用户名: 密码: 验证码:
纳米压印复型精度控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物质在纳米尺度下表现出的奇异现象和规律将改变相关理论的现有框架,使人们对物质世界的认识进入到崭新的阶段,孕育着新的技术革命,给材料、信息、绿色制造、生物和医学等领域带来极大的发展空间。纳米科技已成为许多国家提升核心竞争力的战略选择,也是我国有望实现跨越式发展的领域之一。
     纳米结构是研究纳米科技的物质基础,随着集成电路特征尺寸的不断减小,传统的光刻技术正面临成本和工艺的重重困难,已成为当今世界科学研究亟待解决的难题之一,纳米压印技术由此而生。纳米压印技术作为一种新的纳米结构制造工艺,与其它光刻技术相比,具有加工精度高、生产效率高、成本低、易于实现产业化的突出优点,有望尽快实现几十纳米特征线宽结构的加工、进而在集成电路、微细加工、生物传感器、光学器件等应用领域获得重大突破,是国际学术界研究的前沿课题之一,已经引起各国政府高度重视,本文的研究正是在这样的背景下进行的,课题研究得到上海市科技发展基金项目的资助。
     尽管纳米压印技术原理简单、具有无法替代的优势,但由于纳米压印工艺加工的对象是纳米级图形结构,其操作对象极精密,所以工艺过程的每一步都对设备和操作有近似苛刻的严要求,技术含量很高,且这项新技术本身尚处于发展前期,设备和工艺还在摸索阶段,有许多急需解决的技术难题,尤其是调平和对准系统精度性能、模板加工精度性能、压印图形转移层性能及涂覆控制、纳米压印工艺等更成为限制纳米压印技术应用推广的瓶颈,是直接影响纳米压印复型精度的关键技术。
     纳米压印技术的强大生命力就在于其极高的加工精度,因此本文沿纳米压印工艺路线,以纳米压印关键技术为节点,围绕提高纳米压印复型精度目的,研究了冷压印工艺中影响压印复型精度的各种因素,对压印设备因素中直接影响纳米压印复型精度的核心因素——纳米压印设备调平和对准用精密定位系统进行了详细研究。构建了二级系统动力学控制模型,建立了二级驱动系统状态空间数学模型。对二级驱动精密定位系统进行了精度分析,通过建模分析了系统结构参数对超精密定位系统精度的影响,并对系统精度进行了仿真实验。应用滑模变结构理论对宏、微二级驱动系统进行复合控制,通过正交试验,得到了压印复型精度较高的二级系统控制方案,并通过试验验证了控制方案的有效性和可行性,调平后的压印复型图案清晰、留膜厚度均匀、压印复型精度高;控制方案优化后对准精度达到245nm。
     结构和工艺参数是直接影响压印复型精度的内在因素,详细研究了冷压印工艺中直接影响纳米压印复型精度的结构和工艺因素,即模板和图形转移介质因素。研究了模板材料性能和结构以及抗粘连技术、模板图形特征结构对压印复型精度的影响,建立了模板设计数学模型;研究了光刻胶物理化学性能和图形转移层厚度以及均匀性对压印复型精度的影响,建立了图形转移层厚度与涂覆工艺控制的数学模型。在对压印复型精度影响因素综合分析的基础上,做了冷压印正交试验。并用极差分析法对实验结果进行了分析,得出了各因素对压印复型精度指标的影响力大小次序,找出了使压印复型精度(试验指标)值变化最显著的工艺因素;同时得到了各因素、水平对压印复型精度的影响变化规律;经过优化得到了一套压印复型精度较高的冷压印工艺方案,并应用该方案在硅基图形转移层上得到了小于10%的复型精度。为制定合理的纳米压印工艺提供了实验依据。
     本文的创新之处主要可以归纳为以下几点:
     1、采用宏、微二级驱动超精密定位系统实现纳米压印设备调平和对准功能,应用滑模变结构理论对宏、微二级驱动系统进行复合控制,控制方案优化后纳米压印设备调平和对准性能好,对准精度达到了245nm。
     2、提出一种压印复型精度高的冷压印工艺控制方法,并应用该方法通过试验在硅基图形转移层上得到了小于10%的复型精度。
     3、通过正交试验和极差分析,找到了纳米冷压印工艺中影响复型精度的各主要因素与压印复型精度之间的变化规律,并得到了各因素影响力大小次序。
     4、建立了冷压印工艺模板设计数学模型,通过试验定性分析了模板图形结构对压印复型精度的影响。
     5、建立了冷压印工艺图形转移层厚度与涂覆工艺参数控制数学模型,并通过实例验证了其合理性。
Along with the decrease of integrated circuit's critical dimension, conventional projection lithography is facing the problem of cost and technology, becoming one of difficult science research problems to be solved in the world .Conventional theory may no longer apply and new phenomena emerge, nanoimprint lithography. It has the advantage over conventional nanofabrication methods, high resolution, low cost and high throughput, suitable for industrial production.
