用户名: 密码: 验证码:
几种生物降解多相多组分高分子材料的制备、形态、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物降解高分子材料由于其环境友好的特性而得到研究者们的青睐。但是,由于价格高、力学性能差以及加工窗口窄等缺点,可生物降解高分子材料的应用受到严重限制。因此,对现已工业化的生物降解高分子材料进行改性是一个非常重要且有意义的研究课题。
     本论文采用共混与复合两种方法,利用组分之间的氢键相互作用力,设计制备了一系列相容的结晶/非晶共混物,以及分散性良好的粘土纳米复合材料。采用差示扫描量热仪(DSC)、偏光显微镜(POM)、热失重分析仪(TGA)、广角X光衍射仪(WAXD)、小角X光散射仪(SAXS)、透射电镜(TEM)和动态力学分析仪(DMA)对不同共混物/复合体系的相容性、结晶行为以及复合体系的形态、结晶行为与性能进行了研究。
     1.结晶/非晶共混物相容性与结晶行为
     采用溶液涂膜法制备了一系列结晶/非晶共混物,研究了聚丁二酸/己二酸丁二醇酯(PBSA)/聚对羟基苯乙烯(PVPh)、酚氧树脂(phenoxy)共混物,聚羟基丁酸酯-羟基戊酸酯共聚物(PHBV)/酚醛树酯(phenolic)共混物,聚丁二酸丁二醇酯(PBSU)/单宁酸(TA)共混物相容性,以及非晶组分含量对结晶组分结晶行为的影响规律。单一组成依赖的玻璃化温度以及Nishi-Wang方程中聚合物相互作用参数均表明上述体系为相容体系。非晶组分的加入阻碍了结晶组分的成核与结晶,改变了结晶组分在相同温度下的球晶形态,但是并未改变其结晶机理与晶体结构。PBSA/phenoxy共混物的总结晶速率显著大于PBSA/PVPh共混物。所得相容的结晶/非晶共混物,在等温结晶后,仍然能够长满视野。研究发现PVPh与TA均己分别扩散至PBSA与PBSU的片晶之间。不同的是,PVPh加入会使得PBSA的片晶厚度略有增加,而TA不改变PBSU的片晶厚度。
     2.聚对苯二甲酸/己二酸丁二醇酯(PBAT)/粘土C30B纳米复合材料结构与性能的研究
     采用溶液超声复合的方法制备了不同C30B含量的PBAT/C30B纳米复合材料。实验结果表明:在C30B含量小于等于5 wt%时,C30B剥离于PBAT基体中;在C30B含量达到8 wt%时,插层与剥离并存。C30B在PBAT非等温结晶的过程中,充当成核剂的作用。当加入5 wt%的C30B时,复合材料成核活性最高。C30B的加入大幅度增加复合材料中PBAT的结晶速率。研究还发现:C30B的加入并未改变PBAT的结晶结构,也未明显改变PBAT的绝对结晶度。C30B加入没有明显改变PBAT的热稳定性,但是大幅提高了PBAT的储能模量E'。
In recent years, conventional plastics have been widely used which caused severe environmental problems. Therefore, biodegradable polymers have received more and more attention because of the environmental benign property. However, the application of the biodegradable polymers has been badly limited because of the relatively higher price, narrower processing window and poorer mechanical properties. The modificaition of industrial biodegradable polymer is a meaningful project and of great importance.
     The polymer blending and nanocompounding with solution casting method were employed in this work. According to the special interaction between two neat components, a series of miscible crystalline/amorphous polymer blends and compatible organolclay nanocomposites were prepared. The influence of compositions, processing conditions to the morphology and crystallization was studied. It will be usefull in designing the polymer blend or composite materials with comprehensive properties.
     1. The miscibility and crystallization behavior of crystalline/amorphous polymer blends
     Four miscible crystalline/amorphous polymer blends have been prepared by solution-casting method. The single composition dependent glass transition temperature and the negative polymer-polymer interaction parameter indicate the complete miscibility of the polymer blends. The influence of the addition of amorphous polymer on the crystallization behavior and microstructure of crystalline polymer was also studied. The overall crystallization rates of crystalline polymer decrease with increasing crystallization temperature and the amorphous content in the blends; however, the crystallization mechanism of crystalline polymer does not change in the blends. The microstructural parameters, including the long period, thickness of crystalline phase and thickness of amorphous phase, change with increasing the amorphous content.
     2. Poly(butylene adipate-co-terephthalate) (PBAT)/organo-modified montmorillonite nanocomposites
     Biodegradable PBAT/C30B intercalated and exfoliated nanocomposites were fabricated by solution casting method to study the effect of clay loadings on the crystallization behavior, thermal stability, and dynamical mechanical properties of PBAT in the PBAT/C30B nanocomposites. X-ray diffraction and transmission electron microscopy results indicate the formation of exfoliated nanocomposites at low clay loadings less than 5 wt% and the mixture of exfoliated and intercalated nanocomposite at 8 wt% clay content throughout the PBAT matrix. Nonisothermal melt crystallization studies indicate that C30B enhances the crystallization of PBAT apparently due to the heterogeneous nucleation effect. Moreover, an attempt has been made to study the influence of the presence of C30B and its contents on the nucleation activity of PBAT quantitatively in the PBAT/C30B nanocomposites. It is also found that the thermal stability of PBAT decreases slightly in the nanocomposites. However, the storage modulus of PBAT increases apparently with increasing the C30B loadings in the PBAT/C30B nanocomposites.
