T, Martinez-Rodriguez M M, Perez-Alfocea F, Flowers T J, Bolarin M C. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. JExp Bot,2005,56:703-712
    82. Etehadnia M, Waterer D, Jong H D, Tanino K K. Scion and rootstock effects on ABA-mediated plant growth regulation and salt tolerance of acclimated and unacclimated potato genotypes. J Plant Growth Regul,2008,27:125-140
    83. Fernandez-Garcia N, Martinez V, Cerda A, Carvajal M. Water and nutrient uptake of grafted tomato plants grown under saline conditions. J Plant Physiol,2002,159: 899-905
    84. Fidalgo F, Santos A, Santos I, Salema R. Effects of long-term salt stress on antioxidant defence systems, leaf water relations and chloroplast ultrastructure of potato plants. Ann appl Biol,2004,145:185-192
    85. Flores F B, Sanchez-Bel P, Estan, M T, Martinez-Rodriguez M M, Moyano E, Morales B, Campos J F, Garcia-Abellan J O, Egea M I, Fernandez-Garcia N, Romojaro F, Bolarin M C. The effectiveness of grafting to improve tomato fruit quality. Sci Hort,2010,125:211-217
    86. Foyer C H and Halliwell B. Presence of glutathione and glutathione reductase in chloroplast:a proposed role on ascorbic acid metabolism. Planta,1976,133:21-25
    87. Garcia-Legaz M F, Gomez E L, Beneyto J M, Torrecillas A, Sanchez-bianco M J. Effects of salinity and rootstock on growth, water relations, nutrition and gas exchange of loquat. J Hort Sci Biotech,2005,80:199-203
    88. Garcia-Mata C and Lamattina L. Nitric oxide and abscisic acid cross-talk in guard cells. Plant Physiol,2002,128:790-792. Neill S J, Desikan R, Hancock J T. Hydrogen peroxide signaling. Curr Opin Plant Biol,2002,5:388-395.
    89. Garcia-Sanchez F, Jifon J L, Carvajal M, Syvertsen J P. Gas exchange, chlorophyll and nutrient contents in relation to Na+and Cl" accumulation in'Sunburst'mandarin grafted on different rootstocks. Plant Sci,2002,162:705-712
    90. Garcia-Valenzuela X, Garcia-Moya E, Rascon-Cruz Q, Herrera-Estrella'L, Aguado-Santacruz G A. Chlorophyll accumulation is enhanced by osmotic stress in graminaceous chlorophyllic cells. J Plant Physiol,2005,162:650-661
    91. Goreta S, Bucevic-Popovic V, Selak G V, Pavela-Vrancic M, Perica S. Vegetative growth, superoxide dismutase activity and ion concentration of salt-stressed watermelon as influenced by rootstock. JAgri Sci,2008,146:695-704
    92. He J M, Xu H, She X P, Song X C, Zhao W M. The role and interrelationship of hydrogen peroxide and nitric oxide in the UV B-induced stomatal closure in broad bean. Funct Plant Biol,2005,32:237-247
    93. He Y, Zhu Z J, Yang J, Ni X L, Zhu B. Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environ Exp Bot,2009,66:270-278
    94. Heath R L and Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys,1968,125:189-198
    95. Hernandez J A, Jimenez A, Mullineaux P, Sevilla F. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ,2000,23:853-862
    96. Hernandez-Nistal J, Dopico B, Labrador E. Cold and salt stress regulates the expression and activity of a chickpea cytosolic Cu/Zn superoxide dismutase. Plant Sci,2002,163:507-514
    97. Higbie S M, Wang F, Stewart J D, Sterling T M, Lindemann W C, Hughs E, Zhang J. Physiological response to salt (NaC1) stress in selected cultivated tetraploid cottons. Intern JAgron,2010,2010:1-12
    98. Hirose N, Takei K, Kurohal T, Kamada-Nobusada T, Hayashi H, Sakakibara H. Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot,2008,59:75-83
    99. Hoagland D R and Arnon D S. The water culture method for growing plants without soil. Calif Agric Exp Stat Circ,1950,347:1-32
    100.Huang Y, Bie Z L, He S P, Hua B, Zhen A, Liu Z X. Improving cucumber tolerance to major nutrients induced salinity by grafting onto Cucurbita ficifolia. Environ Exp Bot,2010,69:32-38
    101.Huang Y, Zhu J, Zhen A, Chen L, Bie Z L. Organic and inorganic solutes accumulation in the leaves and roots of grafted and ungrafted cucumber plants in response to NaCl stress. JFood Agric Environ,2009,7:703-708
    102.Hung K T and Kao C H. Hydrogen peroxide is necessary for abscisic acid induced senescence of rice leaves. J Plant Physiol,2004,161:1347-1357
    103 Jiang M and Zhang J. Involvement of plasma membrane NADPH oxidase in abscisic acid-and water stress-induced antioxidant defense in leaves of maize seedlings. Planta,2002b,215:1022-1030
    104.Jiang M and Zhang J. Role of abscisic acid in water stress-induced antioxidant defense in leaves of maize seedlings. Free Radical Reserch,2002c,36:1001-1015
