用户名: 密码: 验证码:
核壳结构纳米Ag@SiO_2的制备及其杀菌、防腐和应用性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋生物污损是人类开发和利用海洋过程中碰到的突出难题,海洋防污涂料是诸多防治措施中较为经济、有效的办法,而其中的防污剂是影响防污效果的关键成分之一。传统的防污剂是通过对附着生物进行毒杀达到防污目的,有的还可能进入食物链影响人类健康和生态安全,因此,新型、高效、环境友好的防污剂是当前研究的热点。基于此,本课题拟利用银超强的抗菌性,借助二氧化硅多孔的壳结构,设计、组装核壳结构纳米Ag@SiO2;在深入研究其杀菌动力学、杀菌机理、防腐蚀性能的基础上尝试摸索可行的防污涂料配方。本文的主要研究内容和结论归纳如下:
     首先,制备出了形貌可控、大小均匀、分散良好的核壳结构纳米Ag@SiO2。在阳离子表面活性剂CTAB的保护下,先用水合联氨还原硝酸银,随后利用TEOS的水解和聚合反应,最终在银纳米颗粒表面包覆上一层二氧化硅。通过深入研究TEOS加入时间、TEOS加入量、CTAB加入量、氨水加入量、无水乙醇加入量对样品结构形貌的影响,总结了较优的制备条件,该条件下得到的纳米Ag@SiO2球的直径大小在70nm以下,其中银核的大小在15-20 nm,纳米二氧化硅壳层的厚度约为20-25 nm。研究发现,核壳结构纳米Ag@SiO2制备过程中,要等到硝酸银同水合联氨的反应时间进行到7-10分钟再加入TEOS,且加入量控制在二氧化硅与银的质量比等于2.5较合适;CTAB起到分散纳米银和定向二氧化硅的作用,加入量也要适当;适量的氨水有利于形成Si02微球,而与水体积比为1/4的无水乙醇能够使其表面更加平滑。
     其次,研究了核壳结构纳米Ag@SiO2对革兰氏阴性菌(大肠杆菌)和革兰氏阳性菌(金黄色葡萄球菌)的杀菌性能。杀菌动力学实验表明对革兰氏阴性菌和革兰氏阳性菌均显示了超强的杀菌能力,浓度为18.17 mg/L的纳米Ag@SiO2在25分钟内使7 log大肠杆菌完全失活,彻底杀死同量的金黄色葡萄球菌需要39分钟。TEM观察进一步证实了杀菌过程中细胞形态的破坏,表现在细胞壁的破损或细胞内部物质的流失。在纳米Ag@SiO2体系中利用ESR测试没有发现产生·OH自由基和·02自由基等活性氧物种,但杀菌过程中银离子浓度却有明显降低,由此提出了纳米Ag@SiO2杀菌机理,即银核通过多孔的二氧化硅壳层不断释放出银离子导致了杀菌效果,而不是产生了ROS所引起的催化杀菌理论。以上三部分实验一致证实,由于金黄色葡萄球菌拥有相对较厚的细胞壁,因此较大肠杆菌而言对纳米Ag@SiO2具有更强的抵御力。
     再次,进一步研究了添加纳米Ag@SiO2对其环氧树脂涂层在不同介质中防腐性能的影响。测试了颜基比为0、0.1%和0.3%的环氧树脂涂层分别在大肠杆菌和金黄色葡萄球菌溶液中浸泡前和浸泡110h后的EIS,提出了其等效电路模型并进行了解析与拟合;同时,利用AFM观察了涂层在菌液中浸泡前的表面微观结构,比较了涂层在菌液中浸泡前和浸泡850h后的表面形貌。结果发现,未添加纳米Ag@SiO2的涂层在两个体系中浸泡后阻抗下降了96%和94%,颜基比为0.3%的涂层分别下降了73%和96%,两个涂层表面都出现了明显的锈斑,尤其以后者涂层腐蚀锈斑比较严重;而颜基比为0.2%的涂层阻抗和形貌浸泡前后基本保持不变。EN测试结果也显示,纳米Ag@SiO2的添加显著提高了其环氧树脂涂层耐无机盐腐蚀的能力,基本上都在88%以上,最高可达到99%;而对涂层抗微生物腐蚀能力的提高也都在80%以上。
     最后,在传统氧化亚铜防污涂料配方基础上,尝试摸索了以纳米Ag@SiO2作为防污剂的新型海洋防污涂料配方。基本思想是将氧化亚铜用纳米Ag@SiO2和其它颜填料替代,根据漆膜呈现的物理化学性质,进一步优化匹配防污剂、树脂、油脂、颜填料和各种溶剂、助剂,并最终确定防污涂料配方。通过反复实验给出了一个基本的涂料配方,添加2.5%纳米Ag@SiO2作为防污剂,加入40%左右的丙烯酸树脂,确定了颜填料和混合溶剂的比例,其常规物理性能检测结果为:外观光滑,附着力为4级,铅笔硬度HB,强度和柔韧性有所欠缺。该防污涂料配方有待进一步优化和改进。
Fouling caused by marine organisms is a critical problem when the human develop and utilize the ocean. Using marine antifouling coatings is a more economical and effective method, and biocides are one of key components which determine the coatings antifouling effect. Traditional biocides achieve the goal by poisoning the fouling organisms, and some are so likely to enter food chain as to pose a threat to the human health and ecological safety. So, novel, efficient and environment-friendly biocides are a hot problem studying currently. For this purpose, Ag@SiO2 core-shell nanoparticles (NPs) were designed and assembled in view of superior bactericidal properties of silver NPs and porous structure of silica NPs in this paper. The bactericidal kinetics, mechanism of killing bacteria, and anticorrosion properties of Ag@SiO2 NPs were studied deeply. Then a feasible formula of antifouling coating was tried to develop. The main contents and conclusions of this paper are induced as follows:
     Firstly, the monodisperse Ag@SiO2 core-shell NPs which the morphology is even and controllable had been successfully prepared. A series steps, such as the reaction between silver nitrate and hydrazine hydrate, hydrolysis and polycondensation of TEOS, and lastly the coating of silica NPs on silver NPs, were conducted in the presence of CTAB. Through studying the effects of the addition time of TEOS and the added quantity of TEOS, CTAB, ammonia and ethanol on the microstructure of the specimens, the optimal preparation condition of Ag@SiO2 NPs below to 70 nm in diameter with a 15~20 nm silver core encapsulated within a 20~25 nm thick silica shell was gained. The results showed that it is suitable for preparation of Ag@SiO2 NPs that TEOS is added at 7~10 min after the reaction of silver nitrate and hydrazine hydrate with the quantity meeting 2.5 ratio of silica to silver. CTAB plays a positive role in dispersing silver NPs and directing silica NPs and its added quantity should be appropriate. Similarly, the right amount of ammonia takes effect in formation of silica microspheres, and adding the volume ratio of ethanol to water attributes to its smooth surface.