引文
[1]任杰.可降解与吸收材料[M].北京:化学工业出版社,2003,4-9
    [2]李冬梅.生物降解性液晶聚酯的研究[D].大连:大连理工大学,2005
    [3]Holmes PA. Applications of PHB-a microbially produced biodegradable thermoplastic[J]. Phys. Technol.,1985; 16:32-36
    [4]Ishioka DR, Kitakuni E, Ichikawa Y. Aliphatic polyesters:'Bionolle' In:Doi Y, Steinbu chel A, editors. Biopolymers, Polyesters III Application and commercial products, Weinheim:Wiley-VCH Verlag. Gmbh[M].2002,4,275
    [5]Fujimaki T. Processability and properties of aliphatic polyesters,'BIONOLLE', synthesized by polycondensation reaction[J]. Polym. Degrad. Stab.,1998,59(2): 209-214
    [6]Nikolic MS, Djonlagic J. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s[J]. Polym. Degrad. Stab.2001,74: 263-270
    [7]孙杰,谭慧民,罗运军,张大伦.丁二酸丁二酯/丁二酸己二酯共聚物的合成及性能[J].工程塑料应用,2004,4:14-16
    [8]Ren MQ, Song JB. Crystallization kinetics and morphology of poly (butylene succinate-co-adipate) [J]. Journal of Polymer Science:Part B:Polymer Physics, 2005,43:3231-3241
    [9]戈进杰.生物降解高分子材料及其应用[M].北京:材料科学与出版中心,2002,5-21
    [10]Kuo SW, Lin CL, Chang FC. The study of hydrogen bonding and miscibility in poly(vinylpyridines) with phenolic resin[J]. Polymer,2002,43:4943-4949
    [11]Huang CF, Kuo SW, Lin HC, Chen JK, Chen YK, Xu HY, Chang FC. Thermal properties, miscibility and specific interactions in comparison of linear and star poly(methyl methacrylate) blend with phenolic[J]. Polymer,2004,45:5913-5921
    [12]Qiu ZB, Komura M, Ikehara T, Nishi T. Poly(butylene succinate)/poly(vinyl phenol) blends Part 1 Miscibility and crystallization[J]. Polymer,2003,44:8111-8117
    [13]Kuo SW, Huang CF, Chang FC. Study of Hydrogen-Bonding Strength in Poly(ε-caprolactone) Blends by DSC and FTIR[J]. J. Polym. Sci. Part B:Polym. Phys.,2001,39:1348-1359
    [14]Xing P, Dong L, An Y, Feng Z, Avlla M, Martuscelli E. Miscibility and Crystallization of Poly(β-hydroxybutyrate) and Poly(p-vinylphenol) Blends[J]. Macromolecules,1997,30:2726-2733
    [15]Xing P, Dong L, An Y, Feng Z, Feng H. Miscibility and Specific Interactions in Poly(β-hydroxybutyrate-co-hydroxyvalerate) and Poly(p-vinylphenol) Blends[J]. Eur. Polym. J.,1998,34:1207-1211
    [16]Zhang LL, Goh SH, Lee SY, Hee GR. Miscibility, melting and crystallization behavior of two bacterial polyester/poly(epichlorohydrin-co-ethylene oxide) blend systems[J], Polymer,2000,41:1429-1439
    [17]Qiu ZB, Yan CZ, Lu JM, Yang WT, Ikehara T, Nishi T. Various Crystalline Morphology of Poly(butylene Succinate-co-butylene Adipate) in Its Miscible Blends with Poly(vinylidene Fluoride)[J]. J. Phys. Chem. B 2007,111,2783-2789
    [18]Qiu ZB, Yan CZ, Lu JM, Yang WT. Miscible Crystalline/Crystalline Polymer Blends of Poly(vinylidene fluoride) and Poly(butylene succinate-co-butylene adipate): Spherulitic Morphologies and Crystallization Kinetics[J], Macromolecules,2007, 40:5047-5053
    [19]Qiu ZB, Ikehara T, Nishi T. Poly(hydroxybutyrate)/poly(butylene succinate) blends: miscibility and nonisothermal crystallization[J], Polymer,2003,44:2503-2508
    [20]Siciliano A, Seves k, De Marco T, Cimmino S, Martuscelli E, Silvestre C. Miscibility and Thermal and Crystallization Behaviors of Poly(D-(-)-3-hydroxybutyrate)/Atactic Poly(methyl methacrylate) Blends[J], Macromolecules,1996,28:8065-8072
    [21]Qiu ZB, Komura M, Ikehara T, Nishi T. Miscibility and crystallization behavior of biodegradable blends of two aliphatic polyesters Poly(butylene succinate) and Poly(ε-caprolactone) [J], Polymer,2003,44:7749-7756
    [22]Lovera D, Marquez L, Balsamo V, Taddei A, Castelli C, Miiller AJ. Crystallization, Morphology, and Enzymatic Degradation of Polyhydroxybutyrate/Polycaprolactone (PHB/PCL) Blends[J], Macromol. Chem. Phys.,2007,208,924-937
    [23]Yoon JS, Oh SH, Kim MN. Compatibility of poly(3-hydroxybutyrate)/poly(ethylene-co-vinyl acetate) blends Polymer[J],1998, 39:2479-2487
    [24]Furukawa T, Sato H, Murakami R, Zhang JM, Noda I, Ochiai S, Ozaki Y. Comparison of miscibility and structure of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(L-lactic acid) blends with those of poly(3-hydroxybutyrate)/poly(L-lactic acid) blends studied by wide angle X-ray diffraction, differential scanning calorimetry, and FTIR microspectroscopy[J], Polymer,2007,48(6):1749-1755
    [25]Coleman MM, Zarian J. Fourier-transform infrared studies of polymer blends. Ⅱ. Poly(ε-caprolactone)-poly(vinyl chloride) system[J], J. Polym. Sci. Polym. Phys. Ed.,1979,17(5):837-850
    [26]Coleman MM, Moskala EJ. FTIR studies of polymer blends containing the poly(hydroxy ether of bisphenol A) and poly(ε-caprolactone)[J], Polymer,1983, 24(3):251-257
    [27]Moskala EJ, Varnell DF, Coleman MM. Concerning the miscibility of poly(vinyl phenol) blends-FTIR study[J], Polymer,1985,26(2):228-234
    [28]Lin AA, Kwei TK, Reiser A. On the physical meaning of the Kwei equation for the glass transition temperature of polymer blends[J], Macromolecules,1989,22(1): 4112-4119
    [29]Jo WH, Lee SC. Miscibility of poly(ethylene oxide) and poly(styrene-co-acrylic acid) blends[J], Macromolecules,1990,23(8):2261-2265
    [30]Serman CJ, Painter PC, Coleman MM. Studies of the phase behaviour of poly(vinyl phenol)-poly(n-alkyl methacrylate) blends[J], Polymer,1991,32(6):1049-1058
    [31]Zhang X, Takegoshi K, Hikichi K. Poly(vinylphenol)/poly(methyl acrylate) and poly(vinylphenol)/poly(methyl methacrylate) blends:hydrogen bonding, miscibility, and blending effects on molecular motions as studied by carbon-13 CP/MAS NMR[J], Macromolecules,1991,24(21):5756-5762
    [32]Li D, Brisson J. DMTA and FTIR Investigation of the Phase Behavior of Poly(methyl methacrylate)-Poly(4-vinylphenol) Blends[J], Macromolecules,1996, 29(3):868-874
    [33]Dong J, Ozaki Y. FTIR and FT-Raman Studies of Partially Miscible Poly(methyl methacrylate)/Poly(4-vinylphenol) Blends in Solid States[J], Macromolecules,1997, 30(2):286-292
    [34]Wang LF, Pearce EM, Kwei TK. Glass transitions in hydrogen-bonded polymer complexes[J], J. Polym. Sci. Polym. Phys. Ed.,1991,29(5):619-626
    [35]Jiang M, Li M, Xiang M, Zhou H. Interpolymer Complexation and Miscibility Enhancement by Hydrogen Bonding[M], Adv. Polym. Sci.1999,146:121-196