    105.Jiang M and Zhang J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. JExp Bot,2002a,53:2401-2410
    106 Jones R W, Pike L M, Yourman L F. Salinity influences cucumber growth and yield. J Amer Soc Hort Sci,1989,114:547-551
    107.Kant S, Kant P, Raveh E, Barak S. Evidence that differential gene expression between the halophyte Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+uptake in T. halophila. Plant Cell Environ,2006,29:1220-34
    108.Kocsy G, Galiba G, Brunold C. Role of glutathio ne in adaptation and signaling during chilling and cold acclimation in plants. Plant Physiol,2001,113:158-164
    109.Kollner B and Krause G H M. Effects of two different ozone exposure regimes on chlorophyll and sucrose content of leaves and yield parameters of sugar beet(Beta Vulgaris L.) and rape(Brassica Napus L.). Water Air Soil Pollut,2003,144:317-332
    110.Kovtun Y, Chiu W L, Tena G, Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA,2000,97:2940-2945
    111.Kwak J M, Mori I C, Pei Z M, Leonhardt N, Torres M A, Dangl J L, Bloom R E, Jonathan S B, Jones D G, Schroeder J I. NADPH oxidase Atrbohd and Atrbohf genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J,2003,22: 2623-2633
    112.Lee D H, Kim Y S, Lee C B. The inductive responses of the antioxidant enzymes by salt stress in the rice(Oryza sativa L.). J Plant Physiol,2001,158:737-745
    113.Lee J M. Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. HortScience,1994,29:235-239
    114.Leung J and Giraudat J. Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol,1998,49:199-222
    115.Li Y T, Tian H X, Li X G, Meng J J, He Q W. Higher chilling-tolerance of grafted-cucumber seedling leaves upon exposure to chilling stress. Agric Sci China, 2008,7:570-576
    116.Liu Y J. Experiment Technology of Plant Biochemistry and Physiology. Agriculture of China Press, Beijing,2000,146-147.
    117.Lopez-Gomez E, San Juan MA, Diaz-Vivancos P, Mataix Beneyto J, Garcia-Legaz M F, Hernandez J A. Effect of rootstocks grafting and boron on the antioxidant systems and salinity tolerance of loquat plants (Eriobotrya japonica Lindl.). Environ Exp Bot,2007,6:151-158
    118.Lu S Y, Guo Z F, Peng X X. Effects of ABA and S-3307 on drought resistance and antioxidative enzyme activity of turfgrass. JHort Sci Biotechnol,2003,78:663-666.
    119.Mallik S, Nayak M, Sahu A K, Shaw B P. Response of antioxidant enzymes to high NaCl concentration in different salt-tolerant plants. Biol Plant,2011,55:191-195
    120.Martinez-Rodriguez M M, Estan M T, Moyano E, Garcia-Abellan J O, Flores F B, Campos J F, Al-Azzawi M J, Flowers T J, Bolarin M C. The effectiveness of grafting to improve salt tolerance in tomato when an'excluder'genotype is used as scion. Environ Exp Bot,2008,63:392-401
    121.Massai R, Remorini D, Tattini M. Gas exchange, water relations and osmotic adjustment in two scion/rootstock combinations of Prunus under various salinity concentrations. Plant Soil,2004,259:153-162
    122.Meloni D A, Oliva M A, Martinez C A, Cambraia J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot,2003,49:69-76
    123.Mickelbart M V and Arpaia M L. Rootstock influence changes in ion concentrations, growth, and photosynthesis of'Hass'avocado trees in response to salinity. J Amer Soc Hort Sci,2002,127:649-655
    124.Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci,2002, 7:405-410
    125.Mittova V, Tal M, Volokita M, Guy M. Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salttolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol Plantarum,2002, 115:393-400
    126.Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA,1996,93:765-769
    127.Morillon R and Chrispeels M J. The role of ABA and the transpiration stream in the regulation of the osmotic water permeability of leaf cells. Proc Natl Acad Sci USA, 2001,98:14138-14143
    128.Munns R and Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol,2008, 59:651-681
    129.Munns R. Comparative physiology of salt and water stress. Plant Cell Environ,2002, 25:239-250
    130.Nakano Y and Asada K. Hydrogen peroxide scanvenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell Physiol,1981,22:867-880
    131.Neill S J, Desikan R, Clarke A, Hurst R D, Hancock J T. Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot,2002a,53:1237-1242
    132.Neill S J, Desikan R, Hancock J T. Hydrogen peroxide signaling. Curr Opin Plant Biol,2002b,5:388-395
    133.Neill S J, Desikan R, Hancock J T. Nitric oxide signaling in plants. New Phytol,2003, 159:11-35.