     Secondly, the bactericidal properties of as-synthesized Ag@SiO2 NPs against both Gram-negative strain (E. coli) and Gram-positive strain (S. aureus) had been deeply studied. The bactericidal kinetics test showed extraordinary antibacterial properties, and when the concentration of Ag@SiO2 NPs was 18.17 mg/L, the time needed for destruction total approximate 7 log S. aureus was about 39 min, whereas the inactivation time was shortened to 25 min for E. coli. TEM measurement confirmed the cells were destructed upon treatment, with a leakage of the intracellular substances or the rupture of the cell wall. Because reactive oxygen species (ROS), such as·OH and·O2-, were not found in the Ag@SiO2 NPs system using electron spin resonance (ESR) spin-trap technique, and there was an obvious decrease of Ag+ in the suspension, it could be concluded that inactivation of the bacterial was not due to ROS in the case, but probably owing to Ag+ eluted from Ag@SiO2. The above three experiments confirmed E. coli were found to be more susceptible to the biocidal activity of Ag@SiO2 NPs comparing to S. aureus because of its thinner cell wall.
     Thirdly, the influences of Ag@SiO2 NPs additive with different P/B ratios on the corrosion resistance of the epoxy coatings in different media were further investigated. Electrochemical impedance spectroscopy (EIS) of the epoxy coatings pigmented with Ag@SiO2 NPs with P/B=0,0.1% and 0.3% before and after 110 h immersion in E. coli and S. aureus solution, respectively, and corresponding equivalent circuits for the coatings were proposed and analysed. Meanwhile, the surface microstructure of the coatings was observed by atomic force microscope (AFM) before immersion in bacterial solution, and the surface topography of the coatings was compared before and 850h immersion in bacterial solution. The results showed that the resistances of the coatings with P/B=0 were decreased by 96% after immersion in E. coli solution and 94% in S. aureus solution, while that of the coatings with P/B=0.3% were 73% and 96%. The obvious rusty spots were found in the surfaces of above two coatings. However, there was little change in both resistance and topography of the coating with P/B=0.1%.The results of electrochemical noise (EN) also showed that Ag@SiO2 NPs additive improves inorganic salt corrosion resistance of its epoxy coatings to a 88-99% degree, and microbiological corrosion resistance goes up by above 80%.
     Finally, on the basis of traditionally cuprous oxide antifouling paint formula, the author tried to find a new antifouling paint formula using Ag@SiO2 NP as biocides. The main idea is that firstly cuprous oxide is replaced with Ag@SiO2 NP, and other alternative fillers. Secondly, according to the physical and chemical properties of the paint film, the proportion of biocides, resins, oils, fillers, various solvents, and additives are further adjusted and optimized. In the end, the antifouling paint formula is determined. A basic paint formula was given by different processes and repeated experiments, in which adding 2.5% Ag@SiO2 NPs as the antifouling agent,40% acrylic resin, appropriate proportion of pigment, filler and mixed solvent. The physical performance test results showed that the paint film posesses the appearance of smooth, adhesion to 4, pencil hardness HB, bad strength and flexibility. So the antifouling paint formula will be further optimized and improved.
引文
[1]王芳.我国海洋资源开发规划研究[J].国土资源,2010,(11):24-28
    [2]刘登良.海洋涂料与涂装技术[M].北京:化学工业出版社,2002
    [3]金晓鸿.海洋污损生物防除技术和发展(Ⅰ)[J].材料开发与应用,2005,20(5):44-46
    [4]Zobell C E, Allen E C. The significance of marine bacteria in the fouling of submerged surfaees[J]. The Journal of Bacteriology,1953,29(3):239-251
    [5]Costerton J W, Lewandowski Z, DeBeer D, et al. Biofilms, the customized microniche[J]. Journal of bacteriology,1994,176(8):2137-3142
    [6]张洪荣,原培胜.舰船防污技术[J].舰船科学技术,2006,28(1):10-14
    [7]Yebra D M, Kiil S, Dam K. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings[J]. Progress in Organic Coatings,2004,50(2):75-104
    [8]安正国.新型防污涂料组成设计及其防污性能研究[D].青岛:中国海洋大学中国涂料,2007
    [9]周陈亮.舰船防污涂料的历史、现状及未来[J].中国涂料,1998,(6):9-12
    [10]余育聪.控制和禁用船舶有害防污油漆[J].江苏船舶,2001,18(3):42-43
    [11]Jacobson A H, Willingham G L. Seanine 211 antifoulant:an environmentally acceptable alternative to organotin antifoulants[J]. The Science of the Total Environment,2000, 258:103-110
    [12]张涛,杨德斌.海洋防污涂料发展现状及对我军舰船防污问题的建议[J].军民两用产品与技术,2004,(10):37-40
    [13]金晓鸿.海洋污损生物防除技术和发展(Ⅲ)[J].材料开发与应用,2006,21(1):44-46
    [14]黄艳,胡晖,梁国正.新型无毒防污涂料[J].上海涂料,2004,42(4):16-19
    [15]于良民.环境友好型丙烯酸树脂的合成及其在海洋防污涂料中的应用研究[D].中国海洋大学,2004
    [16]刘登良.环境友好型船舶防污涂料的发展[J].中国涂料,2006,21(8):27-28
    [17]Alzieu C. Environmental problems caused by TBT in france:assessment, regulations prospects[J]. Marine Environmental Research,1991,32(1-4):7-17
    [18]Evans S M, Leksono T, Mckinnell P D. Tributyltin pollution:a diminishing problem following legislation limiting the use of TBT-based anti-fouling paints[J]. Marine Pollution Bulletin,1995,30(1):14-21
    [19]Bryan C W, Gibbs P E, Hummerstone L G, et al. The Decline of the Gastropod Nucella Lapillus Around South-west England:Evidence for the Effect of Tributyltin from Antifouling Paints[J]. Journal of the Marine Biological Association of the United Kingdom,1986,66(3):611-640