    [36]Hill DJT, Whittaker AK, Wong KW. Miscibility and Specific Interactions in Blends of Poly(4-vinylphenol) and Poly(2-ethoxyethyl methacrylate)[J], Macromolecules, 1999,32(16):5285-5291
    [37]Miyoshi T, Takegoshi K, Terao T. Dynamic Alternation between Inter- and Intra-Polymer Hydrogen Bonds in a Polymer Complex As Studied by Solid-State 13C 2D Exchange NMR[J], Macromolecules,1999,32(26):8914-8917
    [38]Pedrosa P, Pomposo JA, Calahorra E, Cortazar M. On the glass transition behavior, interaction energies, and hydrogen-bonding strengths of binary poly(p-vinylphenol)/polyether blends[J], Macromolecules,1994,27(1):102-109
    [39]Iriarte M, Alberdi M, Shenoy SL, Iruin JJ. Excess Specific Heats in Miscible Binary Blends with Specific Interactions[J], Macromolecules,1999,32:2661-2668
    [40]Wu HD, Chu PP, Ma CCM, Chang FC. Effects of Molecular Structure of Modifiers on the Thermodynamics of Phenolic Blends:An Entropic Factor Complementing PCAM[J], Macromolecules,1999,32:3097-3105
    [41]Wang J, Cheung MK, Mi Y. Miscibility of poly(ethyl oxazoline)/poly(4-vinylphenol) blends as investigated by the high-resolution solid-state 13C NMR[J], Polymer,2001,42(5):2077-2083
    [42]Kuo SW, Chan SC, Chang FC. Effect of Hydrogen Bonding Strength on the Microstructure and Crystallization Behavior of Crystalline Polymer Blends[J]. Macromolecules,2003,36:6653-6661
    [43]Qiu ZB, Yang WT. Crystallization kinetics and morphology of poly(butylene succinate)/poly(vinyl phenol) blend[J]. Polymer,2006,47:6429-6437
    [44]Qiu ZB. Subsequent Melting Behavior of Poly(butylene succinate) in Its Miscible Blend with Poly(vinyl phenol) Crystallized Nonisothermally from the Melt[J], J. Appl. Polym. Sci.,2007,104:3637-3641
    [45]Qiu ZB, Yang WT. Nonisothermal Crystallization Kinetics of Biodegradable Poly(butylene succinate)/Poly(vinyl phenol) Blend[J], J. Appl. Polym. Sci.,2007, 104:972-978
    [46]Qiu ZB, Fujinami S, Komura M, Nakajima K, Ikehara T, Nishi T. Miscibility and crystallization of poly(ethylene succinate)/poly(vinyl phenol) blends[J], Polymer, 2004,45:4515-4521
    [47]Russell TP, Ito H, Wignall GD. Neutron and X-ray Scattering Studies on Semicrystalline Polymer Blends [J], Macromolecules,1988,21:1703-1709
    [48]Rusell TP, Stein RS. An investigation of the compatibility and morphology of semicrystalline poly(ε-caprolactone)/poly(vinyl chloride) blends[J], J. Polym. Sci. Polym. Phys. Ed.1983,21:999
    [49]Runt JP, Zhang X, Miley DM, Gallagher KP, Zhang A. Phase behavior of poly(butylene terephthalate)/polyarylate blends [J], Macromolecules,1992,25: 3902-3905
    [50]Zemel IS, Roland CM. Anomalies in the crystallization of cis-1,4-polyisoprene in blends with poly(vinyl ethylene)[J], Polymer,1992,33:3427-3432
    [51]Defieuw G, Groeninckx G, Reynaers H. Miscibility and morphology of binary polymer blends of polycaprolactone with solution-chlorinated polyethylenes[J], Polymer,1989,30:595-603
    [52]Defieuw G, Groeninckx G, Reynaers H. Diffusion and segreation phenomenon in miscible binary polymer blends during crystallization[J], Polym. Commun.,1989, 30:267-270
    [53]Saito H, Stuhn B. Exclusion of noncrystalline polymer from the interlamellar region in poly(vinyl idene fluoride)/poly(methyl methacrylate) blends[J], Macromolecules, 1994,27:216
    [54]Crevecoeur G, Groeninckx G. Binary blends of poly(ether ether ketone) and poly(ether imide) Miscibility, crystallization behavior, and semicrystalline morphology[J], Macromolecules,1991,24:1190-1195
    [55]Sauer BB, Hsiao BS. Glass transition, crystallization, and morphology relationships in miscible poly(aryl ether ketones) and poly(ether imide) blends[J], J. Polym. Sci. Polym. Phys. Ed.,1993,31:901-915
    [56]Hudson SD, Davis DD, Lovinger AJ. Semicrystalline morphology of poly(aryl ether ketones) and poly(ether imide) blends[J], Macromolecules,1992,25:1759-1765
    [57]Ivanov DA, Nysten B, Jonas AM. Atomic force microscopy imaging of single polymer spherulites during crystallization:application to a semi-crystalline blend[J], Polymer,1999,40:5899-5905
    [58]Ivanov DA, Jonas AM. Isothemal growth and reorganization upon heating of a single poly(aryl-ether-ether-ketone)(PEEK) spherulites, as imaged by atomic force microscopy[J], Macromolecules,1998,31:4546-4550
    [59]Basire C, Ivanov DA. Evolution of the lamellar structure during crystallization of a semicrystalline-amorphous polymer blend:time-resolved hot-stage SPM study [J], Phys. Rev. Lett.,2000,85:5587-5590
    [60]Morra BS, Stein RS. The crystalline morphology of poly(vinylidene fluoride)/poly(methylmethacrylate) blends[J], Polym. Eng. Sci.,1984,24(5): 311-318
    [61]Hahn B, Hermann-Schonherr O, Wendorff J. Evidence for a crystal-amorphous interphase in PVDF and PVDF/PMMA blends[J], Polymer,1987,28:201
    [62]Talibuddin S, Wu L, Runt J. Microstructure of melt-miscible, semicrystalline polymer blends[J], Macromolecules,1996,29:7527-7535
    [63]Wu L, Lisowski M, Talibuddin S, Runt J. Crystallization of poly(ethylene oxide) and melt-miscible PEO blends[J], Macromolecules,1999,32:1576-1581
    [64]吴培熙,张留城.聚合物共混改性原理及工艺[M].北京:轻工业出版社,1984:53-58
    [65]Gordon M., Taylor JS. Ideal copolymers and the second-order transitions of synthetic rubbers. i. non-crystalline copolymers[J], J. Appl. Chem.,1952,2:493-500
    [66]Kwei T. The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures[J], J. Poly. Sci.:Polym. Lett.,1984,22:307-313
    [67]Hoffman JD, Weeks JJ. X-Ray Study of Isothermal Thickening of Lamellae in Bulk Polyethylene at the Crystallization Temperature[J], J. Chem. Phys.1965, 42(12):4301-4302
    [68]Flory P. Principles of Polymer Chemistry[M]. Ithaca, New York:Cornell University Press; 1953
    [69]Nishi T, Wang TT. Melting Point Depression and Kinetic Effects of Cooling on Crystallization in Poly(vinylidene fluoride)-Poly(methyl methacrylate) Mixtures[J], Mromolecules,1975,8(6):909-915
    [70]Buckley J, Cebe Pe, Cherdack D, Crawford J, Seyhan Ince B, Jenkins M, Pan J, Reveley M, Washington N, Wolchover N. Nanocomposites of poly(vinylidene fluoride) with organically modified silicate[J], Polymer,2006,47:2411-2422
    [71]姜俊青,张萍,赵树高.插层法制备聚合物/层状硅酸盐纳米复合材料的研究进展[J].高分子材料科学与工程.2004,20(1),48-52.