    Although nanoimprint lithography has great advantage and prospect application, the nanometer stamping craft processing object is the nanometer level pattern structure, its operation object extremely precise. Therefore each step of technological process has the approximate strict request to the equipment and the operation, the technical content is very high, also this new technical itself still was in the development earlier period, many technical difficult problem should be solved, such as stamp design and fabrication; anti-sticking technology; physical and chemistry performance of resist; the thickness and uniformity of transfer layer.
    Multifarious nanoimprint lithography techniques are described in the paper. All these techniques are classified according to their process and principle. Their advantages and disadvantages are shown. Mainly, do research in room temperature lithography.
    Research in the principle and process of nanoimprint and duplicate precision related to many different causes: method of stamp design and fabrication; anti-sticking technology; physical and chemistry performance of resist; the thickness and uniformity of transfer layer.
    According to alignment requirement, design the dual level precise positioning system and the performance analysis; dynamics analysis, dual stage system control model, analyzed the system design parameter to the ultra precise positioning system; finally confirm that the system has achieved the precision.
    In the area of controller design, the paper uses increment PID method, nerve cell self adaptive PID method to control linear motor and micro table.designs a sliding
     adaptive controller for the total macro-micro system. Nerve cell is the basic cell of neural net, it has self learning and adaptive ability, the algorithm is easy to calculate. The traditional PID adjuster has a simple structure, it can be easy to adjust, its parameter adjustment has a great relationship with engineering index, but its arameter can not be adjusted in real time and it also can not have a satisfying effect in controlling complex processing or time slow varying system. The combination of two method can solve these problems.
     At last, the comparison and analysis of experimental results validated the feasibility and advantage of dual-driven technique, the dual active high speed high precision robot has performances of large displacement, high precision, high speed, high resolution.
     In the paper, study of other two technologies which directly influence nanoimprint duplicate precision, namely stamp and transfer layer template technology, including the method of stamp design and fabrication; anti-sticking technology; physical and chemistry performance of resist; the thickness and uniformity of transfer layer; Finally do a lot of experiments about room temperature lithography to prove the principle.
     Through the orthogonal experiment, it has confirmed that dual level precise positioning system is validity and the feasibility, the duplicate precision is high. After the leveling, stamping duplicate design clear, keeps film thickness evenly, the stamping duplicate precision is high; the control optimizes aims at the precision to be possible to reach 245nm
     Take room temperature lithography process as the basis, closely revolved to enhance technologies which directly influence nanoimprint duplicate precision, namely stamp and transfer layer template technology, including the method of stamp design and fabrication; anti-sticking technology; physical and chemistry performance of resist; the thickness and uniformity of transfer layer;
     Establish the mathematical model of transfer layer thickness and the spin coating process.
     In to the stamping duplicate precision influence factor generalized analysis foundation in, withdrew influence to be big, to have a condition controllable dish factor, in the application mathematical statistic experiment design orthogonal experiment design law, take these 7 influences factor as the orthogonal experiment factor. And has carried on the analysis with in the data analysis and the theory of error range analytic method to the experimental result, has obtained various factors to the stamping duplicate precision target influence size order, explained factor when experimental scope value, causes the stamping duplicate precision (experimental target) the value change to be biggest; Simultaneously obtained various factors, the level to the stamping duplicate precision influence change tendency.
     Finally do a lot of experiments about room temperature lithography to prove the principle. Obtained a set of stampings duplicate precisions, after the optimization, obtained on the silicon base pattern have been smaller than 10% duplicate precision.
     In the finality, the problems requiring further studies are discussed.
引文
[1] http://www.itrs.net/Common/2004Update/2004 000 ORTC.pdf
    [2] Ito T, Okazaki S.Pushing the limits of lithography [J]. Science. 2000, 406: 1027~1031.
