用户名: 密码: 验证码:
制革污泥中Cr的生物淋滤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制革污泥是一种既含高浓度有毒金属铬(含Cr达1~4%),同时也富含有机质、氮磷等植物养分的有机废弃物。污泥无害化及资源化是多数制革企业当前面临的迫切选择。基于生物湿法冶金原理(biohydrometallurgy)的生物淋滤(bioleaching)技术在去除污染介质中重金属上获得的成功,为我们去除或回收制革污泥中高量的铬提供了全新的启示。本文以制革污泥为研究对象,对制革污泥生物淋滤工艺进行了有益的探索,主要研究三大内容:制革污泥生物淋滤工艺参数的优化;污泥中对生物淋滤细菌(Acidithiobacillus ferrooxidans LX5和Acidithiobacillus thiooxidans TS6)产生抑制的有机物鉴定;内源耐酸性酵母TS7的分离及其在加速制革污泥生物淋滤脱铬进程中的作用机制与效果验证。
     序批式试验表明,采用嗜酸性氧化亚铁硫杆菌A.ferrooxidans LX5和氧化硫硫杆菌A.thiooxidans TS6并少量添加能源物质硫粉的生物淋滤技术能高效脱除(溶出)制革污泥中的铬。淋滤反应8d,Cr的溶出率接近100%。且生物淋滤处理后的制革污泥沉降性能大大改善,污泥中氮磷等植物养分损失较少。硫粉投加量,污泥浓度,起始H_2SO_4添加量,温度以及污泥回流比等对制革污泥生物淋滤过程均有不同程度的影响。研究显示,硫粉加入量4g/L,污泥浓度4%~6%,起始H_2SO_4添加量0.185mL/g,温度28℃,污泥回流比1/2~2/3等条件对制革污泥中Cr的生物淋滤去除最为有利,且污泥淋滤过程中污泥pH值和Cr溶出率与反应时间(T)、硫粉投加量(S)、污泥浓度(C)、温度(W)、起始H_2SO_4添加量(H)之间的关系可以分别用表达式pH=-0.064S+0.063C-0.215W-21.95H-0.43T+16.09;Cr(%)=1.74S-1.90C+3.46W+289.56H+6.73T-144.99来反映。制革污泥中铬的生物淋滤脱除主要是靠污泥介质的酸化,即污泥pH值的降低来实现的,氧化作用贡献极小。研究发现,污泥中铬的大量溶出(80%以上)存在明显突变点:当污泥pH值≤2.0,才能使污泥中Cr的溶出率达到80%以上;pH值下降到1.5,Cr的溶出率接近100%。
     污泥DOM对嗜酸性硫杆菌A.ferrooxidans LX5和A.thiooxidans TS6氧化亚铁和氧化硫粉均存在明显抑制。通过对8种常见有机物对硫杆菌抑制作用的研究以及对污泥DOM中一元小分子有机羧酸的检测发现,污泥DOM对硫杆菌LX5(TS6)氧化Fe~(2+)(S粉)所产生的抑制程度高低与污泥DOM中一元小分子有机酸含量大小密切相关。8.94mM甲酸和2.09mM乙酸是导致污泥150mg DOC L~(-1)的DOM-H对Fe~(2+)(S粉)氧化的抑制率分别高达95%和79%的主要原因。试验还发现,与A.thiooxidans TS6相比,A.ferrooxidans LX5对葡萄糖,淀粉和柠檬酸等有机物更为敏感,而对小分子一元有机羧酸中的乙酸,丙酸和丁酸表现出更强的耐受力。
     作者从制革污泥中分离出一株以制革污泥DOM为碳源和能源且能耐受极端酸性环境的酵母TS7,将其复合作用于以嗜酸性硫杆菌(LX5和TS6)为主体的制革污泥生物淋滤过程。结果显示,83%的制革污泥DOM被酵母TS7消耗,一定程度上消除或减轻了DOM对硫杆菌的毒害,进而与未添加酵母TS7的对照相比,污泥中Cr的淋滤周期缩短4d,第6d,污泥pH值即下降到1.5,Cr的溶出率接近100%。280L气升式内环流(ALR)反应器中进行的制革污泥生物淋滤反应(硫杆菌与酵母菌配合)验证了污泥淋滤技术在中试规模下仍具有稳定的处理效果(淋滤作用3d,Cr的溶出率达到94%)。
     本文研究表明,利用嗜酸性硫杆菌或复合以耐酸性异氧菌的生物淋滤作用可以高效脱除制革污泥中高量的铬,是一门极具应用前景的污泥“洁净化”技术。
Land application represents the most economical way for final disposal of tannery sludge as it combines the recycling of plant nutrients and sludge disposal at the same time. Unfortunately, the presence of high levels of poisonous metal Cr in tannery sludge often limits its use as a fertilizer. The Cr content in tannery sludge is about 1-4% on a dry weight basis, and in some cases, extremely high concentrations of up to 13% of Cr have been reported. A technologically feasible process called bioleaching was used to remove Cr from tannery sludge with Acidithiobacilli species in this study. The objective of the present study is (1) to optimize the key parameters; (2) to determine the possible inhibitory substance(s) present in tannery sludge, and further to evaluate their impacts on iron and sulfur oxidization by Acidithiobacillus ferrooxidans LX5 and Acidithiobacillus thiooxidans TS6, respectively; (3) to exploit the indigenous heterotrophic microorganisms present in tannery sludge to eliminate side effect of inhibitory substance and improve the heavy metal bioleaching efficiency; (4) to investigate a pilot-scale study for bioleaching of Cr from tannery sludge. Ultimately, the expected outcome from this work will contribute to the understanding of bioleaching strategies with an ultimate purpose of developing an appropriate method to facilitate optimization of bioleaching strategies.Batch experiments showed that almost 100% of Cr removal efficiency could be obtained after 8-10 days of bioleaching when 4 g l~(-1) of elemental sulfur was added, in the presence of A. ferrooxidans LX5 and A thiooxidans TS6. 