    [72]Okada A, Kawasumi M, Kurauchi T, Kamigaito O. Synthesis and of a nylon 6-clay hybrid [J], Polym. Prepr.,1987,28:447
    [73]Giannelis EP. Polymer Layered Silicate Nanocomposites[J], Adv. Mater.,1996,8: 29-35
    [74]Wang MS, PinnavaiaTJ. Clay-Polymer Nanocomposites Formed from Acidic Derivatives of Montmorillonite and an Epoxy Resin[J], Chem. Mater.,1994,6: 468-474
    [75]Vaia RA, Giannelis EP. Dynamics in a Confined Polymer Electrolyte:A 7Li and 2H NMR Study[J], J. Am. Chem. Soc.,1995,117(28):7568-7569
    [76]漆宗能,王胜杰,李强.硅橡胶/蒙脱土插层复合材料及其制备方法[P].中国发明专利,CN1163288A,1997
    [77]黄锐,王旭,李忠明.纳米塑料[M].北京:中国轻工业出版社,2002:7-8
    [78]Okada A, Kawasumi M, Kurauchi T, Kamigaiti O. Polym. Prepr.,1987,28:447-448
    [79]Ogata N, Jimenez G, Kawai H, Ogihara T. Structure and Termal/Mechanical Properties of Poly (L-lactide)-Clay Blend[J], J. Polym Sci Part B:Polym. Phys., 1997,35(2):389-396
    [80]Fujimori A, Ninomiya N, Masuko T. Influence of dispersed organophilic montmorillonite at nanometer-scale on crystallization of poly(L-lactide)[J], Polym Eng. Sci.2008,48(6):1103-1111
    [81]Ray SS, Maiti P, Okamoto M, Yamada K, Ueda K. New Polylactide/Layered Silicate Nanocomposites 1 Preparation, Characterization, and Properties[J], Macromolecules 2002,35 (8):3104-3110
    [82]Lepoittevin B, Devalckenaere M, Pantoustier N, Alexandre M, Kubies D, Calberg C, Jerome R, Dubois P. Poly(s-caprolactone)/clay nanocomposites prepared by melt intercalation:mechanical, thermal and rheological properties[J], Polymer,2002,43 (14):4017-4023
    [83]Lepoittevin B, Pantoustier N, Devalckenaere M, Alexandre M, Kubies D, Calberg C, Jerome R, Dubois P. Poly(ε-caprolactone)/Clay Nanocomposites by in-Situ Intercalative Polymerization Catalyzed by Dibutyltin Dimethoxide[J], Macromolecules,2002,35(22):8385-8390
    [84]Liao L, Zhang, C, Gong, S. Preparation of Poly(ε-caprolactone)/Clay Nanocomposites by Microwave-Assisted In Situ Ring-Opening Polymerization[J], Macromol. Rapid. Commun.,2007,28(10):1148-1154
    [85]Ray SS, Okamoto K, Okamoto M. Structure-Property Relationship in Biodegradable Poly(butylene succinate)/Layered Silicate Nanocomposites[J], Macromolecules, 2003,36(7):2355-2367
    [86]Chen GX, Yoon JS. Thermal stability of poly(1-lactide)/poly(butylene succinate)/clay nanocomposites[J], Polym. Degrad. Stab.,2005,88(2):206-212
    [87]Makhatha ME, Ray SS, Hato J, Luyt AS. J. Nanosci. Nanotech.,2008,8:1679-1689
    [88]Ray SS, Bousmina M, Okamoto K. Structure and Properties of Nanocomposites Based on Poly(butylene succinate-co-adipate) and Organically Modified Montmorillonite[J], Macromol. Mater. Eng.,2005,290(8):759-768
    [89]Ray SS, Bousmina M. Crystallization Behavior of Poly[(butylene succinate)-co-adipate] Nanocomposite[J], Macromol. Chem. Phys.2006,207(14): 1207-1219
    [90]Ray SS, Bandyopadhyay J, Bousmina M. Thermal and thermomechanical properties of poly[(butylene succinate)-co-adipate] nanocomposite[J], Polym. Degrad. Stab., 2007,92 (5):802-812
    [91]Someya Y, Sugahara Y, Shibata M. Nanocomposites Based on Poly (butylene adipate-co-terephthalate) and Montmorillonite[J], J. Appl. Polym. Sci.,2005,95(2): 386-392
    [92]Chivrac F, Kadlecova Z, Pollet E, Averous L. Aromatic Copolyester-based Nano-biocomposites:Elaboration, Structural Characterization and Properties[J], J. Polym.. Environ.,2006,14(4):393-401
    [93]Chivrac F, Pollet, E, Averous, L Nonisothermal Crystallization Behavior of Poly(butylenes adipate-co-terephthalate)/Clay Nano-biocomposites[J]. J. Polym. Sci., Part B:Polym. Phys.,2007,45(13):1503-1510
    [94]Ludvik CN, Glenn, GM, Klamczynski, AP, Wood, DF. Cellulose Fiber/Bentonite Clay/Biodegradable Thermoplastic Composites[J], J. Polym. Environ.,2007,15(4): 251-257
    [95]Dillon DR, Tenneti KK, Li CY, Ko FK, Sics I, Hsiao BS. On the structure and morphology of polyvinylidene fluoride-nanoclay nanocomposites[J], Polymer,2006, 47(5):1678-1688
    [96]Kelarakis A, Giannelis EP, Yoon K. Structure-properties relationships in clay nanocomposites based on PVDF/(ethyleneevinyl acetate) copolymer blends[J], Polymer,2007,48(26):7567-7572
    [97]Patro TU, Mhalgi MV, Khakhar DV, Misra A. Studies on poly(vinylidene fluoride)-clay nanocomposites:Effect of different clay modifiers[J], Polymer,2008, 49(16):3486-3499
    [98]Ogata N, Kawakage S, Ogihara T. Structure and thermal/mechanical properties of poly(ethylene oxide)-clay mineral blends[J], Polymer,1997,38(20):5115-5118
    [99]Choi HJ, Kim SG, Hyun YH, Jhon MS. Preparation and Rheological Characteristics of Solvent-Cast Poly(ethylene oxide)/Montmorillonite Nanocomposites[J], Macromol. Rapid Commun.,2001,22(5):320-325
    [100]Chen HW, Chang FC. The novel polymer electrolyte nanocomposite composed of poly(ethylene oxide), lithium triflate and mineral clay[J], Polymer,2001,42(24): 9763-9769
    [101]Liao B, Song M, Liang H, Pang Y. Polymer-layered silicate nanocomposites 1 A study of poly(ethylene oxide)/Na+-montmorillonite nanocomposites as polyelectrolytes and polyethylene-block-poly(ethylene glycol) copolymer/Na+-montmorillonite nanocomposites as fillers for reinforcement of polyethylene[J], Polymer,2001,42(25):10007-10011
    [102]Hyun, YH, Lim, ST, Choi, HJ, John, MS. Rheology of Poly(ethylene oxide)/Organoclay Nanocomposites[J], Macromolecules,2001,34(23),8084-8093
    [103]Hou SS, Bonagamba TJ, Beyer FL, Madison PH, Schmidt-Rohr K. Clay Intercalation of Poly(styrene-ethylene oxide) Block Copolymers Studied by Two-Dimensional Solid-State NMR[J], Macromolecules,2003,36(8):2769-2776
    [104]Xie W, Gao Z, Pan WP, Hunter D, Singh A, Vaia R. Thermal Degradation Chemistry of Alkyl Quaternary Ammonium Montmorillonite[J], Chem. Mater.2001,13(9): 2979-2990.