    [20]Hallers-Tjabbes C C T, Kemp J F, Boon J P. Imposex in whelks (Buccinum undatum) from the open North Sea:relation to shipping traffic intensities[J]. Marine Pollution Bulletin,1994,28(5):311-313
    [21]Yonehara Y, Yamashita H, Chikara K, et al. A new antifouling paint based on a zinc acrylate copolymer[J]. Progress in Organic Coatings,2001,42(3-4):150-158
    [22]Fay F, Renard E, Langlois V, et al. Development of poly(ε-caprolactone-co-L-lactide) and poly(ε-caprolactone-co-δ-valerolactone) as new degradable binder used for antifouling paint[J]. European Polymer Journal,2007,43(11):4800-4813
    [23]Fay F, Linossier I, Langlois V, et al. Biodegradable poly(ester-anhydride) for new antifouling coating[J]. Biomacromolecules,2007,8(5):1751-1758
    [24]于良民,徐焕志.一种酰胺衍生物的合成方法[P].中国专利,02151532.8.2003-06-25
    [25]于良民,徐焕志.一种酰胺衍生物共聚物的制备方法及应用[P].中国专利,03111823.2.2003-06-25
    [26]程文华,徐焕志,于良民,等.N-(3,4-二甲氧基苄基)丙烯酰胺的合成[J].中国海洋大学学报,2006,36(增刊):170-172
    [27]于良民,安正国,董磊.N-(4-羟基-3-甲氧基-苯甲基)丙烯酰胺的合成及其防污性能研究[J].涂料工业,2007,37(7):70-71
    [28]徐焕志,于良民,李昌诚,等.辣素衍生物的合成及其对新月菱形藻生长的抑制活性[J].应用化学,2007,24(8):911-916
    [29]Hany R, Bohlen C, Geiger T, et al. Toward non-toxic antifouling:Synthesis of hydroxyl-, Cinnamic acid-, Sulfate-, and zosteric acid-labeled poly[3-hydroxyalkanoates][J]. Biomacromolecules,2004,5(4):1452-1456
    [30]Hugues C, Bressy C, Bartolomeo P, et al. Complexation of an acrylic resin by tertiary amines:synthesis and characterization of new binders for antifouling paints[J]. European Polymer Journal,2003,39(2):319-326
    [31]Kumar S A, Balakrishnan T, Alagar M, et al. Development and characterization of silicone/phosphorus modified epoxy materials and their application as anticorrosion and antifouling coatongs[J]. Progress in Organic Coatings,2006,55(3):207-217
    [32]Lundberg P, Bruin A, Klijnstra J W, et al. Poly(ethylene glycol)-based thiol-ene hydrogel coatings — curing chemistry, aqueous stability, and potential marine antifouling applications[J]. Applied Materials & Interfaces,2010,2(3):903-912
    [33]汪敬如,袁水娇.96材料科学与工程学术交流会论文汇编[C].洛阳:洛阳船舶材料研究所,1996
    [34]田军,薛群基.无毒防污涂层表面化学结构的研究[J].环境科学,1998,19(1):46-49
    [35]杨婷婷,陈艳军,彭慧,等.低表面能海洋船舶防污涂料及制备方法[P].中国专利,02138736.2.2003-01-01
    [36]Dai J B, Zhang X Y, Chao J, et al. A new core-shell type fluorinated acrylic and siliconated polyurethane hybrid emulsion[J]. Journal of Coatings Technology and Research,2007,4(3):283-288
    [37]Qu A L, Wen X F, Pi P H, et al. Synthesis and characterization of hybrid fluoro-emulsion based on silica copolymer composite particles[J]. Polymer International,2008,57(11):1287-1294
    [38]Gudipati C S, Finlay J A, Callow J A, et al. The antifouling and fouling-release performance of hyperbranched fluoropolymer(HBFP)-poly(ethylene glycol)(PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling algaulva[J]. Langmuir,2005,21(7):3044-3053
    [39]Feng L, Gu G, Chen M, et al. Synthesis and surface properties of poly(methyl methacrylate)/poly(ethylene glycol) binary brushes[J]. Macromolecular Materials and Engineering,2007,292(7):754-761
    [40]Watts J L. Anti-fouling coating composition containing capsaicin[P]. US Patent, 5397385.1995-03-14
    [41]陈荣发.我国辣素防污漆产品填补国内空白[J].海洋信息,2002,(4):32
    [42]Stupak M E, Garcia M T, Perez M C. Non-toxic alternative compounds for marine antifouling paints[J]. International biodeterioration & biodegradation,2003,52(1): 49-52
    [43]Goransson U, Sjogren M, Svangard E, et al. Reversible antifouling effect of the cyclotide cycloviolacin O2 against bamacles[J]. Journal of Natural Products,2004, 67(8):1287-1290
    [44]Todd J T, Zimmerman R C, Crews P, et al. The antifouling activity of natural and synthetic phenolic acid sulphate eaters[J]. Phytochemistry,1993,34(2):401-404
    [45]De Nys R, Steinberg P D, Willemsen P, et al. Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays[J]. Bio fouling:The Journal of Bioadhesion and Biofilm Research,1995,8(4):259-271
    [46]王钧宇.仿生无毒舰船防污涂料及其制法[P].中国专利,02132491.3.2003-01-22
    [47]Mokrini R, Mesaoud M B, Daoudi M, et al. Meroditerpenoids and derivatives from the brown alga cystoseira baccata and their antifouling properties[J]. Journal of Natural Products,2008,71(11):1806-1811
    [48]Qi S, Zhang S, Qian P, et al. Ten new antifouling briarane diterpenoids from the South China Sea gorgonian Junceella juncea[J]. Tetrahedron,2006,62(39):9123-9130
    [49]Sjogren M, Goransson U, Johnson A, et al. Antifouling activity of brominated cyclopeptides from the marine sponge geodia barretti[J]. Journal of Natural Products, 2004,67(3):368-372
    [50]Hedner E, Sjogren M, Hodzic S, et al. Antifouling activity of a dibrominated cyclopeptide from the marine sponge geodia barretti[J]. Journal of Natural Products, 2008,71(3):330-333
    [51]Qiu Y, Deng Z W, Xu M, et al. New a-nor steroids and their antifouling activity from the Chinese marine sponge acanthella cavernosa[J]. Steroids,2008,73(14):1500-1504
    [52]Limna Mol V P, Raveendran T V, Parameswaran P S. Antifouling activity exhibited by secondary metabolites of the marine sponge, Haliclona exigua(Kirkpatrick) [J]. International Biodeterioration & Biodegradation,2009,63(1):67-72