4g l~(-1) of elemental sulfur; 4%-6% of solid content; 28℃; 0.185 ml sulfuric acid of the initial of addition to per dry sludge and 1/2 ~ 2/3 of recycled ratio of bioleached sludge were reported to be the most favorable for Cr bioleaching from tannery sludge. Although the bioleaching of Cr from tannery sludge was strongly influenced by various parameters such as sulfur concentration; temperature; solid content; the initial sulfuric acid addition; the recycled ratio of bioleached sludge etc, it was found that chromium required a sludge pH of 2-3 to initiate its solubilization and further at constant pH, metal solubiliztion was the same regardless of the above parameters. When sludge pH decreased 1.5, almost 100% of Cr could be removed from tannery sludge. Additionnally, the settling capability of decontaminated sludge was improved tremendously, and the nitrogen, phosphors and organic matter values of sludge samples were only marginally affected.
     Results obtained in batch cultures in flasks using sludges from three different wasterwater plants (tannery sludge from Haining Kasen Co. Ltd (Sludge H), domestic sludge from Nanjing (Sludge N), and municipal sludge from Wuxi (Sludge W), demonstrated that sludge DOM of three origins significantly inhibited ferrous iron and sulfur oxidation by A. ferrooxidans LX5 and A. thiooxidans TS6, respectively. The toxicity of sludge DOM appeared when the concentration was higher than 150 mg DOC L~(-1). Among the organic compounds tested, the monocarboxylic organic acids including formic acid, acetic acid, propionic acid, and butyric acid exhibited a marked toxicity to Acidithiobacillus species. Of these organic acids, formic acid was the most toxic one as indicating that iron and sulfur oxidation almost were entirely inhibited at a concentration of 1.67 mM. Moreover, it was found that A. ferrooxidans LX5 was more sensitive to glucose, starch, and citric acid than A. thiooxidans TS6, while the former seemed to be more acetic, propionic, and butyric acid resistant than the latter. In the selected 150 mg DOC L~(-1) of DOM derived from Sludge-H, the concentrations of formic acid and acetic acid were 8.94 mM and 2.09 mM, respectively, being a contributing factor causing 95% inhibition of iron oxidation and 70% inhibition of sulfur oxidation.
     An acidophilic sludge DOM-degrading yeast TS7 was successfully isolated from tannery sludge and it could achieve optimum growth in potato dextrose agar (PDA) liquid media of pH 2-7. When yeast TS7 was inoculated in the medium containing 2007 mg DOC L-1 sludge DOM derived from tannery sludge, about 83% of sludge DOM was assimilated or decomposed within 72 hours. As a result, Cr bioleaching efficiency was enhanced when yeast TS7 was inoculated simultaneously with A. ferrooxidans LX5 and A. thiooxidans TS6 into tannery sludge. Compared with the 10 days required for maximum solubilizaiton of Cr for the control sludge, the bioleaching period was significantly shortened to 6 days for sludge receiving co-inoculation.
     A pilot-scale study for bioleaching of Cr from tannery sludge in 280L air lift reactor confirmed that the bioleaching process is a feasible and promising technology for removing heavy metals from tannery sludge.
引文
[1] Brombacher C, Bachofen R, Brandle. Biohyomellurgical processing of solid: a patent review [J]. Appl. Microbiol. Biotechnol., 1997, 48:577~587.
    [2] Brieley J A. 1987, US Patent US 4090894.
    [3] 廖梦霞,邓天龙.难处理硫化矿生物湿法冶金研究进展Ⅰ:微生物氧化工艺技术研究[J].稀有金属,2004,28(4):767~770.
    [4] Colmer A R, Hinkel M E. An iron-oxidizing bacterium from the acid mine drainage of some bituminous coal mines [J]. Science, 1947,106,523.
    [5] 杨红晓,周爱东,徐家振.生物浸出技术在铜工业中的应用[J].有色矿冶,2003,19(5):15~18.
    [6] 裴世红,张翔,王红心等.湿法炼铜(生物菌浸出法)的近况及展望[J].当代化工,2003,32(3):166~168.