    [105]Imai Y, Nishimura S, Abe E, Tateyama H, Abiko A, Yamaguchi A, Aoyama T, Taguchi H. High-Modulus Poly(ethylene terephthalate)/Expandable Fluorine Mica Nanocomposites with a Novel Reactive Compatibilizer[J], Chem. Mater.,2002, 14(2):477-479
    [106]Boesel LF, Pessan LA. Mater. Sci. Forum,2002,403:89-94
    [107]Isci S, Gunister E, Ece OI, Gungor N. Mater. Lett.,2004,58(12-13):1975-1978
    [108]Nishino T, Sakagami Y. Polym. Prepr.(Japan.),2005,54(1):1113
    [109]Ray SS, Maiti P, Okamoto M, Yamada K, Ueda K. New Polylactide/Layered Silicate Nanocomposites.1. Preparation, Characterization, and Properties[J], Macromolecules,2002,35(8):3104-3110
    [110]Krikorian V, Pochan DJ. Poly (L-Lactic Acid)/Layered Silicate Nanocomposite: Fabrication, Characterization and Properties[J].Chem. Mater.,2003,15(22): 4317-4324
    [111]Krikorian V., Pochan DJ. Unusual Crystallization Behavior of Organoclay Reinforced Poly(L-lactic acid) Nanocomposites[J]. Macromolecules,2004,37(17): 6480-6491
    [112]Krikorian V, Pochan DJ. Crystallization Behavior of Poly(L-lactic acid) Nanocomposites:Nucleation and Growth Probed by Infrared Spectroscopy[J], Macromolecules,2005,38:6520-6527
    [113]Kubies D, Scudla J, Puffr R, Sikora A, Baldrian J, Kovarova J, Slouf M, Rypacek F. Eur. Polym. J.,2006,42 (4):888-899
    [114]Chrissafis K, Antoniadis G, Paraskevopoulos K, Vassiliou A, Bikiaris DN. Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(s-caprolactone) nanocomposites[J], Compos. Sci. Technol.,207,67(10): 2165-2174
    [115]Ray SS, Okamoto K, Maiti P, Okamotoa M. J. Nanosci. Nanotech.,2002,2:1-6.
    [116]Chen GX, Yoon JS. Nonisothermal Crystallization Kinetics of Poly(butylenes Succinate) Composites with a Twice Functionalized Organoclay[J], J. Polym. Sci. Part B:Polym. Phys.,2005,43(7):817-826
    [117]Chen GX, Yoon JS. Thermal stability of poly(L-lactide)/poly(butylene succinate)/clay nanocomposites[J]. Polym. Degrad. Stab.,2005,88(2):206-212
    [118]Chen GX, Kim ES, Yoon JS. Poly(butylene succinate)/twice functionalized organoclay nanocomposites:Preparation, characterization, and properties[J]. J. Appl. Polym. Sci.,2005,98(4):1727-1732
    [119]Kim HS, Chen, GX, Jin HJ, Yoon JS. Physicochemical and Engineering Aspects[J], Colloids Surf. A,2008, (313-314):56-59
    [120]Ray SS, Bousmina M, Okamoto K. Structure and Properties of Nanocomposites Based on Poly(butylene succinate-co-adipate) and Organically Modified Montmorillonite[J]. Macromol.Mater. Eng.,2005,290(8):759-768
    [121]Ray SS, Bousmina M. Crystallization Behavior of Poly[(butylene succinate)-co-adipate] Nanocomposite[J]. Macromol.Chem. Phys.,2006,207(14): 1207-1219
    [122]Ray SS, Bandyopadhyay J, Bousmina M. Thermal and thermomechanical properties of poly[(butylene succinate)-co-adipate] nanocomposite[J], Polym. Degrad. Stab., 2007,92 (5):802-812
    [123]Dillon DR, Tenneti KK, Li CY, Ko FK, Sics I, Hsiao BS. On the structure and morphology of polyvinylidene fluoride-nanoclay nanocomposites[J], Polymer,2006, 47(5):1678-1688
    [124]Strawheeker KE, Manias E. Structure and Properties of Poly(vinyl alcohol)/Na+ Montmorillonite Nanocomposites[J], Chem. Mater.,2000,12(10):2943-2949
    [125]Jimenez G, Ogata N, Kawai H. Structure and thermal/mechanical properties of poly (ε-caprolactone)-clay blend[J], J. Appl. Polym. Sci.,1997,64:2211-2220
    [126]Lim ST, Hyun YH, Choi HJ. Synthetic Biodegradable Aliphatic Polyester/Montmorillonite Nanocomposites[J], Chem. Mater.,2002,14(4): 1839-1844
    [127]Krikorian V, Pochan DJ. Poly (L-Lactic Acid)/Layered Silicate Nanocomposite: Fabrication, Characterization, and Properties. Chem. Mater.,2003,15,4317-4324
    [128]Buckley J, Cebe P, Cherdack D, Crawford J, Ince BS, Jenkins M, Pan J, Reveley M, Washington N, Wolchover N. Nanocomposites of poly(vinylidene fluoride) with organicallymodified silicate[J], Polymer,2006,47,2411-2422
    [129]Dillon DR, Tenneti KK, Li CY, Ko FK, Sics I, Hsiao BS. On the structure and morphology of polyvinylidene fluoride-nanoclay nanocomposites[J], Polymer, 2006,47:1678-1688
    [130]Nielsen LE. Mechanical properties of polymer and composites[M]. Vol 12 New York:Mareek Dekker,1981
    [131]Ray SS, Okamoto K, Okamoto M. Structure Property Relationship in Biodegradable Poly(butylene succinate)/Layered Silicate Nanocomposites[J], Macromolecules, 2003,36(7):2355-2367
    [132]Lee SR, Park HM, Lira H. Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites[J], Polymer,2002,43:2495-2500
    [133]殷敬华,莫志深.现代高分子物理学[M].北京:科学出版社,2001
    [134]Avrami M. Kinetics of Phase Change. I General Theory [J], J. Chem. Phys.,1939,7: 1103-1112
    [135]Avrami M. Kinetics of phase change II [J], J. Chem. Phys.,1940,8:212-224
    [136]Avrami M. Phase change and microstmcture[J], J. Chem. Phys.,1941,9(1):77-184
    [137]Wunderlich B. Macromolecular physics, crystal nucleation, growth, annealing[M],Vol. II. New York:Academic Press; 1976, Chap.6,147
    [138]Ozawa T. Kinetics of non-isothermal crystallization[J], Polymer,1971,12:150-158
    [139]余坚,何嘉松.聚合物熔体结晶的方式(Regime)理论[J].高分子通报.2001,1:25-33
    [140]Jiang L, Wolcott MP, Zhang J. Study of biodegradable polylactide/poly (butylene adipate-co-terephthalate) blends [J], Biomacromolecules,2006,7:199-207