    [53]Xiong H, Qi S, Xu Y, et al. Antibiotic and antifouling compound production by the marine-derived fungus cladosporium sp. F14[J]. Journal of Hydro-environment Research,2009,2(4):264-270
    [54]Xu Y, He H, Schulz S, et al. Potent antifouling compounds produced by marine streptomyces[J]. Bioresource Technology,2010,101(4):1331-1336
    [55]Perez M, Blustein G, Garcia M, et al. Cupric tannate:A low copper content antifouling pigment[J]. Progress in Organic Coatings,2006,55(4):311-315
    [56]Bellotti N, Deya C, Amo B, et al. Antifouling paints with zinc" tannate "[J]. Industrial & Engineering Chemistry Research,2010,49(7):3386-3390
    [57]王华进,刘登良,王贤明.无毒硅酸盐防污剂及其制备方法[P].中国专利,97121814.5.1999-06-09
    [58]王华进,刘登良,王贤明,等.无毒海洋防污涂料[P].中国专利,97121813.7.1999-06-09
    [59]王华进,王贤明,刘登良,等.94-01无毒防污涂料的研制[J].涂料工业,1998,(2):11-13
    [60]史航,陈晓蕾,刘永利,等.新型有机硅海洋防污涂料的研究[J].有机硅材料,2008,22(6):339-343
    [61]Olsen S M, Kristensen J B, Laursen B S, et al. Antifouling effect of hydrogen peroxide release from enzymatic marine coatings:Exposure testing under equatorial and Mediterranean conditions [J]. Progress in Organic Coatings,2010,68(3):248-257
    [62]Anyaogu K C, Fedorov A V, Neckers D C. Synthesis, Characterization, and antifouling potential of functionalized copper nanoparticles[J]. Langmuir,2008,24(8):4340-4346
    [63]Shtykova L, Fant C, Handa P, et al. Adsorption of antifouling booster biocides on metal oxide nanoparticles:Effect of different metal oxides and solvents[J]. Progress in Organic Coatings,2009,64(1):20-26
    [64]柳斌.英研制出可清除海洋生物的新型船舶涂料[J].表面工程资讯,2009,(2):8
    [65]Park H G, Kim S H, Kwon S H, et al. Electrically driven single-cell photonic crystal laser[J]. Science,2004,3053:1444-1447
    [66]Fleming J G, Lin S Y, EI-Kady I, et al. All-metallic three-dimensional photonic crystals with a large infrared bandgap[J]. Nature,2002,417(6884):52-55
    [67]Kong H, Jang J. Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles[J]. Langmuir,2008,24 (5):2051-2056
    [68]Zhang J T, Li X L, Sun X M, et al. Surface enhanced raman seattering effects of silver colloids with different shapes[J]. The Journal of Physieal Chemistry B,2005,109(25): 12544-12548
    [69]Su M, Li S, Dravid V P. Microcantilever resonance-based DNA detection with nanoparticle probes[J]. Applied Physics Letters,2003,82(20):3562-3564
    [70]Shen C, Hui C, Yang T, et al. Monodisperse noble-metal nanopartieles and their surface enhanced raman scattering properties[J]. Chem. Mater.2008,20(22):6939-6944
    [71]Chen Y, Wang X. Novel phase-transfer preparation of monodisperse silver and gold nanoparticles at room temperature[J]. Mater. Lett.,2008,62(15):2215-2218
    [72]Jin R, Cao Y, Mirkin C A, et al. Photoinduced conversion of Silver nanospheres to nanoprisms[J]. Science,2001,294(5548):1901-1903
    [73]Song J, Chu Y, Liu Y, et al. Room-temperature controllable fabrication of silver nanoplates reduced by aniline[J]. Chem. Commun.,2008:1223-1225
    [74]Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio[J]. Chem. Commun.,2001:617-618
    [75]Pietrobon B, McEachran M, Kitaev V. Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods[J]. ACS Nano,2009,3(1):21-26
    [76]Nickel U, Castell A Z, Poppl K. A silver colloid produced by reduetion with hydrazine as support for highly sensitive surface-enhanced raman spectroscopy[J]. Langmuir, 2000,16(23):9087-9091
    [77]Shirtcliffe N, Nickel U, Schneider S. Reproducible preparation of silver sols with small particle size using borohydride reduction:for use as nuclei for preparation of large partiele[J]. Journal of Colloid and Interface Science,1999,211(1):122-129
    [78]Raveendran, P, Fu J, Wallen L. Completely "green" synthesis and stabilization of metal nanoparticles[J]. J. Am. Chem. Soe.,2003,125(46):13940-13941
    [79]Raveendran P, Fua J, Wallen S L. A simple and "green" method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles[J]. Green Chem.,2006,8:34-38
    [80]Sondi I, Goia D V, Matijevi E. Preparation of highly concentrated stable dispersions of uniform silver nanoparticles[J]. Journal of Colloid and Interface Science,2003,260(1): 75-81
    [81]Bennner L S, Suzuki T, Meguro K. Precious Metals Science and Technology [M]. IPMI,1991
    [82]蒋治良,刘绍璞,陈飒.银原子团簇的共振散射光谱研究[J].贵金属.2001,22(3):8-13
    [83]朱英杰,钱逸泰,张曼维,等。γ射线辐照-水热处理法制备纳米金属粉末[J].金属学报,1994,30(6):B259-B264
    [84]李敏娜,罗青枝,王德松,等.纳米银粒子制备及应用研究进展[J].化工进展,2008,27(11):1765-1771
    [85]Whyman R. Gold nanoparticles:a renaissance in gold chemistry[J]. Gold Bull,1996, 29(1):11-15
    [86]Hiramatsu H, Osterloh F E. A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants[J]. Chemistry of materials,2004,16(13):2509-2511
    [87]Lin X Z, Teng X, Yang H. Direct synthesis of narrowly dispersed silver nanoparticles using a single-source precursor[J]. Langmuir,2003,19(24):10081-10085
    [88]Chen Z T, Gao L. A facile and novel way for synthesis of nearly monodisperse silve nanoparticles[J]. Materials Research Bulletin,2007,42(9):1657-1661
    [89]Liu J K, Yang X H, Tian X G Preparation of Silver/hydroxyapatite nanocomposite spheres[J]. Powder Teehnology,2008,184(1):21-24
    [90]Andersson M, Pedersen J S, Anders E C, et al. Silver nanoparticle formation in microemulsions acting both as template and reducing agent [J]. Langmuir,2005,21(24): 11387-11396
    [91]Pestryakov A N, Lunin V V, Devochkin A N. Selective oxidation of alcohol over foam-metal catalysts[J]. Appl. Catal. A,2002,227(1):125-130