    [7] Colmer A R, Temple K T, Kinlde M E. An iron-oxidizing bacterium from the acid mine drainage of some bituminous coal mines[J]. J. Bacterial., 1950, 59, 317~328.
    [8] Torma A E, Walden C C, Duncan D W, et al. The effect CO_2 and particle surface area on the microbiological leaching of a zinc sulfide concentrate[J]. Biotechnol. Bioeng., 1972, 24:777~786.
    [9] Sand W, Rohde K, Sobotke B, et al. Evaluation of Leptospirillum ferroxidans for leaching [J]. Appl. Environ. Microbiol., 1992,58:85~92.
    [10] De G C, Oliver D J, Pesic B M. Effect of heavy metals on the ferrous iron oxidizing ability of Thiobacillus ferrooxidans [J]. Hydrometallurgy, 1997,44: 53~63.
    [11] Magnin J, Baillet F, Boyer A, et al. Augmentation, par regeneration electrochimique du substrat, de la production d'une biomasse (Thiobacillusferrooxidans DSM 583) pour un procede biologique de recuperation de metaux [J]. Can. J. Chem. Eng. 1998, 76, 978~984.
    [12] White C, Sharman A K, Gadd G M, An integrated microbial process for the bioremediation of soil contaminated with toxic metals [J]. Nature Biotechnology, 1998, 16:572~575.
    [13] Zagury G J, Narasiah K S, Tyagi R D. Bioleaching of metal-contaminated soil in semicontinuous reactor [J]. Journal of Environmental Engineering, 2001, 127, 9:812~817.
    [14] Chen S Y, Lin J G. Bioleaching of heavy metals from livestock sludge by indigenous sulfur-oxidizing bacteria: effect of sludge solids concentration [J]. Chemosphere, 2004, 54, 283~289.
    [15] Tyagi R D, Tran F T, Bacterial leaching of metal from digested sewage sludge by indigenous Iron-oxidizing. Environ.Pollut. 1993, 82:9~12.
    [16] Wong J W C, Xiang L, Gu X Y, et al. Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS_2 as an energy source[J]. Chemosphere, 2004, 55, 101~ 107.
    [17] Tomonori I, Akane N, Masafumi T, et al. Bioleaching of metal from municipal waste incineration fly ash using a mixed culture of sulfur-oxidizing and iron-oxidizing bacteria[J]. Chemosphere, 2005, 60, 1087~1094.
    [18] Kohr W J, Johansson C, Shield J, Sharder V. Method for improving the heap biooxidation rates of refractory sulfuric ores particles that are biooxidized using recycled bioleachate solution[P]. 1998, US 5779762
    [19] Chen S Y, Lin J G. Bioleaching of heavy metals from sediment: significance of pH [J]. Chemosphere, 2001, 44, 1093~1102.
    [20] 周立祥,沈其荣,陈同斌等.重金属及养分元素在城市污泥主要组成分中的分配及其化学形态[J],环境科学学报,2000,20(3):269~275.
    [21] 华玉妹.污泥中Cu、Pb和Zn的生物沥滤研究[D].杭州:浙江大学博士学位论文,2005
    [22] Skrypaski-Matele S, Bridle T R. Environmentally sound disposal of tannery sludge [J]. Water Res., 1995, 29:1033~1039.
    [23] Tania B, Felipe B, Andrea B, et al. Environmental and technical aspects of the utilization of tannery sludge as a raw material for clay products [J]. J. Eur. Ceramic Soc. 2002, 22, 2251~2259.
    [24] Shraddha S, Rohit S, Kavita P, et al. Response of antioxidants in sunflower grown on different amendments of tannery sludge: its metal accumulation potential [J]. Chemosphere, 2004, 57:1663~1673.
    [25] Blais J F, Tyagi R D, Auclair J C, Bioleaching of metal from sewage sludge: microorganisms and growth kinetics [J]. Wat. Res. 1993, 27:101~110.
    [26] Tyagi R D, Sreekrishnan T R, Blais J F, Campbell P G C. Kinetics of heavy metal bioleaching from sewage sludge: temperature effects [J]. War. Res., 1994,28: 2367~2375.
    [27] Sreekrishnan T R, Tyagi R D, Blais J F, et al. Effect of sulfur concentration on sludge acidification during the SSDML process. Water Res. 1996, 30, 2728~2738.
    [28] Gu X Y, Wong J W C. Characterization of an indigenous iron-oxidizing bacterium and its effectiveness in bioleaching heavy metals from anaerobically digested sewage sludge [J]. Environmental Technology, 2004, 25, 8:889~897.
    [29] Tyagi R D, Meunier J, Blais J F. Simultaneous sewage sludge and metal leaching: effect of temperature [J]. Appl. Microbiol. Biotechnol., 1996,46:422~431.
    [30] Wong J W C, Xiang L, Chan L C. pH requirement for the bioleaching of heavy metals from anaerobically digested sewage sludge [J]. Water Air Soil Pollution, 2002, 138:125~135.