    [3] Chou S Y, Kelmel C. Ultrafast and Direct imprint of Nanostructure s in Silicon. Nature, 2002, 417(20): 835~838.
    [4] Chou.S.Y, Krauss.P. R, Renstrom.P.J. Imprint lithography with 25-nanometer resolution [J]. Science, 1996, 272: 85-87.
    [5] Jake way S C, Crabtree HJ, Veres T et al. Transition of MEMS technology to nanofabrication[C]. ICMENS' 03 2003 ,Banff ,Alberta ,Canada ,2003. 118 - 122.
    [6] Heyderman L J, Schift H. David C, et al. Nanofabrication Using Hot Embossing Lithography and Electroforming. Microelectronic Engineering,2001, 57~58:375~380
    [7] Zankovych S, Hoffmann T, Seekamp J, et al. Nanoimprint lithography: challenges and prospects [J]. Nanotechnology, 2001,12:91-95.
    [8] http://www.molecularimprints.com/NewsEvents.
    [9] Http://www.amo.de/arnica/nanoimprint.html
    [10] Http://willson.cm.utexas.edu/Research/Sub-Files/SFIL/Publications
    [11] Watanabe K, Morita T, Kometani R. Nanoimprint using three- dimensional microlens mold made by focused - ion - beam chemical vapor deposition [J]. Journal of vacuum science &technology B: Microelectronics and nanometer structures, 2004, 22(1): 22 - 26.
    [12] Kumar A, Whitesides G M.Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol "ink" followed by chemical etching [J]. Appl phys Lett, 1993, 64 (14): 2002-2004.
    [13] Kumar A, Biebuyck H A, Whitesides G M. Patterning self-assembled monolayers: applications in materials science [J]. Langmuir, 1994, 10: 1498-1511.
    [14] Kim E, Xia Y, Whitesides G M. Polymer microstructures formed by moulding in capillaries [J]. Nature, 1995, 376: 581-584.
    [15] Xia Y, Kim E, Zhao X M, et al. Complex optical surfaces formed by replica molding against electrometric masters [J]. Science, 1996, 273: 347-349.
    [16] Resnick D J, Mancini D, Dauksher WJ et al. Improved step and flash imprint lithography templates for nanofabrication [J] Microelectronic engineering, 2003, 69 (2-4): 412-419.
    [17] A. Lebib, Y. Chen, E. Cambril, E Youinou, V. Studer, M. Nactali, A. Pepin, H. M. Janssen, R. E Sijbesma. Room - temperature and low pressure nanoimprint lithography [J]. Microelectronic engineering ,2002,61~62:371~377
    [18] Vratzov B,Fuchs A,Lemme Met al. Large scale ultraviolet-based nanoimprint lithography [J]. Journal of vacuum science &technology B: microelectronics and nanometer structures, 2003, 21(6): 2760 - 2764.
    [19] Schulz H, Wissen M, Scheer H C.Local mass transport and its effect on global pattern replication during hot embossing [J]. Microelectronic engineering, 2003, 67:657 - 663.
    [20] Http://www.nanonex.com/Technology.htm
    [21] Http://www.Molecular imprints.com/Technology/stepandrepeat.html
    [22] Heyderman L J, Schift H. Flow Behaviour of Thin Polymer Films Used for Hot Embossing Lithography. MicroelectronicEngineering, 2000, 54:229~245
    [23] E Carcenac, C. Vieu, A. lebib, Y. Chen, L. Manin - Ferlazzo, and H. Launois. Fabrication of high density nanostructures gratings (>500Gbit/inc) used as molds for nanoimprint lithography[J].Microelectronic engineering ,2000,53:163~166
    [24] Colburn M, Grot A, Amistoso M, et al. Step and flash imprint lithography for sub-100nm patterning [A]. Proc SPIE [C], 2000,3997:453.
    [25] Zhang W, Chou S Y. Fabrication of 60 - nm transistors on - in. wafer using nanoimprint at all lithography levels [J] .Applied physics letters ,2003,83(8) :1632 - 1634.
    [26] S.Y.Chou, P. R. Krauss, and P. Renstrom. Imprint of sub -25 nm vias and trenches in polymers [J]. Appl. Phys. Lett., 1995, 67:3113
    [27] Kim E, Xia Y, Whitesides G M. Micromolding in capillaries: applications in materials science [J]. J Am Chem Soc, 1996, 118: 5722-5731.