    [141]Nabar YU, Draybuck D, Narayan R. Physicomechanical and hydrophobic properties of starch foams extruded with different biodegradable polymers [J], J. Appl. Polym. Sci.,2006,102:58-68
    [142]Iwakura Y, Li Y. Strengthening of poly (butylene adipate-co-terephthalate) by melt blending with a liquid crystalline polymer [J], J. Appl. Polym. Sci.,2008,109: 333-339
    [143]Raquez JM, Nabar Y. Novel high-performance talc/poly [(butylene adipate)-co-terephthalate] hybrid materials [J], Macromol. Mater. Eng.,2008,293: 310-320
    [1]Tserki V, Matzinos P, Pavlidou E, Vachliotis D, Panayiotou C. Biodegradable aliphatic polyesters. Part I. Propertiesand biodegradation of poly(butylene succinate-co-butylene adipate)[J], Polym. Degrad. Stab.,2006,91:367-376
    [2]Zhao JH, Wang XQ, Zeng J, Yang G, Shi FH, Yan Q. Biodegradation of poly(butylene succinate-co-butylene adipate) by Aspergillus versicolor[J], Polym. Degrad. Stab., 2005,90:173-179
    [3]Ren MQ, Song JB, Song CL, Zhang HL, Sun XH, Chen QY, Zhang HF, Mo ZS. Crystallization Kinetics and Morphology of Poly(butylene succinate-co-adipate) [J], J. Polym. Sci., Part B:Polym. Phys.,2005,43:3231-3241
    [4]Qiu ZB, Yan CZ, Lu JM, Yang WT, Ikehara T, Nishi T. Various Crystalline Morphology of Poly(butylene Succinate-co-butylene Adipate) in Its Miscible Blends with Poly(vinylidene Fluoride)[J], J. Phys. Chem. B,2007,111:2783-2789
    [5]Qiu ZB, Yan CZ, Lu JM, Yang WT. Miscible Crystalline/Crystalline Polymer Blends of Poly(vinylidene fluoride) and Poly(butylene succinate-co-butylene adipate): Spherulitic Morphologies and Crystallization Kinetics [J], Macromolecules,2007,40: 5047-5053
    [6]Kwei T. The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures [J], J. Poly. Sci.:Polym. Lett.,1984,22:307-313
    [7]Kuo S. Hydrogen-bonding in polymer blends[J], J. Polym. Res.,2008,15:459-486
    [8]Hofffman J, Weeks J. J. Chem. Phys.1965,42,4301.
    [9]Flory P. Principles of Polymer Chemistry [M], Ithaca, New York:Cornell University Press; 1953
    [10]Qiu ZB, Komura M, Ikehara T, Nishi T. DSC and TMDSC study of melting 65ydroxyl of poly(butylene succinate) and poly(ethylene succinate)[J], Polymer, 2003,44:7781-7785
    [11]Qiu ZB, Komura M, Ikehara T, Nishi T. Melting 65ydroxyl of poly(butylene succinate) in miscible blends with poly(ethylene oxide)[J], Polymer,2003,44: 3095-3099
    [12]Nishi, T.; Wang, T. Melting Point Depression and Kinetic Effects of Cooling on Crystallization in Poly(vinylidene fluoride)-Poly(methyl methacrylate) Mixtures[J], Macromolecules,1975,8(6):909-915
    [13]Coleman M, Lichkus A, Painter P. Thermodynamics of hydrogen bonding in polymer blends.3. Experimental studies of blends involving poly(4-vinylphenol)[J], Macromolecules,1989,22(2):586-595
    [14]Marija S, Jasna D. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s[J], Polym. Degrad. Stab.,2001,74:263-270
    [15]Xing P, Dong L, An Y, Feng Z, Avlla M, Martuscelli E. Miscibility and Crystallization of Poly(β-hydroxybutyrate) and Poly(p-vinylphenol) Blends[J], Macromolecules,1997,30(9):2726-2737
    [16]Qin C, Pires A, Belfiore L. Polym. Commun.,1990,31:177
    [17]Avrami M. Kinetics of Phase Change. Ⅰ General Theory [J], J. Chem. Phys.,1939,7: 1103-1112
    [18]Avrami M. Kinetics of phase change Ⅱ [J], J. Chem. Phys.,1940,8:212-224
    [19]Avrami M. Phase change and microstructure[J], J. Chem. Phys.,1941,9:177-184
    [20]Wunderlich B. Macromolecular physics, crystal nucleation, growth, annealing [M], vol. II. New York:Academic Press; 1976
    [21]Kuo S, Chan S, Chang F. Crystallization kinetics and morphology of binary phenolic/poly(ε-caprolactone) blends[J], J. Polym. Sci. Part B:Polym. Phys.,2004, 42(1):117-128
    [22]殷敬华,莫志深.现代高分子物理学[M].北京:科学出版社,2001
    [23]Chen HL, Wang SF, Lin TL. Morphological Structure of Crystalline Polymer Blend Involving Hydrogen Bonding:Polycaprolactone/Poly(4-vinylphenol) System[J], Macromolecules 1998,31,8924-8930
    [24]Defieuw G, Groenincx G, Reynaers H. Miscibility, crystallization and melting 66ydroxyl, and semicrystalline morphology of binary blends of polycaprolactone with poly(66ydroxyl ether of bisphenol A)[J], Polymer 1989,30(12),2164-2169
    [25]Talibuddin S, Wu L, Runt J, Lin JS. Microstructure of Melt-Miscible, Semicrystalline Polymer Blends[J], Macromolecules 1996,29,7527-7535
    [26]Chen HL, Li LJ, Lin TL. Formation of Segregation Morphology in Crystalline/Amorphous Polymer Blends:Molecular Weight Effect[J], Macromolecules 1998,31,2255-2264
    [27]Runt J, Zhang X, Miley DM, Gallagher KP, Zhang A. Phase behavior of poly(butylene terephthalate)/polyarylate blends[J], Macromolecules 1992,25, 3902-3905
    [28]Hoffman, J. D.; Miller, R. L. Polymer 1997,38,3151
    [29]Hoffman, J. D.; Weeks, J. J. J. Res. Natl. Bur. Stand. A:Phys. Chem.1962,66A,13
    [30]Gordon M, Taylor JS. Ideal copolymers and the second-order transitions of synthetic rubbers. i. non-crystalline copolymers[J], J. Appl. Chem.,1952,2:493-500
    [31]Prud'homme RE. Miscibility phenomena in polyester/chlorinated polymer blends [J], Polym. Eng. Sci.,1982,22:90-95