    [31] Lombardi A T, Garcia J O. Biological leaching of Mn, Al, Zn, Cu and Ti in an anaerobic sewage sludge effectuated by Thiobacillus ferroxidans and its effect on metal partitioning [J]. 2002, 36:3193~3202.
    [32] Ryu, H W, Moon H S, Lee E Y, et al. Leaching characteristics of heavy metals from sewage sludge by Acidithiobacillus thiooxidans MET [J]. J. Environ. Qual. 2003, 32, 751~759.
    [33] Couillard D, Mercier G. An economic evaluation of biological removal of heavy metals from wastewater sludge [J]. Water Environment Research, 1994, 66:32~39.
    [34] Sreekrishnan J N, Tyagi R D, Blais J F, et al. Kinetics of heavy metal bioleaching from sewage sludge: Effect of process parameters [J]. Wat. Res., 1993, 27:1641~1651.
    [35] Lombardi A T, Garcia J O, Mozeto A A. Bioleaching of metals from anaerobic sewage sludge: effects of total solids, leaching microorganisms, and energy source [J]. J. Environ. Sci. Health. 2001, 36, 793~806.
    [36] Filali-Meknassi Y, Tyagi R D, Narasiah K S. Simultaneous sewage sludge digestion and metal leaching: effect of aeration [J]. Process Biochemistry, 2000, 36:263~273.
    [37] Tyagi R D, Blais J F, Meunier N, et al. Simultaneous sewage sludge digestion and metal leaching-Effect of sludge solids concentration [J]. Water Res. 1997, 31,105~118.
    [38] 周立祥,王艮梅.污水污泥中重金属的细菌淋滤效果研究[J].环境科学学报,2001,21(4):504~506.
    [39] 沈镭,张太平,贾晓珊.利用氧化亚铁硫杆菌和氧化硫硫杆菌去除污泥中重金属的研究[J].2005,44(2):111~115.
    [40] Chen Y X, Hua Y M, Zhang S H. Effect of substrate concentration on the bioleaching of heavy metals from sewage sludge [J]. Journal of Environmental Science, 2004, 16(5):788~792.
    [41] 周顺桂,周立祥,方迪等.黄铁矿与硫粉配合提高污泥重金属的淋滤效果[J].中国环境科学,2004,24(1):110~114.
    [42] 周立祥,周顺桂.国家发明专利公报.北京:知识产权出版,2003,公开号CN1389564A
    [43] Xiang L, Chan L C, Wong J W C. Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria [J]. Chemosphere, 2000, 41:283~287.
    [44] Chan L C, Gu X Y, Wong J W C. Comparison of bioleaching of heavy metals from sewage sludge using iron- and sulfur-oxidizing bacteria [J]. Advances in Environmental Research, 2003, 7:603~607.
    [45] Macchi G, Pagano M, Pettine M. A bench study on chromium recovery from tannery sludge [J]. Water Research, 1991, 25(8):1019~1026.
    [46] Shen S B, Tyagi R D, Blais J F. Extraction of Cr(Ⅲ) and other metals from tannery sludge by mineral acids[J]. Environmental Technology, 2001, 22:1007~1014.
    [47] Singh S, Sinha S. Morphoanatomical response of two varieties of Brassica juncea (L.) Czern. Grown on tannery sludge amended soil [J]. Bull. Environ. Contam. Toxicol., 2004, 72:1017~1024.
    [48] Chuan M C, Liu L C. Release behavior of chromium from tannery sludge [J]. Water Res., 1996, 30:932~938.
    [49] 李桂菊,丁绍兰,章川波等.农用制革污泥中铬的释放及其供氮能力[J].中国皮革,2001,30(15):6~11.
    [50] Shen S B, Tyagi R D, Blals J F, et al. Bacterial leaching of metals from tannery sludge by indigenous sulphur-oxidizing bacteria-effect of sludge solids concentration [J]. J. Environ. Eng. 2003, 129, 513~519.
    [51] Tuttle J H, Dugan P R. Inhibition of growth, iron, and sulfur oxidation in Thiobacillus ferrooxidans by simple organic compounds [J]. Canadian Journal of Microbiology, 1976, 22: 719~730.
    [52] Alexander B, Leach S, Ingledew W J. The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans [J]. Journal of General Microbiology, 1987, 133:1171~1179.
    [53] Picher S, Drogui P, Guay R, et al. Wastewater sludge and pig manure used as culture media for bioleaching of metal sulphides [J]. Hydrometallurgy, 2002, 65:177~186.
    [54] Gemmell R T, Knowles C J C. Utilization of aliphatic compounds by acidophilic heterotrophic bacteria: The potential for bioremediation of acidic wastewaters contaminated with toxic organic compounds and heavy metals [J]. FEMS Microbiology Letters, 2000, 192:185~190.
    [55] Flournier D, Lemieux R, Couillard D. Essential interaction between Thiobacillus ferrooxidans and heterotrophic microorganisms during a wastewater sludge bioleaching process [J]. Environmental. Pollution, 1998, 101:303~309.
    [56] 王世梅,周立祥.提高氧化亚铁硫杆菌和氧化硫硫杆菌平板检出率的方法:双层平板法[J].环境科学学报,2005,25(10):1418~1420.