    [28] Jackmann R J, Wilbur J L, Whitesides G M. Fabrication of submicrometer features on curved substrates by microcontact printing [J]. Science, 1995, 269: 664-665.
    [29] A. Pepin, P. Youinou, V.studer, A. Lebib, Y.Chen.Nanoimprint lithography for the fabrication of DNA electrophoresis chip [J]. Microelectronic engineering ,2002,61~62:927~932
    [30] Chou.S.Y, Krauss.P. R, Zhang.W, et al. Sub-10nm imprint lithography and applications [J]. J Vac Technol B, 1997, 15 (6): 2897-2904.
    [31] Zhang W, Chou.S.Y. Multilevel nanoimprint lithography with submicron alignment over 4 in. Si wafers [J]. Appl. Phys. Lett, 2001, 79(6): 845~847.
    [32] Nanonex Corp. web site: http://www.nanonex.com/
    [33] Advanced Micro-electronic Center Aachen web site: http://www.amo.de/amica/
    [34] http://www.amo.de/nil_process.html
    [35] http://www.molecularimprints.com/NewsEvents/news_articles05/MICRO-Mag-Final.pdf.
    [36] 叶声华,王仲,曲兴华.精密测试技术展望[J]中国机械工程,2000.3 Vol.11.NO.3:262-263
    [37] 胡小唐,禹国强,刘安伟等.三维一体化超微定位系统的研制[J].电子显微学报,1999.2.Vol.1.NO.1:141-144
    [38] 李圣怡,黄长征,王贵林.微位移机构研究[J]航空精密制造技术,2000.8 Vol.36.No.4:5-9
    [39] 宋文荣、于国飞、王延风等.六维磁悬浮纳米级精密工件台的研究[J],微细加工技术,2003.3,No.1:15-21
    [40] 董申,陈丽霞,刘海龙.微动工作台的研制及特性研究[J]航空精密制造技术,1998 Vol.34.NO.6:1~3
    [41] A.T.Elfizy, G.M.Bone, M.A.Elbestawi, Model-based controller design for machine tool feed drives, International Journal of Machine Tools&Manufacture 44(2004) 465-477,2003.11.
    [42] A.T.Elfizy, G.M.Bone, M.A.Elbestawi, Design and control of a dual-stage feed drive, International Journal of Machine Tools&Manufacture 45(2005) 153-165.2004.6
    [43] Chang-Woo Lee and Seung-Woo Kim,An ultraprecision stage for alignment of wafers in advanced microlithography, Precision Engineering 21:113-122,1997.
    [44] Heui Jae Pahk,Dong Sung Lee,Jong Ho Park,Ultra precision system for servo motor-piezo actuator using the dual servo loop and digital filter implementation, International Journal of Machine Tools & Manufacture 41 (2001)51-63.2000
    [45] 王纪武,陈恳,李嘉.典型柔性铰链的结构参数对其刚度性能影响的研究[J].机器人,2001.1Vol.23.No.1:51-57.
    [46] 邓辉.纳米级六自由度微动工作台超精定位控制方法的研究[D].合肥:合肥工业大学仪器仪表学院,2004.
    [47] 孙立宁,王振华,曲东升等.六自由度压电驱动并联微动机构设计与分析[J]压电与声光,2003.8,Vol.25.No.4:277-279.
    [48] A.A.Elmustafa, MaxG. Flexural-hinge guided motion nanopositioner stage for precision maching: finite element simulations. [J]. Precision Engineer, 25(2001): 77-81.
    [49] 刘广玉,周浩敏.微机械电子系统及其应用,[M].北京航天航空大学出版社,2002.5
    [50] 胡德佑,李向春.伺服系统设计指导.[M].北京:北京大学出版社,2000.2
    [51] 艾武,程立,杜志强等.基于DSP的短行程直线电机位置控制.[J].伺服控制.2005(3)
    [52] 陶永华,葛芦生等.新型PID控制及其应用.[M].机械工业出版社,1998.9
    [53] 韩致信,姚运萍等.机械自动控制工程.[M].科学出版社,2004
    [54] 黄文梅等.系统仿真分析与设计-MATLAB语言工程应用.[M].国防科学技术大学出版社,2001
    [55] 王沫然.MATLAB6.0与科学计算.[M].电子工业出版社,2001
    [56] 张崇巍,李汉强.运动控制系统.[M].武汉理工大学,2001.11
    [57] 杨伯源,袁曾怀.材料力学[M].北京:科学技术文献出版社,1993.12.121-305.