    [32]Shafee E. Dielectric relaxation study of atactic poly(epichlorohydrin)/poly(3-hydroxybutyrate) blends[J], Eur. Polym. J.,2002,38(3): 413-421
    [33]Keith HD, Padden Jr. FJ, Lotz B, Wittmann JC. Asymmetries of habit in polyethylene crystals grown from the melt[J], Macromolecules,1989,22(5):2230-2238
    [34]Abo el Matty M, Bassett D. On fold surface ordering and re-ordering during the crystallization of polyethylene from the melt[J], Polymer,2001,42:4957-4963
    [35]Schultz J. Self-induced field model for crystal twisting in spherulites[J], Polymer, 2003,44:433-441
    [36]Singfield K, Brown G. Optically Active Polyethers.1. Studies of the Crystallization in Blends of the Enantiomers and the Stereoblock Form of Poly(epichlorohydrin)[J], Macromolecules,1995,28(4):1290-1297
    [37]Nikolic MS, Djonlagic J. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s[J], Polym. Degrad. Stab.,2001,74(2): 263-270
    [38]Zhang U, Zheng H, Lou X, Ma D. Crystallization characteristics of polypropylene and low ethylene content polypropylene copolymer with and without nucleating agents[J], J. Appl. Polym. Sci.,1994,51:51-56
    [39]Ozawa T. Kinetics of non-isothermal crystallization[J], Polymer,1971,12,150-158
    [1]Xing P, Dong L, Feng Z. Miscibility and specific interactions in poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(p-vinylphenol) blends[J], Euro. Polym.1998,34:1207-1211
    [2]Chiu H. Miscibility and Crystallization Kinetics of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(methyl methacrylate) Blends[J], J. Appl. Polym. Sci.,2004,91:3595-3603
    [3]Chiu H. Miscibility and Crystallization Behavior of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(vinyl acetate) Blends[J], J. Appl. Polym. Sci.,2006,100:980-988
    [4]Ma C, Wu H, Su Y, Lee M, Wu Y. Pultruded fiber reinforced novolac type phenolic composite-processability, mechanical properties and flame resistance[J], Composites Part A,1997,28A:895-900
    [5]Kuo S. Hydrogen-bonding in polymer blends[J], J. Polym. Res.,2008,15:459-486
    [6]Nishi T, Wang T. Melting Point Depression and Kinetic Effects of Cooling on Crystallization in Poly(vinylidene fluoride)-Poly(methyl methacrylate) Mixtures[J], Macromolecules,1975,8(6):909-915
    [7]Flory P. Principles of Polymer Chemistry. Ithaca, New York:Cornell University Press; 1953
    [8]Avella M, Martuscelli E. Poly-d(-)(3-hydroxybutyrate)/poly(ethylene oxide) blends: phase diagram, thermal and crystallization behaviour[J], Polymer,1988,29: 1731-1737
    [9]Graf JF, Coleman MM, Painter PC. The MG&PC Software, V1.1. Technomic Publishing:Lancaster,1991.
    [10]Scandola M, Focarete ML, Adamus G, Sikorska W, Baranowska I, Swierczek S, Gnatowski M, Kowalczuk M, Jedlinski Z. Macromolecules,1997,30(9):2568-2574
    [11]Xing P, Dong L, An Y, Feng Z, Avlla M, Martuscelli E. Miscibility and Crystallization of Poly(β-hydroxybutyrate) and Poly(p-vinylphenol) Blends[J], Macromolecules, 1997,30:2726-2733
    [12]Zhang LL, Goh SH, Lee SY, Hee GR. Miscibility, melting and crystallization behavior of two bacterial polyester/poly(epichlorohydrin-co-ethylene oxide) blend systems[J], Polymer,2000,41:1429-1439
    [13]Keith HD, Padden Jr FJ, Lotz B, Wittmann JC. Asymmetries of habit in polyethylene crystals grown from the melt[J], Macromolecules,1989,22:2230-2238
    Abo el Matty M, Bassett D. On fold surface ordering and re-ordering during the [14] crystallization of polyethylene from the melt[J], Polymer,2001,42:4957-4963
    [15]Schultz J. Self-induced field model for crystal twisting in spherulites[J], Polymer, 2003,44(2):433-441
    [16]Singfield K, Brown G. Optically Active Polyethers.1. Studies of the Crystallization in Blends of the Enantiomers and the Stereoblock Form of Poly(epichlorohydrin)[J], Macromolecules,1995,28(4):1290-1297
    [17]Qiu Z, Yang W. Crystallization kinetics and morphology of poly(butylene succinate)/poly(vinyl phenol) blend[J], Polymer,2006,47:6429-6437
    [18]Qiu Z, Fujinami S, Komura M, Nakajima K, Ikehara T, Nishi T. Miscibility and crystallization of poly(ethylene succinate)/poly(vinyl phenol) blends[J], Polymer, 2004,45:4515-4521
    [19]Kuo S, Chan S, Chang F. Crystallization kinetics and morphology of binary phenolic/poly(e-caprolactone) blends[J], J. Polym. Sci. Part B:Polym. Phys.,2004, 42(1):117-128
    [1]Qiu ZB, Komura M, Ikehara T, Nishi T. Poly(butylene succinate)/poly(vinyl phenol) blends. Part 1. Miscibility and crystallization[J], Polymer,2003,44:8111-8117
    [2]Qiu ZB, Yang WT. Crystallization kinetics and morphology of poly(butylene succinate)/poly(vinyl phenol) blend[J], Polymer,2006,47:6429-6437
    [3]Yen KC, Mandal TK, Woo EM. Enhancement of bio-compatibility via specific interaction in polyesters modified with a bio-resourceful macromolecular ester containing polyphenol groups [J], J. Biomed. Mater. Res. Part A,2007,86:701-712
    [4]马志红,单宁酸的化学性质及应用[J],天然产物研究与开发,2003,15(1),87
    [5]Haslam E. Tannins. Polyphenols and molecular complexion [J],林产化学与工业,1992,12(1):1
    [6]Shi B, He XQ, Haslam E. Gelatin-polyphenol interaction [J], J. Am. Leather Chem. Assoc.,1994,89:96
    [7]Spencer C, Cai Y, Martin R, Gaffney SH, Goulding SH. Studies on dental caries prevention by traditional medicines. Ⅷ Inhibitory effect of various tannins on glucan synthesis by glucosyltrans ferase from Streptococcus mutants [J], Chem. Pharm. Bull.,1986,34(2):720-725