    [57] Torma A E, Walden C C, Duncan D W, et al. The effect CO_2 and particle surface area on the microbiological leaching of a zinc sulfide concentrate [J]. Biotechnology Bioengineer, 1972, 14: 777~786.
    [58] Holugue L, Herrera L, Phillips O M, et al. CO_2 fixation by mineral-leaching bacteria: characteristics of the ribulose biphosphate carboxylase-oxygenase of Thiobacillus ferrooxidans [J]. Biotechnology and Applied Biochemistry, 1987, 9:497~505.
    [59] 高忠柏,苏超英.制革工业废水处理[M].北京:化学工业出版社,2001.149~158.
    [60] 白坚.皮革工业手册—制革分册[M].北京:中国轻工业出版社,2000.1~2.
    [61] 李桂菊,隋智慧,何迎春等.国内外现行制革污泥处理方法综述[J].西北轻工业学院学报,1999,17(3):83~86.
    [62] 马宏瑞,马托,黄宁选等.低分子量有机酸对制革污泥污染土壤中铬的活化及植物提取效应[J].陕西科技大学学报,2004,22(6):22~25.
    [63] 马宏瑞,李桂菊,章川波等.施用制革污泥土壤中铬的积累、化学形态及其植物有效性[J].环境科学,2001,22(1):70~73.
    [64] 陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996.126~157.
    [65] 游伟民,李天铎,李彦春.制革污泥资源化利用技术研究进展[J].皮革化工,2005,22,3:5~8.
    [1] Skrypaski-Matele S, Bridle T R. Environmemtally sound disposal of tannery sludge [J]. Water Res., 1995, 29:1033~1039.
    [2] Chuan M C, Liu L C. Release behaviour of chromium from tannery sludge [J]. Water Res., 1996, 30:932~938.
    [3] 白坚.皮革工业手册—制革分册[M].北京:中国轻工业出版社,2000.1~2.
    [4] 高忠柏,苏超英.制革工业废水处理[M].北京:化学工业出版社,2001.149~158.
    [5] 李桂菊,丁绍兰,章川波,等.农用制革污泥中铬的释放及其供氮能力[J].中国皮革,2001,30(15):6~11.
    [6] 马宏瑞,李桂菊,章川波,等.施用制革污泥土壤中铬的积累、化学形态及其植物有效性[J].环境科学,2001,22(1):70~73.
    [7] 陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996.126~157.
    [8] 周立祥,王艮梅.污水污泥中重金属的细菌淋滤效果研究[J].环境科学学报,2001,21(4):504~506.
    [9] 周顺桂,周立祥,黄焕忠.生物淋滤技术在溶出污泥中重金属上的应用[J].生态学报,2002,22(1):167~176.
    [10] 周立祥,周顺桂.2003.国家发明专利公报.北京:知识产权出版社,公开号CN1389564A
    [11] 周立祥,周顺桂.2002.国家发明专利公报.北京:知识产权出版社,公开号CN1375553A
    [12] Sreekrishnan J N, Tyagi R D, Blais J F et al. Kinetics of heavy metal bioleaching from sewage sludge: Effect of process parameters [J]. Water Res., 1993, 27:1641~1651.
    [13] Tyagi R D, Sreekrishnan T R, Blais J F et al. Kinetics of heavy metal bioleaching from sewage sludge: temperature effects [J]. Wat.Res., 1994, 28:2367~2375.
    [14] Blais J F, Tyagi R D, Auclair J C. Bioleaching of metal from sewage sludge: microorganisms and growth kinetics [J]. Wat.Res., 1993, 27:101~110.
    [15] Janssen A, Grotenhuis J T C, Lettinga Get al. Possibilities for using biologically-produced sulphur for cultivation of Thiobacillus with respect to bioleaching processes [J]. Bioresource Technology, 1994, 48:221~227.
    [16] Blais J F, Auclair J C, Tyagi R D. Cooperation between two Thiobacillus strains for heavy-metal removal from municipal sludge [J]. Can.J.Microbiol, 1991, 38:181~187.
    [17] Lazaroff N, Sigal W, Wasserman A. Iron oxidation and precipitation of ferric hydroxysulfates by resting Thiobacillus ferrooxidans cells [J]. Applied and Environmental Microbiology, 1982, 43:924~938.
    [18] Xiang L, Chan L C, Wong J W C. Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria [J]. Chemosphere, 2000, 41:283~287.
    [19] Tyagi R D, Blais J F, et al. Comparison of Microbial Sulfurix Acid Production in Sewage Sludge from Added Sulfur and Thiosulfate [J]. J Environ. Qual., 1994, 23:1065~1070.
    [20] 周顺桂,王世梅,余素萍,周立祥.污泥中氧化亚铁硫杆菌的分离及其应用效果[J].环境科学,2003,24(3):56~60.
    [1] Macchi G, Pagano M, Pettine M, et al. A bench study on chromium recovery from tannery sludge [J]. Water research, 1991,25:1019-1026.