    [92]Rosa-Gomez I D L, Olguin M T, et al. Antibacterial behavior of silver-modified clinoptilolite-heulandite rich tuff on coliform microorganisms from wastewater in a column system[J]. Journal of Environmental Management,2008,88(4):853-863
    [93]Jia H S, Hou W S, Wei L Q, et al. The structures and antibacterial properties of nano-SiO2 supported silver/zinc-silver materials[J]. Dental Materials,2008,24(2): 244-249
    [94]Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science,1968,26(1):62-69
    [95]刘吉平,郝向阳.纳米科学与技术[M].北京:科学出版社,2002.30-31
    [96]Caruso F. Nanoengineering of particle surfaces[J]. Advanced Materials,2001,13: 11-22
    [97]Li W, Sha X, Dong W, et al. Synthesis of stable hollow silica microspheres with mesoporous shell in nonionic W/O emulsion[J]. Chemical Communications,2002,20: 2434-2435
    [98]Huang J, Xie Y, Li B, et al. In-situ source-template-interface reaction route to semiconductor CdS submicrometer hollow spheres[J]. Advanced Materials,2000, 12(11):808-811
    [99]王洁欣,文利雄,和平,等.新型球形纳米空心Si02的模板合成方法研究[J].化学学报,2005,63(14):1298-1302
    [100]Iida M, Sasaki T, Watanabe M. Titanium dioxide hollow microspheres with an extremely thin shell[J]. Chemistry of Materials,1998,10:3780-3782
    [101]Wang H, Zhu J, Zhu J, et al. Sonochemical Method for the Preparation of Bismuth Sulfide Nanorods[J]. The Journal of Physical Chemistry B,2002,106:3848-3854
    [102]Yu C, Tian B, Fan J, et al. Synthesis of Siliceous Hollow Spheres with Ultra Large Mesopore Wall Structures by Reverse Emulsion Templating[J]. Chemistry Letters, 2002,31(1):62~63
    [103]Rana R K, Mastai Y, Gedanken A. Acoustic Cavitation Leading to the Morphosynthesis of Mesoporous Silica Vesicles[J]. Advanced Materials,2002,14(19):1414-1418
    [104]Chen J, Wang J, Liu R, et al. Synthesis of porous silica structures with hollow interiors by templating nanosized calcium carnbonate[J]. Inorganic Chemistry Communications, 2004,7(3):447-449
    [105]Caruso F, Caruso R A, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J]. Science,1998,282(6):1111-1114
    [106]Zhu Y, Shi J, Chen H, et al. A facile method to synthesize novel mesoporous silica apheres and advanced storage property[J]. Microporous and Mesoporous Meterials, 2005,84(1-3):218-222
    [107]高鹏,薛向欣.纳米SiO添加量对紫外光固化涂料涂层性能的影响[J].材料保护,2010,43(9):13-16
    [108]汪波,文利雄,李雪光,等.空心多孔纳米Si02载体材料的载药方法研究[J].北京化工大学学报(自然科学版),2007,34(6):604-607
    [109]Kamata K, Lu Y, Xia Y. Synthesis and Characterization of Monodispersed Core-Shell Spherical Colloids with Movable Cores[J]. Journal of American Chemical Society, 2003,125(9):2384-2385
    [110]张立新.核壳结构微纳米材料应用技术[M].北京:国防工业出版社,2010
    [111]Ljubica N, Ljiljana R. Alumina strengthening by silica sol-gel coating[J]. Thin Solid Films,1997,295:101-103
    [112]刘冰,王德平,姚爱华,等.溶胶-凝胶法制备核壳SiO2/Fe3O4复合纳米粒子的研究[J].无机材料学报,2008,23(1):33-38
    [113]滕枫,唐爱伟,高银浩,等.水溶胶CdSe/CdS核/结构纳米晶制备及光学性质的研究[J].光谱学与光谱分析,2005,25(5):651-654
    [114]Ohmori M, Matijevic E. Preparation and properties of uniform coated inorganic colloidal particles:silica on iron[J]. Journal of Colloid and Interface Science,1993,160 (2):288-292
    [115]Monteiro O C, Esteves A C C, Trindade T. The synthesis of SiO2@CdS nanocomposites using single-molecule precursors[J]. Chemistry of Materials,2002, 14(7):2900-2904
    [116]Tan Pham, Joseph B, Halas N.J. Preparation and characterization of gold noshells coated with self-assembled monolayers[J]. Langmuir,2002(18):4915-4920
    [117]刘选明,刘巧玲,萧小鹃,等.微乳液法制备CdSe/CdS核壳结构纳米粒子及表征,湖南大学学报,2006,33(2):90-94
    [118]Yang Y, Jing L, Yu X, et al. Coating aqueous quantum dots with silica via reverse microemulsion method:toward size-controllable and robust fluorescent nanopartieles. Chemistry of Materials,2007,19(17):4123-4128
    [119]纪小会,王连英,袁航,等.Au/Ag核壳结构复合纳米粒子形成机制的研究[J].化学学报,2003,61(10):1556-1560
    [120]Chakraborty P. Review metal nanoclusters in glasses as no-linear photonic materials [J]. Journal of Materials Science,1998,88:2235-2249
    [121]Battaglin G, Catalano M, Cattaruzza E, et al. Influence of annealing atmosphere on metal and metal alloy nanoclusters produced by ion implantation in silica[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2001,178(1-4):176-179
    [122]Cheng H B, Jiang C Z, Shi Y. Study of optical transmission rate Ag implanted silica glass[J]. Journal of Functional Materials and Devices,2003,9 (1):21-24
    [123]Dhas N A, Zaban A, Gedanken A. Surface synthesis of zinc sulfide nanopartieles on silica microspheres:sonochemical preparation, characterization, and optical properties [J]. Chemistry of Materials,1999,11(3):806-813
    [124]Zhong Z, Mastai Y, Koltypin Y, Zhao Y, Gedanken A. Sonochemical coating of nanosized nickel on alumina submicrospheres and the interaction between the nickel and nickel oxide with the substrate[J]. Chemistry of Materials,1999,11(9):2350-2359
    [125]Ramesh S, Cohen Y, Prosorov R, et al. Organized silica microspheres carrying ferromagnetic cobalt nanopartieles as a basis for tip arrays in magnetic force microscopy[J]. The Journal of Physical Chemistry B,1998,102(50):10234-10242
    [126]Sun X M, Li Y D. Ag@C core/shell structured nanoparticles:controlled synthesis, characterization and Assembly[J]. Langmuir,2005,21(13):6019-6024.