    134.Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I. Nitric oxide, stomatal closure and abiotic stress. J Exp Bot,2008,59:1 65-176
    135.Orozco-Cardenas M and Ryan CA. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA,1999,96:6553-6557
    136.Panda S K and Khan M H. Salt stress influences lipid peroxidation and antioxidants in the leaf of an india rice(Oryza saliva L.). Physiol Mol Biol Plant,2003,9: 273-278
    137.Peng Q and Zhou Q. Influence of lanthanum on chloroplast ultrastructure of soybean leaves under ultraviolet-B stress. J Rare Earth,2009,27:304-307
    138.Polle A. Dissecting the superoxide dismutase-ascorbate peroxidase-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol,2001,126:445-462
    139.Qiu N W and Chen M. Coordinate up-regulation of V-H+-ATPase and vacuolar Na+/H+antiporter as a response to NaCl treatment in a C3 halophyte Suaeda salsa. Plant Science,2007,172:1218-1225
    140.Robert G, Melchiorre M, Racca R, Trippi V, Lascano H R. Apoplastic superoxide level in wheat protoplast under photooxidative stress is regulated by chloroplast redox signals:Effects on the antioxidant system. Plant Sci,2009,177:168-174
    141.Rock C. Pathways to abscisic acid-regulated gene expression. New Phytol,2000,148: 357-396
    142.Romero L, Belakbir A, Ragala L, Ruiz J M. Response of plant yield and leaf pigments to saline conditions:effectiveness of different rootstocks in melon plants (Cucumis melo L.). Soil Sci Plant Nutr,1997,43:855-862
    143.Rouphael Y, Schwarz D, Krumbein A, Colla G Impact of grafting on product quality of fruit vegetables. Sci Horti,2010,127:172-179
    144.Rout N P and Shaw B P. Salt tolerance in aquatic macrophytes:possible involvement of the antioxidative enzymes. Plant Sci,2001,160:415-423
    145.Sairam R K, Rao K V, Srivastava G C. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci,2002a,163:1037-1046
    146.Sairam R K and Srivastava G C. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci,2002b,162:897-904
    147.Sairam R K and Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci,2004,86:407-421
    148.Samuel M A, Miles G P, Ellis B E. Ozone treatment rapidly activates MAP kinase signaling in plane. Plant J,2000,22:367-376
    149.Santa-Cruz A, Martinez-Rodriguez M M, Perez-Alfocea F, Romero-Aranda R, Bolarin M C. The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Sci,2002,162:825-831
    150.Saqib M, Akhtar J, Qureshi R H. Na+exclusion and salt resistance of wheat (Triticum aestivum) in saline-waterlogged conditions are improved by the development of adventitious nodal roots and cortical root aerenchyma. Plant Sci,2005,169:125-130
    151.Savvas D, Colla G, Rouphael Y, Schwarz D. Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Sci Hortic,2010,127:156-161
    152.Shaterian J, Georges F, Hussain A, Waterer D, De Jong H, Tanino K K. Root to shoot communication and abscisic acid in calreticulin (CR) gene expression and salt-stress tolerance in grafted diploid potato clones. Environ Exp Bot,2005a,53:323-332
    153.Shaterian J, Waterer D, De Jong H, Tanino K K. Differential stress responses to NaCl salt application in early-and late maturing diploid potato (Solanum sp.) clones. Environ Exp Bot,2005b,54:202-212
    154.Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot,2002,53: 1305-1319
    155.Shinozaki K and Yamaguchi-Shinozaki K. Molecular response to dehydration and low temperature:Differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol,2000,3:217-223
    156.Stadtman E R. Protein oxidation and aging. Science,1992,257:1220-1224
    157.Ste.pien P and Klobus G Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol Plant,2006,50:610-616
    158.Sudhakar C, Lakshmi A, Giridarakumar S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus Alba L.) under NaCl salinity. Plant Sci,2001,161:613-619
    159.Takeda T, Yokota A, Shigeoka S. Resistance of photosynthesis to hydrogen peroxide in algae. Plant Cell Physiol,1995,36:1089-1095
    160.Thompson A J, Mulholland B J, Jackson A C, Mckee J M T, Hilton H W, Symonds R C, Sonneveld T, Burbidge A, Stevenson P, Taylor I B. Regulation and manipulation of ABA biosynthesis in roots. Plant Cell Environ,2007,30:67-78
    161.Trajkova F, Papadantonakis N, Sawas D. Comparative effects of NaCl and CaCl2 salinity on cucumber grown in a closed hydroponic system. HortSci,2006,41: 437-441