    [58] 庞振基.精密机械及仪表零件手册[M]北京:机械工业出版社,1993-7.
    [59] 费业泰,误差理论与数据处理[M].北京机械工业出版社,1995-5.9-106.
    [60] 吴锡祺,何镇湖,多级分布式控制与集散系统.[M].中国计量出版社,1995.5
    [61] 合肥工业大学理论力学教研室.理论力学.[M].合肥:中国科技大学出版社,1995.2.95-112
    [62] 顾文琪主编.电子束曝光微纳加工技术.[M].北京:北京工业大学出版社,1995.7
    [63] 施敏著,赵鹤鸣,钱敏等译.半导体器件物理与工艺[M].苏州大学出版社,2002,12
    [64] Katsumi Suzuki, Shinji Matsui and Yukinori Ochiai. Sub-Half-Micron Lithography for ULSIs [M]. Cambridge: Cambridge University Press, 1999.107-273
    [65] Takashi Ito, Shinji Okazaki. Pushing the limits of lithography [J]. Nature, 2000, 406:10271031.
    [66] S Y Chou, P R Krauss. Sub-10 n m imprint lithography and applications [J]. J Vac Sci Technol B, 1997,15(6): 2897—2898
    [67] S Zankovych, T Hoffmann, J Seekamp et al. Nanoimprint lithography: challenges and prospects [J]. Nanotechnology, 2001,12: 9195.
    [68] C.J. Mackay. Development of a Baseline Process for the Integration of Step and Flash Imprint Lithography into a MOSFET Fabrication Process. 2002.
    [69] Imprint Lithography for Gate Level Pateming of a MOSFET Device [J]. SPIE 5037,2003.
    [70] 秦旭光,李涤尘等.微压印光刻的模具制作工艺研究[J].电子工艺技术,2003,5:207209
    [71] 沈文正.实用集成电路工艺手册[M].西安:宇航出版社,1987.8081
    [72] L. F. Thompson et al. Introduction to microlithography theory, materials, and processing[M]. Seatle, Wash, 1983.1-120.
    [73] Emslie A.G, Bonner F.T., Peck L.G,. Flow of a viscous liquid on a rotating disk[J]. Journal of Applied Physics, 1958, 29: 858-862.
    [74] CHING-TA WANqSHI CHERN YEN. Theoretical analysis of film uniformity in spinning processes [J]. Chemical Engineering Science, 1995,50:989 999.
    [75] Harry J. Levinson. Principles of lithography [M]. Bellingham, Washington, USA: SPIE Press, 2001.229—253.
    [76] Acrivos A., Shah M.J., Petersen E.E. On the flow of anon-Newtonian liquid on a rotating disk[J]. Journal of Applied Physics, 1960, 31: 963—968.
    [77] Jenekhe S.A and Schuldt S.B. Coating Flow of Non-Newtonian fluids [J].Ind Engng Chem Fundam,1984,23:432-436.
    [78] Jenekhe S.A and Schuldt S.B. Flow and Film thickness of Bingham plastic liquids on a rotating disk [J]. Industrial Engineering Community, 1985,33:135-147
    [79] Higgins, B.G, Film flow on a rotating disk[J]. Physics Fluids,1986,29:3522 3529.
    [80] Rehg T.J. and Higgins B.G The effect of inertia and interracial shear on a rotating disk [J]. Physics Fluids, [29] Lawrence C.J. The mechanics of spin coating of polymer films [J]. Physics of Fluids, 1988,31: 2786—2795.
    [81] Lawrence C.J. Spin coating with slow evaporation [J]. Physics of Fluids A, 1989, 2(3): 453-456.
    [82] S Y Chou, Chris Keimel, Jian Gu. Ultrafast and direct imprint of nanostructures in silicon [J]. Nature, 2002,417(20): 835-837.
    [83] Xia, Y, Whitesides, G.M. Soft Lithography [J]. Angew Chem Int, 1998, 37550 575.
    [84] James L Wilbur, Amit Kumar, Hans A Biebuyck, Enoch Kim and George M Whitesides. Microcontact printing of self-assembled monolayers: applications in microfabrication [J]. Nanotechnology, 1996,7:452-457.
    [85] Thomas K Whidden, David K Ferry, Michael N Kozicki, Enoch Kim, Amit Kumar, James Wilbur and George M Whitesides. Pattern transfer to silicon by microcontact printing and RIE [J]. Nanotechnology, 1996,7: 447451.