    [127]Tom R T, Nair A S, Singh N, et al. Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core-shell nanopartieles:□ one-step synthesis, characterization, spectroscopy, and optical limiting properties [J]. Langmuir,2003,19:3439-3445
    [128]Sakai H, Kanda T, Shibata H, et al. Preparatuin of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle. [J]. Journal of the American Chemical Society,2006,128(15):4944-4945
    [129]Zhang D, Song X, Zhang R, et al. Preparation and characterization of Ag@TiO2 core-shell nanoparticles in water-in-oil emulsions[J]. European Journal of Inorganic Chemistry,2005,2005(9):1643-1648
    [130]Liz-Marzan L M, Giersig M, Mulvaney P. Synthesis of nano-sized gold-silica core-shell particles[J]. Langmuir.1996,12(18):4329-4335
    [131]Graf C, Vossen D L J, Imhof A, van Blaaderen A[J]. Langmuir.2003,19(17): 6693-6700
    [132]Tunc L, Demirok U K, Suzer S, et al. Charging/discharging of Au (core)/silica(shell) nanoparticles as revealed by XPS[J]. The Journal of Physical Chemistry B,2005, 109(50):24182-24184
    [133]Cerruti M, Sauthier M, Leonard D, et al. Gold and silica-coated gold nanoparticles as thermographic labels for DNA detection[J]. Analytical Chemistry,2006,78:3282-3288
    [134]Yang C S, Liu Q, Kauzlarich S M, Phillips B. Synthesis and Characterization of Sn/R, Sn/Si-R, and Sn/SiO2 Core/Shell Nanoparticles[J]. Chemistry of Materials,2000,12(4): 983-988
    [135]Kobayashi Y, SalgueiriIo-Maceira V, Liz-Marzan L V. Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating[J]. Chemistry of Materials,2001,13(5):1630-1633
    [136]Kim Y H, Lee D K, Kang Y S. Synthesis and characterization of Ag and Ag-SiO2 nanoparticles[J]. olloids and Surfaces A:Physicochemical and Engineering Aspects, 2005,257-278:273-276
    [137]Graf C, van Blaaderen A. Metallodielectric colloidal core-shell particles for photonic applications[J]. Langmuir,2002,18(2):524-534
    [138]胡永红,容建华,刘应亮,等.SiO2/Au核壳结构纳米粒子的制备及表征[J].无机化学学报.2005.21(11):1672-1676
    [139]Xia H L, Tang F Q. Surface Synthesis of zinc oxide nanoparticles on silica spheres: preparation and characterization[J]. The Journal of Physical Chemistry B,2003, 107(35):9175-9178
    [140]Ung T, Liz-Marzan L M, Mulvaney P. Cont rolled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions[J]. Langmuir.1998,14 (14):3740-3748
    [141]Wang W, Asher A S. Photochemical incorporation of silver quantum dots in monodisperse silica colloids for photonic crystal applications[J]. Journal of the American Chemical Society,2001,123(50):12528-12535
    [142]Li T, Moon J, Morrone A A, et al. Preparation of Ag/SiO2 nanosize composites by a reverse micelle and sol-gel technique[J]. Langmuir,1999,15(13):4328-4334
    [143]Gong J L, Jiang J H, Liang Y, et al. Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core/shell nano structures using reverse micelle technology[J]. Journal of Colloid and Interface Science,2006,298(2):752-756
    [144]谈勇,杨可靖,曹跃霞,等.聚苯乙烯光子晶体的制备及其在传感中的应用[J].化学学报,2004,62(20):2089-2092
    [145]Cho J, Kim J, Park B. Novel LoCoO2 cathode material with Al2O3 coating for a Li ion cell[J]. Chemistry of Materials,2002,12:3788-3791
    [146]Margaret A. Synthesis and charaeterization of strongly luminescing ZnS-capped CdSe nanoerystals[J]. The Journal of Physical Chemistry,1996,100:468-471
    [147]Omae I. General aspects of tin-free antifouling paints [J]. Chemical Reviews,2003,103 (9):3431-3448
    [148]Chambers L D, Stokes K R, Walsh F, et al. Modern approaches to marine antifouling coatings[J]. Surf. Coat. Tech.,2006,201:3642-3652
    [149]Osborne J H. Observations on chromate conversion coatings from a sol-gel perspective[J]. Progress in Organic Coatings,2001,41:280-286
    [150]Konstantinou I K, Albanis T A. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment:a review[J]. Environment International, 2004,30(2):235-248
    [151]Alzieu C. Tributyltin:case study of a chronic contaminant in the coastal environment[J]. Ocean & Coastal Management,1998,40:23-36
    [152]Twite R L, Bierwagen G P. Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys[J]. Progress in Organic Coatings,1998,33:91-100
    [153]Resolution A.895 (21):Antifouling systems on ships[OL]. International Maritime Organization (IMO), November 1999
    [154]Carbery K, Owen R, Frichers T, et al. Contamination of Caribbean coastal waters by the antifouling herbicide Irgarol 1501[J]. Marine Pollution Bulletin,2006,52 (6) 635-644
    [155]Gatidou G, Thomaidis N S. Evaluation of single and joint toxic of two antifouling biocides, their main metabolites and copper using phytoplankton bioassays[J]. Aquatic Toxicology,2007,85 (3):184-191
    [156]Buma A G J, Sjollema S B, van de Poll W H, et al. Impact of the antifouling agent Irgarol 1501 on marine phytoplankton species[J]. Journal of Sea Research,2009,61(3): 133-139
    [157]Thomasa K V, Brooks S. The environmental fate and effects of antifouling paint biocides[J]. Biofouling,2010,26 (1):73-88