    162.Vranova E, Atichartpongkul S, Villarroel R, Van Montagu M, Inze D, Van Camp W. Comprehensive analysis of gene expression in Nicotiana tabacum leaves acclimated to oxidative stress. Proc Natl Acad Sci USA,2002,99:10870-10875
    163.Vranova E, Inze D, Breusegem F V. Signal transduction during oxidative stress. J Exp Bot,2002,53:1227-1336
    164.Wang X J, Loh C S, Yeoh H H, Sun W Q. Drying rate and dehydrin synthesis associated with abscisic acid-induced dehydration tolerance in Spathoglottis plicata orchidaceae protocorms. J Exp Bot,2002,53:551-558
    165.Weatherley P E. Studies in water relations of cotton plants. I. The field measurement of water deficits in leaves. New Phytol,1950,49:81-97
    166.Wei G P, Yang L F, Zhu Y L, Chen G. Changes in oxidative damage, antioxidant enzyme activities and polyamine contents in leaves of grafted and non-grafted eggplant seedlings under stress by excess of calcium nitrate. Sci Hort,2009,120: 443-451
    167.Xiong L, Schumaker K S, Zhu J K. Cell signal during cold, drought, and salt stress. Plant cell,2002,112:152-166
    168.Xiong L, Lee H, Ishitani M, Zhu J K. Regulation of osmotic stress-responsive gene expression by the LOS6/ABAI locus in Arabidopsis. J Biol Chem,2002,277: 8588-8569
    169.Xu C X, Liu Y L, Zheng Q S, Liu Z P. Silicate improves growth and ion absorption and distribution in Aloe vera under Salt Stress. J Plant Physiol Mol Biol,2006,32: 73-78
    170.Xu S L, Chen Q Y, Chen X Q, Li H. Relationship between grafted muskmelon growth and polyamine and polyamine oxidase activities under salt stress. J Fruit Sci, 2006,23:260-265
    171.Yamaguchi T and Blumwald E. Developing salt-tolerant crop plants:challenges and opportunities. Trends Plant Sci,2005,10:615-620
    172.Zhang A, Jiang M, Zhang J, Ding H, Xu S H, Hu X, Tan M. Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of nutogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol, 2007,175:36-50
    173.Zhang G W, Liu Z L, Zhou J G, Zhu Y L. Effects of Ca(NO3)2 stress on oxidative damage, antioxidant enzymes activities and polyamine contents in roots of grafted and non-grafted tomato plants. Plant Growth Regul,2008,56:7-19
    174.Zhang J H, Jia W S, Yang J C, Ismail A M. Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res,2006,97:111-119
    175.Zhang M P, Zhang C J, Yu G H, Jiang Y Z, Strasser R J, Yuan Z Y, Yang X S, Chen G X. Changes in chloroplast ultrastructure, fatty acid components of thylakoid membrane and chlorophyll a fluorescence transient in flag leaves of a super-high-yield hybrid rice and its parents during the reproductive stage. J Plant Physiol,2010,167:277-285
    176.Zhang Q F, Li Y Y, Pang C H, Lu C M, Wang B S. NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L. Plant Sci,2005,168: 423-430
    177.Zhang S Q, Outlaw W H, Aghoram K. Relationship between changes in the guard cell abscisic-acid content and other stress-related physiological parameters in intact plants. JExp Bot,2001,52:301-308
    178.Zhang X, Zhang L, Dong F, Gao J F, Galbraith D W, Song C P. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in vicia faba. Plant Physiol,2001, 126:1438-1448
    179.Zhao F G, Song C P, He J Q, Zhu H. Polyamines Improve K+/Na+Homeostasis in Barley Seedlings by Regulating Root Ion channel Activities. Plant Physiol,2007,145: 1061-107
    180.Zhen A, Bie Z L, Huang Y, Liu Z X, Li Q. Effects of scion and rootstock genotypes on the antioxidant defense systems of grafted cucumber seedlings under NaCl stress. Soil Sci Plant Nutr,2010,56:263-271
    181.Zheng C F, Jiang D J, Liu F L, Dai T B, Cao W X. Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci,2009,176:575-582
    182.Zhou B, Guo Z, Xing J, Huang B. Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. JExp Bot,2005,56:3223-3228
    183.Zhu J, Bie Z L, Huang Y, Han X Y Effect of grafting on the growth and ion contents of cucumber seedlings under NaCl stress. Soil Sci Plant Nutr,2008a,54:895-902
    184.Zhu J, Bie Z L, Li Y N. Physiological and growth responses of two different salt-sensitive cucumber cultivars to NaCl stress. Soil Sci Plant Nutr,2008b,54: 400-407
    185.Zhu J K. Plant salt tolerance. Trends Plant Sci,2001,6:66-71
    186.Zuccarini P. Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biol Plant,2008,52:157-160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700