    [86] M.M. Alkaisi, R.J. Blaikie, S.J. McNab.Low temperature nanoimprint using silicon nitride molds. Microelectronic Engineering, 2001,57-58:367373.
    [87] Jun Taniguchi, Yuji Tokano, Iwao Miyamoto et al. Diamond nanoimprint lithography [J]. Nanotechnology, 2002,13:592-596.
    [88] T. Bailey, B. J. Choi, M. Colbum et al. Step and flash imprint lithography: Template surface treatment and defect analysis [J]. J Vac Sci Technoll, 2000, 18(6): 3572-3577.
    [89] B.J. Choi, S.V Sreenivasan, S. Johnson, M. Colburn, C.G Wilson. Design of orientation stages for step and flash imprint lithography [J]. Precision Engineering, 2001,25:192-199.
    [90] Resnick D.J, Dauksherv W.J., Mancini et al. Imprint lithography for integrated circuit fabrication [J]. Journal of Vacuum Science and Technology B, 2003,21(6): 2624-2631
    [91] Komuro M., Tokano Y, Taniguehi J. et al. Improvement of imprinted pattern uniformity using sapphire mold [J]. Japanese Journal of Applied Physics, 2002, 41:4182—4185.
    [92] Hiroshima H., Inoue S., Kasahara N. et al. Uniformity in patterns imprinted using photo-curable liquid polymer [J]. Japanese Journal of Applied Physics, 2002,41(6): 41734177.
    [93] Brian K.Daniels, Charles R.Szmanda et al. Surface Tension Effects in Microlithography-Striations [J]. SPIE, 1986, 631:192201.
    [94] Dylan E. Haas and Dunbar P. Birnie Ⅲ, Real time monitoring of striation development during spin-on-glass deposition[C]. Proceedings of Am.Ceramic. Soc. Symposium on Sol-Gel Commercialization and Application May 2000
    [95] 付永启,李奉有.离心涂胶过程的参数变化分析与模拟[J].光学精密工程,1998,8:7580.
    [96] 付永启,李奉有.离心式涂胶膜厚均匀性的影响因素分析[J].光学精密工程,1998.8:9497
    [97] Nicholas P. Cheremisinoff. Liquid filtration [M]. Boston: Butterworth-Heinemann, 1998.120. 1988, 31:1360-1371. [39]
    [98] James R. Sheats, BruceW Smith. Microlithography: science and technology [M]. New York: Marcel Dekker, 1998.517-520.
    [99] Liu Hongzhong, Lu Bingheng, Ding Yucheng, Tang Yiping and Li, Dichen. A motor-piezo actuator for nano-scale positioning based on dual servo loop and nonlinearity compensation [J]. Journal of Micromechanics and Microengineering, 2003, 13:295-299.
    [100] B D Washo. Rheology and Modeling of the Spin Coating Process. IBM [J].Res.Dev. Vol.21.1997:190
    [101] International Technology Roadmap For Semiconductor Lithography[R]. 2001 EDITION: 1-21
    [102] http://www.chinaemnet.com/ele/e1053881.asp
    [103] 秦旭光.微压印光刻中的匀胶工艺与胶厚设计研究[D].两安:西安交通大学机械工程学院,2003
    [104] 王立永.微压印光刻工艺中光照系统与复型工艺研究[D].西安:西安交通大学机械工 程学院,2002
    [105] 王权岱,段玉岗,丁玉成等.基丁微压印成型的三维微电子机械系统制造新工艺[J].西安交通大学学报,2005,39(9):947-949
    [106] [日]纳米技术手册编辑委员会编,王鸣阳等译.纳米技术手册[M].北京:科学出版社,2005.1:198-256
    [107] 姚玉英.化丁原理(上册)[M].天津:天津大学出版社,1999.08
    [108] 李庆祥.王东生.李玉和,现代精密仪器设计[M].北京:清华大学出版社,2005,07.
    [109] 孙绍云.宏微结合双重驱动的高精度定位系统的研究.哈尔滨工业大学博士学位论文.20040301.
    [110] 丁军,徐用懋.单神经元自适应PID控制器及其应用[J].控制工程.2004,11(1):27—30.
    [111] Resnick D J, Dauksher WJ. Imprint lithography: lab curiosity or the real NGL [C] SPIE microlithography conference, 2003.12~23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700