    [158]Koutsaftis A, Aoyama I. Toxicity of four antifouling biocides and their mixtures on the brine shrimp artemia salina[J]. Science of the Total Environment,2007,387(1-3): 166-174
    [159]Cima F, Bragadin M, Ballarin L. Toxic effects of new antifouling compounds on tunicate haemocytes I. Sea-Nine 211TM and chlorothalonil[J]. Aquatic Toxicology, 2008,86(2):299-312
    [160]Kawashita M, Toda S, Kim H M, et al. Preparation of antibacterial silver-doped silica glass microspheres[J]. J. Biomed. Mater. Res. A,2003,66:266-274
    [161]Vimala K, Mohan Y M, Sivudu K S, et al. Fabrication of porous chitosan films impregnated with silver nanoparticles:a facile approach for superior antibacterial application[J]. Colloids and Surfaces B:Biointerfaces,2010,76(1):248-258
    [162]Shah M S A S, Nag M, Kalagara T, et al. Silver on PEG-PU-TiO2 polymer nanocomposite films:an excellent system for antibacterial applications[J]. Chemistry of Materials,2008,20:2455-2460
    [163]Chen X, Schluesener H J. Nanosilver:a nanoproduct in medical application[J]. Toxicology Letters,2008,176:1-12
    [164]Tovmachenko O G, Graf C, van den Heuvel D J, et al. Fluorescence enhancement by metal-core/silica-shell nanoparticles[J]. Adv. Mater.,2006,18,91-95
    [165]Bardi G, Malvindi M A, Gherardini L, et al. The biocompatibility of amino functionalized CdSe/ZnS quantum-dot-Doped SiO2 nanoparticles with primary neural cells and their gene carrying performance[J]. Biomaterials,2010,31 (25):6555-6566
    [166]Hirakawa T, Kamat P V. Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation[J]. Journal of the American Chemical Society,2005,127(11):3928-3934
    [167]Liu S, Zhang Z, Han M. Gram-scale synthesis and biofunctionalization of silica-coated silver nanoparticles for fast colorimetric DNA detection[J]. Analytical Chemistry,2005, 77(8):2595-2600
    [168]Liz-Marzan L M, Giersig M, Mulvaney P. Synthesis of nanosized gold-silica core-shell particles[J]. Langmuir,1996,12:4329-4335
    [169]Mulvaney P, Liz-Marzan L M, Giersig M. Silica encapsulation of quantum dots and metal clusters[J]. J. Mater. Chem.,2000,10:1259-1270
    [170]Ignatova M, Labaye D, Lenoir S, et al. Immobilization of silver in polypyrrole/polyanion composite coatings:preparation, characterization, and antibacterial activity[J]. Langmuir,2003,19(21):8971-8979
    [171]Jiang L P, Gao L, Sun J. Production of aqueous colloidal dispersions of carbon nanotubes [J]. Journal of Colloid and Interface Science,2003,260 (1):89-94
    [172]Darbandi M, Thomann R, Nann T. Single quantum dots in silica spheres by microemulsion synthesis[J]. Chemistry of Materials,2005,17:5720-5725
    [173]Mine E, Yamada A, Kobayashi Y, et al. Direct coating of gold nanoparticles with silica by a seeded polymerization technique[J]. Journal of Colloid and Interface Science, 2003,264 (2):385-390
    [174]Her R K. Product comprising a skin of dense, hydrated amorphous silica bound upon a core of another solid material and process of making same[P]. US Patent,2885366. 1959-05-05
    [175]张辉,赵晓峰,唐清,等.在乙醇介质中制备Si02光子晶体及其表征[J].北京科技大学学报,2002,24(2):157-160
    [176]毛丹,姚建曦,王丹.有机溶剂对正硅酸乙酯水解制备二氧化硅微球的影响[J].稀有金属材料与工程,2007,36(增刊1):180-183
    [177]Feng Q L, Wu J, Chen G Q, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus[J]. Journal of Biomedical Materials Research,2000,52 (4):662-668
    [178]Jung W K, Koo H C, Kim K W, et al. Antibacterial activity and mechanism of action of the sliver ion in Staphylococcus aureus and Escherichia coli[J]. Applied and Environmental Microbiology,2008,74 (7):2171-2178
    [179]Yamanaka M, Hara K, Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, Studied by energy-filtering transmission electron microscopy and proteomic analysis[J]. Applied Environmental Microbiology,2005,71 (11):7589-7593
    [180]Morones J R, Elechiguerra J L, Camacho A, et al. The bactericidal effect of silver nanoparticles[J]. Nanotechnology,2005,16 (10):2346-2353
    [181]Dror-Ehre A, Mamane H, Belenkova T, et al. Sliver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival[J]. Journal of Colloid and Interface Science,2009,339 (2):521-526
    [182]Grandcolas M, Ye J, Hanagata N. Combination of photocatalytic and antibacterial effects of silver oxide loaded on titania nanotubes[J]. Materials Letters,2011,65(2): 236-239
    [183]Suarez M, Esteban-Tejeda L, Malpartida F, et al. Biocide activity of diatom-silver nanocomposite[J]. Materials Letters,2010,64:2122-2125
    [184]Espinosa-Cristobal L F, Martinez-Castanon G A, Martinez-Martinez R E, et al. Antibacterial effect of silver nanoparticles against Streptococcus mutans[J]. Materials Letters,2009,63:2603-2606
    [185]Zhang B, Luo Y, Wang Q. Development of silver-zein composities as a promising antimicrobial agent[J]. Biomacromolecules,2010,11(9):2366-2375
    [186]Pal S, Tak Y K, Song J M, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli[J]. Applied and Environmental Microbiology,2007,73 (6):1712-1720
    [187]Hamouda T, Mye A, Donovan B, et al. A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against baeteria, enveloped viruses and fungi[J]. Microbiological Researeh,2001,156(1):1-7