    [2] Shen S B, Tyagi R D, Blais J F. Extraction of Cr (Ⅲ) and other metals from tannery sludge by mineral acids [J]. Environmental Technology, 2001, 22 (9): 1007-14.
    [3] Sreekrishnan J N, Tyagi R D, Blais J F, et al. Kinetics of heavy metal bioleaching from sewage sludge: Effects of process parameters [J]. Water Research, 1993, 27:1641-1651.
    [4] 周顺桂,周立祥,黄焕忠.生物淋滤技术在去除污泥中重金属上的应用[J].生态学报,2002,22(1):167-176.
    [5] Zhou L X, Fang D, Wang S M, et al. Bioleaching of Cr from tannery sludge: the effects of initial acid addition and recycling of acidified bioleached sludge [J]. Environ. Technol., 2005, 26: 277~284.
    [6] 周顺桂,余素萍,王世梅等.污泥中氧化亚铁硫杆菌的分离及其在去除污泥中重金属上的应用效果[J].环境科学,2003,24(3):61-66.
    [7] 周立祥,方迪,周顺桂等.利用嗜酸性硫杆菌去除制革污泥中铬的研究[J].环境科学,2004,25(1).
    [8] 周立祥,王艮梅.污水污泥中重金属的细菌淋滤效果研究[J].环境科学学报,2001,21(4):504-506.
    [9] Blais J F, Tyagi R D, Auclalr J C. Bioleaching of metal from sewage sludge:microorganisms and growth kinetics [J]. Water Research, 1993, 27:101-110.
    [10] 李桂菊,隋智慧,何迎春,等.国内外现行制革污泥处理方法综述[J].西北轻工业学院学报,1999,17(3):83-86.
    [11] 马宏瑞,马托,黄宁选,等.低分子量有机酸对制革污泥污染土壤中铬的活化及植物提取效应[J].陕西科技大学学报,2004,22(6):22-25.
    [12] 黄峰源,王世梅,周立祥.氧化硫硫杆菌TS6的生长条件及其对重金属的耐受性研究[J].环境科学学报,2006.
    [13] Anderson B C, Brown A T F, Watt W E, et al. Biological leaching of trace metals from stormwater sediments: influential variables and continuous reactor operation [J]. Water Sci. Technol., 1998, 38: 73~81。
    [14] Tsai L Y, Yu K C, Chen S F, et al. Effect of temperature on removal of heavy metals from contaminated river sediments via bioleaching [J]. Wat. Res., 2003, 37: 2449~2457。
    [15] Tyagi R D, Meunier N, Blais J F. Simultaneous sewage sludge digestion and metal leaching—effect of temperature [J]. Appl. Microbiol. Biotechnol., 1996, 46: 422-431.
    [16] Blais J F, Tyagi R D, Auclair J C. Bioleaching of metals from sewage sludge: effect of temperature[J].Wat. Res., 1993, 27: 111-120.
    [17] Chen, S Y, Lin, J G. Bioleaching of heavy metals from sediment: significance of pH [J]. Chemosphere, 2001, 44, 1093-1102.
    [18] Chan, L C, Gu, X Y, Wong, J W C. Comparison of bioleaching of heavy metals from sewage sludge using iron-and sulfur-oxidizing bacteria [J]. Adv. Environ. Res. 2003, 7, 603-607.
    [1] Renoux, A.Y., Tyagi, R.D. and Samson, R., Assessment of toxicity reduction after metal removal in bioleaching sewage sludge [J]. Water Res., 2001, 35: 1415-1424.
    [2] 周立祥,方迪,周顺桂等.利用嗜酸性硫杆菌去除制革污泥中铬的研究[J].环境科学,2004,25(1):62-66.
    [3] 方迪,周立祥.固体浓度对生物淋滤法去除制革污泥中铬的影响研究[J].中国环境科 学,2004,24(2):163-165.
    [4] 方迪,周立祥.温度对制革污泥生物淋滤除铬效果的影响[J].环境科学,2006.
    [5] Chartier, M. and Couillard, D., Biological processes: the effects of initial pH, percentage inoculum and nutrient enrichment on the solubilization of sediment bound metals [J]. Water Air Soil Pollut., 1997, 96:249-267.
    [6] Chen, S.Y. and Lin, J.G., Bioleaching of heavy metals from sediment: significance of pH [J]. Chemosphere., 2001, 44: 1093-1102.
    [7] Lombardi, A.T., Garcia, J,O. and Mozeto, A.A., Bioleaching of metals from anaerobic sewage sludge: effects of total solids, leaching microorganisms, and energy source [J]. J. Environ. Sci. Health., 2001, 36: 793-806.
    [8] Xiang, L., Chan, L.C. and Wong, J.W.C., Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria [J]. Chemosphere., 2000, 41:283-287.
    [9] Chan, L.C., Gu, X.Y. and Wong, J.W.C., Comparison of bioleaching of heavy metals from sewage sludge using iron-and sulfur-oxidizing bacteria [J]. Adv. Environ. Res. 2003, 7: 603-607.