    [8]Hirono I. Naturally occurring carcinogens of plant origin[M], Elsevier, Amsterdam, 1987:161
    [9]Qiu ZB, Komura M, Ikehara T, Nishi T. DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate)[J], Polymer, 2003,44:7781-7785
    [10]Qiu ZB, Komura M, Ikehara T, Nishi T. Melting behaviour of poly(butylene succinate) in miscible blends with poly(ethylene oxide)[J], Polymer,2003,44: 3095-3099
    [11]Chen HL, Wang SF, Lin TL. Morphological Structure of Crystalline Polymer Blend Involving Hydrogen Bonding:Polycaprolactone/Poly(4-vinylphenol) System[J], Macromolecules 1998,31,8924-8930
    [12]Defieuw G, Groenincx G, Reynaers H. Miscibility, crystallization and melting behaviour, and semicrystalline morphology of binary blends of polycaprolactone with poly(hydroxy ether of bisphenol A)[J], Polymer 1989,30(12),2164-2169
    [13]Talibuddin S, Wu L, Runt J, Lin JS. Microstructure of Melt-Miscible, Semicrystalline Polymer Blends[J], Macromolecules 1996,29,7527-7535
    [14]Chen HL, Li LJ, Lin TL. Formation of Segregation Morphology in Crystalline/Amorphous Polymer Blends:Molecular Weight Effect[J], Macromolecules 1998,31,2255-2264
    [15]Runt J, Zhang X, Miley DM, Gallagher KP, Zhang A. Phase behavior of poly(butylene terephthalate)/polyarylate blends[J], Macromolecules 1992,25, 3902-3905
    [1]Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwe W, Muller R. Biodegradation of aliphatic-aromatic copolyesters:evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates[J], Chemosphere,2001,44:289-299.
    [2]Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez R. Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part Ⅱ:Laboratory simulated conditions[J], Chemosphere,2008,71(9):1607-1616
    [3]Witt U, Miiller R, Deckwer W. Studies on sequence distribution of aliphatic/aromatic copolyesters by high-resolution 13C nuclear magnetic resonance spectroscopy for evaluation of biodegradability[J], Macromol. Chem. Phys.,1996,197:1525-1535
    [4]Witt U, Miiller R, Deckwer W. New biodegradable polyester-copolymers from commodity chemicals with favorable use properties[J], J. Environ. Polym. Degrad.,1995,3:215-223
    [5]Witt U, Miiller R, Deckwer WJ. Biodegradation behavior and material properties of aliphatic/aromatic polyesters of commercial importance[J], Environ. Polym. Degrad.,1997, 5(2):81-89
    [6]Rantze E, Kleeberg I, Witt U, Muller R, Deckwer W. Aromatic components in copolyesters model structures help to understand biodegradability[J], Macromol. Symp.,1998,130: 319-326
    [7]Kuwabara K, Gan Z, Nakamura T, Abe H, Doi Y. Crystalline/Amorphous Phase Structure and Molecular Mobility of Biodegradable Poly(butylene adipate-co-butylene terephthalate) and Related Polyesters[J], Biomacromolecules,2002,3(2):390-396.
    [8]Cranston E, Kawada J, Raymond S, Morin F, Marchessault R. Cocrystallization Model for Synthetic Biodegradable Poly(butylene adipate-co-butylene terephthalate)[J], Biomacromolecules,2003,4(4):995-999
    [9]Shi X, Ito H, Kikutani T. Characterization on mixed-crystal structure and properties of poly(butylene adipate-co-terephthalate) biodegradable fibers[J], Polymer,2005,46(25): 11442-11450
    [10]Jiang L, Wolcott M, Zhang J. Study of Biodegradable Polylactide/Poly(butylene adipate-co-terephthalate) Blends[J], Biomacromolecules,2006,7:199-207
    [11]Coltelli M, Maggiore I, Bertoldo M, Signori F, Bronco S, Ciardelli FJ. Poly(lactic acid) properties as a consequence of poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization[J], Appl. Polym. Sci.,2008,110:1250-1262
    [12]Iwakura Y, Li Y, Nakayama K, Shimizu H. Strengthening of poly(butylene adipate-co-terephthalate) by melt blending with a liquid crystalline polymer[J], J. Appl. Polym. Sci.,2008,109:333-339
    [13]Someya Y, Sugahara Y, Shibata M. Nanocomposites based on poly(butylene adipate-co-terephthalate) and montmorillonite[J], J. Appl. Polym. Sci.,2005,95:386-392
    [14]Someya Y, Kondo N, Shibata M. Biodegradation of poly(butylene adipate-co-butylene terephthalate)/layered-silicate nanocomposites[J], J. Appl. Polym. Sci.,2007,106:730-736
    [15]Chivrac F, Pollet E, Ave'rous L. Nonisothermal Crystallization Behavior of Poly(butylenes adipate-co-terephthalate)/Clay Nano-biocomposites[J], J. Polym. Sci. Part B:Polym. Phys., 2007,45:1503-1510
    [16]Ray S, Okamoto M. Polymer/layered silicate nanocomposites:a review from preparation to processing[J], Prog. Polym. Sci.,2003,28:1539-1641
    [17]Ray S, Bousmina M. Poly(butylene sucinate-co-adipate)/montmorillonite nanocomposites: effect of organic modifier miscibility on structure, properties, and viscoelasticity[J], Polymer,2005,46:12430-12439
    [18]Cloisite 30B Data Sheet; Southern Clay Products:Gonzales, TX,2010
    [19]Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation of glass-forming melts. I. Theory[J], J. Non-Cryst Solids,1993,162:1-12
    [20]Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation of glass-forming melts. II. Experimental evidence[J], J. Non-Cryst Solids,1993,162:13-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700