    [188]Kim J S, Kuk E, Yu K N, et al. Antimicrobial effects of silver nanoparticles[J]. Nanomedicine:Nanoteehnology, Biology and Medieine,2007,3(1):95-101
    [189]Dibrov P, Dzioba J, Gosink K K, et al. Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae[J]. Antimicrobial Agents and Chemotherapy,2002, 46(8):2668-2670
    [190]Medormell G, Russell A D. Antiseptics and disinfectants:activity, action, and resistance[J]. Clinical Microbiology Reviews,1999,12(1):147-179
    [191]Sharma V K, Yngard R A, LinY. Silver nanoparticles:Green synthesis and their antimicrobial activities[J]. Advances in Colloid and Interface Seienee,2009,145(1-2): 83-96
    [192]Kvitek L, Panacek A, Soukupova J, et al. Effect of surfactants and polymers on stability and antibacterial activity of silver nanopartieles (NPs)[J]. Journal of Physics Chemistry C,2008,112(15):5825-5834
    [193]Castellano J J, Shafii S M, Ko F, et al. Comparative evaluation of silver-containing antimicrobial dressings and drugs[J]. International Wound Journal,2007,4(2):114-22
    [194]Landsdown A B G Silver I:its antibacterial properties and mechanism of action[J]. Journal of Wound Care,2002,11(4):125-130
    [195]Maki D G, Tambyah P A. Engineering out the risk of infection with urinary catheters[J]. Emerging Infectious Diseases,2001,7 (2):342-347
    [196]Zhang L, Wong K, Yip H, et al. Effective photocatalytic disinfection of E. coli K-12 using AgBr-Ag-Bi2WO6 nanojunction system irradiated by visible light:the role of diffusing hydroxyl radicals, Environment Science Technology,2010,44 (9):1392-1398
    [197]Inouea Y, Hoshinob M, Takahashib H, et al. Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions [J]. Journal of Inorganic Biochemistry,2002,92 (1):37-42
    [198]沈萍,范秀容,李广武.微生物学实验[M].北京:高等教育出版社,2004
    [199]Lan Y, Hu C, Hu X, et al. Efficient destruction of pathogenic bacteria with AgBr/TiO2 under visible light irradiation[J]. Applied Catalysis B:Environmental,2007,73 (3-4): 354-360
    [200]朱文涛.物理化学中的公式与概念(第一版)[M].北京:清华大学出版社,1998.134-135
    [201]Marchebois H, Touzain S, Joiret S, et al. Zinc-rich powder coatings corrosion in sea water:influence of conductive piglments[J]. Progress in Organic Coatings,2002,45(4): 415-421
    [202]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002
    [203]崔晓莉,江志裕.交流阻抗谱的表示及应用[J].上海师范大学学报(自然科学版),2001,30(4):53-61
    [204]张鉴清,曹楚南.电化学阻抗谱方法研究评价有机涂层[J].腐蚀科学与防护技术,1998,19(3):99-104
    [205]刘浩宇,梁小峰,邵亚薇,等.静水压力下Q235钢环氧涂层在3.5%NaCl溶液中的失效过程[J].中国腐蚀与防护学报,2010,30(5):374-378
    [206]王为军,杭建忠,施利毅,等.纳米Al2O/机-无机杂化复合铝合金涂层的耐腐蚀性能研究[J].涂料工业,2010,40(8):8-12
    [207]Zhang F, Liu J J, Li X Y, et al. Study of degradation of organic coatings in seawater by using EIS and AFM methods[J]. Journal of Applied Polymer Science,2008,109 (3): 1980-1899
    [208]Christophe L P, Colette L, Nadine P. Structure of waterborne coatings by electrochemical impedance spectroscopy and a thermostimulated current method: influence of fillers[J]. Progress in Organic Coatings,2000,39(2-4):167-175
    [209]杨立红,刘福春,韩恩厚.纳米氧化锌改性聚氨酯复合涂层的防腐性能[J].材料研究学报,2006,20(4):354-360
    [210]陈中华,唐英,余飞,等.颜填料体积浓度对水性环氧树脂导静电防腐蚀涂层性能的影响[J].化工学报,2008,59(10):2568-2572
    [211]Scantlebury J D, Galic K. The application of AC impedance to study the performance of lacquered aluminium specimens in acetic acid solution[J]. Progress in Organic Coatings,1997,31(3):201-207
    [212]郑纪勇.海洋生物污损与材料腐蚀[J].中国腐蚀与防护学报,2010,30(2):171-176
    [213]Le Y, P. Hou P T, Wang J X, et al. Controlled release active antimicrobial corrosion coatings with Ag/SiO2 core-shell nanoparticles[J]. Materials Chemistry and Physics, 2009,120(2-3):351-355
    [214]Bertocci U, Huet F. Noise analysis applied to electrochemical systems[J]. Corrosion, 1995,51(2):131-144
    [215]张鉴清,张昭,王健明,等.电化学噪声的分析与应用——Ⅰ.电化学噪声的分析原理[J].中国腐蚀与防护学报,2001,21(5):310-320
    [216]卢玉琢.电化学噪声技术及其在腐蚀检测中的应用[D].天津:天津大学,2005
    [217]Lee C C, Mansfeld F. Analysis of electrochemical noise data for a passive system in the frequency domain[J]. Corrosion Science,1998,40(6):959-962
    [218]Gabrielli C, Huet F, Keddam M. Real-time measurement of electrolyte resistance fluctuations[J]. Journal of The Electrochemical Society,1991,138(12):L82-L84
    [219]张而耕,龙康,王志文.纳米复合涂层对碳钢防腐性能的交流阻抗评定[J].腐蚀科学与防护技术,2002,14(6):337-339
    [220]涂料工艺编委会.涂料工艺(第三版)[M].北京:化学工业出版社,1997
    [221]刘斌,李瑛,林海潮,曹楚南.防腐蚀涂层失效行为研究进展[J].腐蚀科学与防护技术,2001,13(5):305-307
    [222]Sinko J. Challenges of chromate inhibitor pigments replacement in organic coatings[J]. Progress in Organic Coatings,2001,42(3-4):267-282
    [223]Franquet A, Terryn H, Vereecken J. Study of the effect of different aluminium surface pretreatments on the deposition of thin non-functional silane coatings[J]. Surface Interface Analysis,2004,36(8):681-684
    [224]赵石林,剧全兰,张鑫.纳米复合涂料的研究开发现状[J].涂料工业,2001,(10):24-26
    [225]Baer D R, Burrows P E, El-Azab A A. Enhancing coating functionality using nanoscience and nanotechnology[J]. Progress in Organic Coatings,2003,47(3-4): 342-356

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700