    [10] Chen, S.Y. and Lin, J.G., Bioleaching of heavy metals from livestock sludge by indigenous sulfur-oxidizing bacteria: effect of sludge solids concentration [J]. Chemosphere. 2004, 54: 283-289.
    [1] 周立祥,方迪,周顺桂等.利用嗜酸性硫杆菌去除制革污泥中铬的研究[J].环境科学,2004,25(1):62-66.
    [2] 方迪,周立祥.固体浓度对生物淋滤法去除制革污泥中铬的影响研究[J].中国环境科学,2004,24(2):163-165.
    [3] 丁绍兰,章川波,俞从正.制革污泥处理及综合利用的途径[J].中国皮革,1998,27(8):18-20.
    [4] Colmer A R, Temple K T, Kinkle M E. An iron-oxidizing bacterium from the acid mine drainage of some bituminous coal mines. J. Bacteriol., 1950, 59:317-328
    [5] Markosyan G E. A new iron-oxidizing bacterium Leptospirillum ferrooxidans. Biol. Zh. Arm., 1972, 25:26.
    [6] Sand W, Rohde K, Sobotke B, et al. Evaluation of Leptospirillum ferroxidans for leaching. Appl. Environ. Microbiol., 1992, 58:85-92.
    [7] Zhou L X, Fang D, Wang S M, et al. Bioleaching of Cr from tannery sludge: the effects of initial acid addition and recycling of acidified bioleached sludge [J]. Environ. Technol., 2005, 26: 277-284.
    [8] 周立祥,周顺桂,王世梅等.制革污泥中铬的生物脱除及其对污泥的调理作用[J].环境科学学报,2004,24(6):1014-1020.
    [1] Xiang L, Chan L C, Wong J W C. Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria [J]. Chemosphere, 2000, 41:283~287.
    [2] United States Patent 5779762.
    [3] Picher S, Drogui P, Guay R, et al. Wastewater sludge and pig manure used as culture media for bioleaching of metal sulphides [J]. Hydrometallurgy, 2002, 65: 177-186.
    [4] 王电站,周立祥.生物淋滤反应不同阶段的酸化污泥作接种物的可行性研究[J].环境污染装备与技术,2006.
    [5] Tuovinen O H, Niemela S I, Gyllenberg H (2 Effect of mineral nutrients and organic substances on the development of Thiobacillus ferrooxidans [J]. Biotechnology Bioengineer, 1971, 13: 517~527.
    [6] Alexander B, Leach S, Ingledew W J. The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidansv [J]. Journal of General. Microbiology, 1987, 133: 1171~1179.
    [7] Yoshizaki S R, Tomida T H. Principle and process of heavy metal removal from sewage sludge [J]. Environment Science Technology, 2000, 34:1572~1575.
    [8] Suzuki I, Lee D, Mackay B, et al. Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans [J]. Appl. Environ. Microbiol., 1999, 65: 5163~5168.
    [9] Meruane G., Vargas T. Bacterial oxidation of ferrous iron by Acidithiobacillus ferrooxidans cin the pH ranges 2.5-7.0 [J]. Hydrometallurgy, 2003, 71: 149~158.
    [10] Zhou L X, Wong J W C. Effect of dissolved organic matters derived from sludge and composted sludge on soil Cu sorption [J]. J. Environ. Qual., 2001, 30: 878~883.
    [11] Gu X Y, Wong J W C. Identification of inhibitory substances affecting bioleaching of heavy metals from anaerobically digested sewage sludge [J]. Environment Science Technology, 2004, 38: 2934~2939.
    [12] Gamache M, Blals J F, Tyagi R D, et al. Microflore heterotophe impliquee darts le procede simultane de biolixiviation des metaux et de digwstion des boues depuration [J]. Can. J. Civ. Eng., 2001, 28:158~174.
    [13] Tuttle J H, Dugan P R. Inhibition of growth, iron, and sulfur oxidation in Thiobacillus ferrooxidans by simple organic compounds [J]. Canadian. Journal of Microbiology, 1976, 22: 719~730.
    [14] Vogler K G., Lepage G A, Umbreit W W. The respiration of Thiobacillus thiooxidans on sulfur [J]. J. Gen. Physiol., 1942, 26: 89~102.
    [15] Frattini C J, Leduc L G, Ferroni G. D. Strain variability and the effects of organic compounds on the growth of the ehemolithotrophic bacterium Thiobacillus ferrooxidans [J]. Antonie van Leeuwenhoek, 2000, 77: 57~64.
    [16] Yates J R, Holmes D S. Two families of repeated DNA sequences in Thiobacillus ferrooxidans [J]. J. Bacteriol., 1987, 169: 1861~1870.
    [17] Schrader J A, Holmes D S. Phenotypic switching Thiobacillus ferrooxidans [J]. J. Bacteriol., 1988, 170: 3915~3923.
    [18] Ashcroft S F, Mortimer C T. Thermochemistry of transition metal complexes [M], Academic Press, New York, 1970.196~212.
    [19] Han Y, Dague R R. Laboratory studies on the temperature-phased anaerobic digestion of domestic primary sludge [J]. Water Environ. Res., 1997, 69:1139~1143.
    [20] Gemmell R T, Knowles C J C. Utilization of aliphatic compounds by acidophilic heterotrophie bacteria: The potential for bioremediation of acidic wastewaters contaminated with toxic organic compounds and heavy metals [J]. FEMS Microbiology Letters, 2000, 192: 185~190.
    [1] 周立祥,方迪,周顺桂等.利用嗜酸性硫杆菌去除制革污泥中铬的研究[J].环境科学,2004,25(1):62~66.
    [2] 方迪,周立祥.温度对制革污泥生物淋滤除铬效果的影响[J].环境科学,2006.
    [3] Zhou L X, Fang D, Wang S M, et al. Bioleaching of Cr from tannery sludge: the effects of initial acid addition and recycling of acidified bioleached sludge [J]. Environ. Technol., 2005, 26: 277~284.
    [4] Fang D, Zhou L X. Effect of sludge dissolved organic matter on oxidation of ferrous iron and sulfur by Acidithiobacillus ferroxidans and Acidithiobacillus thiooxidans [J]. Water Air Soil Pollution, 2006.
    [5] Gu X Y, Wong J W C. Identification of inhibitory substances affecting bioleaching of heavy metals from anaerobically digested sewage sludge [J]. Environment Science Technology, 2004, 38, 2934~2939.
    [6] Gemmell R T, Knowles C J C. Utilization of aliphatic compounds by acidophilic heterotrophic bacteria: The potential for bioremediation of acidic wastewaters contaminated with toxic organic compounds and heavy metals [J]. FEMS Microbiology Letters, 2000, 192; 185~190.
    [7] 王世梅,周立祥.提高氧化亚铁硫杆菌和氧化硫硫杆菌平板检出率的方法:双层平板法[J].环境科学学报,2005,25(10):1418~1420.
    [8] 张纪中.微生物分类学[M].上海:复旦大学出版社,1990.368~425.
    [9] J A 巴尼特.酵母菌的特征与鉴定手册[M].青岛:青岛海洋大学出版社,1991.33~52.
    [10] Alexander B, Leach S, Ingledew W J. The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidansv [J]. Journal of General. Microbiology, 1987, 133: 1171~1179.
    [11] Tuovinen O H, Niemela S I, Gyllenberg H G. Effect of mineral nutrients and organic substances on the development of Thiobacillus ferrooxidans [J]. Biotechnology Bioengineer, 1971, 13: 517~527.
    [12] Tuttle J H, Dugan P R. Inhibition of growth, iron, and sulfur oxidation in Thiobacillus ferrooxidans by simple organic compounds [J]. Canadian. Journal of Microbiology, 1976, 22:719~730.
    [13] 周顺桂,常明,胡佩等.污泥与猪粪作为培养基微生物去除垃圾焚烧飞灰中的重金属[J].环境科学,2005,26(6):180~185.
    [14] Torma A E, Walden C C, Duncan D W, et al. The effect CO_2 and particle surface area on the microbiological leaching of a zinc sulfide concentrate [J]. Biotechnology Bioengineer, 1972, 14: 777~786.
    [15] Holugue L, Herrera L, Phillips O M, et al. CO_2 fixation by mineral-leaching bacteria: charcteristics of the ribulose biphosphate carboxylase-oxygenase of Thiobacillus ferrooxidans [J]. Biotechnology and Applied Biochemistry, 1987, 9:497~505.
    [16] 周顺桂,周立祥,黄焕忠.生物淋滤技术在去除污泥重金属中的应用[J].生态学报,2002,22(1):167~176.
    [17] Flournier D, Lemieux R, Couillard D. Essential interaction between Thiobacillus ferrooxidans and heterotrophic microorganisms during a wastewater sludge bioleaching process [J]. Environmental. Pollution, 1998, 101:303~309.
    [18] Lombardi A T, Garcia J O, Mozeto A A. Bioleaching of metals from anaerobic sewage sludge: effects of total solids, leaching microorganisms, and energy source [J]. J. Environ. Sci. Health., 2001, 36: 793~806.
    [19] 蔡全英,莫测辉,吴启堂等.化学方法降低城市污泥的重金属及其前景分析[J].土壤与环境,1999,8(4):309~313.
    [20] 周立祥,周顺桂,王世梅等.制革污泥中铬的生物脱除及其对污泥的调理作用[J].环境科学学报,2004,24(6):1014~1020.
    [21] 汤继军,孔维琳,黄红杉.聚二甲基二烯丙基氯化铵(HCA)对活性污泥脱水性能的影响[J].工业用水与废水,2001,32(6):26~28.
    [22] Lee D J.Biosolids conditioning and dewatering.有机废弃物管理与利用国际学术研讨会论文集[M].南京,2000.
    [23] 罗曦,雷中方,刘翔.胞外聚合物的提取、组成及其对污泥性质的影响[J].城市环境与城市生态,2005,18(5):38~41.
    [24] 王电站,周立祥,何锋.生物淋滤法提高制革污泥脱水性能的研究[J].中国环境科学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700