用户名: 密码: 验证码:
三维点云的鲁棒处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于各种获取设备生成真实逼真的三维模型是获得物体几何信息的主要手段之一,在计算机图形学、计算机视觉、考古学、测绘学等领域得到广泛应用。获取设备得到的原始数据通常以三维点云表示,即同一空间参考系下表达物体空间分布和表面特性的三维点集合。虽然由点云重建物体表面以及相关的处理技术已有多年的研究历史并取得了大量的研究成果,但由于各个领域对获取技术的需求不断增加,以及已有点云处理技术在各种应用中表现出的不足,尤其是处理点云中由获取设备本身的物理限制以及获取条件和过程产生的各种缺陷,如噪声、外点、数据缺失、尖锐特征的丢失和不均匀采样等所表现出的鲁棒性不足,许多研究机构和研究人员一直从事于点云鲁棒处理中各种关键技术的研究与改进,以提高所获取三维数据的质量,从而促进三维获取技术在各个领域的应用与普及。为此,本文对点云鲁棒处理中的主要关键技术进行了深入研究,主要包括特征保持的点云增强、鲁棒的法向量估计、点云特征线提取和使用简单形状基元对点云表面进行全局最优拟合等技术。本文工作的主要贡献和创新总结如下:
     (1)为了在点云增强中消除噪声、外点和不均匀采样等缺陷的同时,保留能够刻画表面特性的尖锐特征,提出了一种新颖的特征保持的点云增强方法。使用法向量加权为已有的基于加权局部最优投影(WLOP)的增强方法赋予特征保持的能力,即借助法向量信息,为局部邻域中法向量相似的相邻点赋予较大的权值,而将法向量差距较大的点看作是外点,赋予较小的权值,从而使得新位置主要由位于特征同一侧的相邻点决定。同时,为了在改进点云位置分布的同时得到特征保持的法向量信息,本文提出将法向量磨光集成到新的增强方法中,以此得到精确且保持特征的法向量。在合成点云和实际获取点云上的实验结果表明,与原有WLOP方法相比,本文方法能够在降低噪声、消除外点以及改善分布密度的同时,保持点云中的尖锐特征。
     (2)为了解决噪声、外点和尖锐特征给法向量估计带来的挑战,提出了一种鲁棒的点云法向量估计算法。借鉴鲁棒统计中的多结构检测思想,基于在每个点局部邻域内随机采样得到的一组平面,首先使用鲁棒的无偏估计为此邻域计算局部噪声大小,然后定义基于核密度估计的目标函数选择出最优切平面。同时,选择最优切平面的过程还可以有效地检测出点云中的外点。实验结果表明本文方法对点云中的噪声、外点和尖锐特征具有很高的鲁棒性,能够为点云估计出光滑且特征保持的法向量。与现有估计方法相比,本文方法能够实现对特征保持的点云法向量的直接估计,且不需要复杂的参数调节。
     (3)为了在含有噪声、外点和数据缺失的点云中检测出反映其几何特征的特征线,提出了一种基于RANSAC的特征线提取算法。此算法针对由建筑物或机械部件等具有平面特征的物体扫描得到的点云,基于在点云中检测出的多个平面,首先将每个平面所能拟合的点投影至此平面,并以投影区域的边界点作为候选,提出一种考虑全局约束的RANSAC特征线提取算法检测出最终的特征线。实验结果表明该方法对点云中的噪声、外点和数据缺失具有较高的鲁棒性,能够准确地提取出特征线。与已有的基于局部分析的方法相比,本文方法具有更高的鲁棒性,因而能适用于前者无法处理的低质量点云。
     (4)为了使用基本形状基元实现对点云表面的精确拟合并避免过拟合问题,从而利于拟合结果对点云表面结构的揭示,提出了一种将变分表面拟合与模型选择相结合的新颖拟合算法。在拟合中考虑由基元类型、基元数目以及拟合误差导致的拟合代价,将问题形式化为对输入点云表面的划分、所用形状基元的类型及基元数目的一个整体优化,并给出了此组合优化问题的近似解法。首先创建合适的候选冗余集,然后通过模型选择和变分表面拟合迭代地精化每个候选直至收敛,最后通过一个全局的模型选择确定最终的基元。实验结果表明,该方法能够最大化所选择基元的拟合能力来实现对输入点云的准确表示,同时对噪声也有很高的鲁棒性。与已有方法相比,本文方法能够自动确定最优的表面划分以及每个划分对应的基元类型,在拟合复杂度和拟合质量之间取得折衷,而不需要预先指定基元数目。
One of the common approaches of obtaining the geometry information of the objects in the world is generating realistic and vivid 3D models with the aid of various kinds of acquisition devices. This approach has been widely used in Computer Graphics, Computer Vision, Archaeology, Topography, etc. The raw output of acquisition devices is usually represented by Point Clouds, i.e. a set of 3D points in the same reference coordinate, which can describe the spacial distribution and surface properties of the object. Although techniques for surface reconstruction from point clouds as well as point clouds processing have been extensively studied and many advances have been made in the past years, many academies and researchers have been working on the development and improvement of the key techniques of robust point clouds processing, in the hope of improving the quality of the data and rendering the application as well as prevalence of the 3D acquisition techniques. There are two reasons for that, one of which is the increasing of the demand on acquisition techniques from different fields, and the other is the limitations exposed by existing point clouds processing techniques, especially the deficiency of robustness of these techniques when dealing with the defects contained in the data because of the limitations of acquisition devices, acquisition condition and acquisition procedures, such as noise, outliers, holes, missing of sharp features and uneven distribution. This thesis has studied the key techniques of the robust processing of point clouds, including feature preserving point clouds consolidation, robust normal estimation, feature lines extraction and global optimal approximation using simple shape primitives. In summary, this thesis makes the following contributions:
     (1) A novel feature preserving consolidation method for point clouds is proposed to preserve the sharp features, which are capable of capturing the surface properties, while eliminating the defects in point clouds, including noise, outliers and uneven distribution during the consolidation. The proposed method enables the existing Weighted Locally Optimal Projection (WLOP) based consolidation to preserve features by using weight function defined on normals. With the help of normal information, points with similar normals in the local neighborhood will be assigned larger weights, while points with large normal deviations are regarded as outliers and get smaller weights. Thus the new position is mainly defined by neighbors from the same side of the feature. At the same time, a normal mollification step is added to the new consolidation method to get accurate as well as feature preserving normals while the distribution of the points is improved. Experimental results on synthetic and real-world scanned data show that compared with the original WLOP, the proposed method can achieve denoisng, outlier removal and better distribution density as well as feature preserving on the consolidated point clouds.
     (2) A robust normal estimation method for point clouds is presented in order to deal with challenges from noise, outliers and sharp features. The idea of multiple structure detection in the field of robust statistics is applied in the proposed method. A random sampling approach is adopted to generate a set of candidate planes in the local neighborhood of each point. Based on these planes, a robust unbiased noise scale estimator is used to compute the local noise scale, then a Kernel Density Estimation (KDE) based objective function is defined to find the best tangent plane. At the same time, the procedure for tangent plane selection can also be used to detect outliers contained in the point clouds. Experimental results show that the proposed method is highly robust to noise, outliers and sharp features, thus can obtain smooth while feature preserving normals for the point clouds. Compared with existing methods, the proposed method is able to directly obtain feature preserving normals while avoiding tuning of complex parameters.
     (3) A RANSAC based method is proposed to detect feature lines which can describe the geometry features of point clouds which usually contaminated by noise, outliers and data missing. The proposed method is specially designed for the point clouds scanned from buildings or mechanical parts which usually contain planar parts. Starting from many planes detected in the point clouds, the proposed method projects all the points onto the planes which can approximate them well. The points on the boundaries of the projected regions are used as candidates for the final features lines, which are detected by the proposed RANSAC-based line detection method with global constraints. Experimental results show that the proposed method is highly robust to noise, outliers and data missing in the point clouds, and can extract accurate feature lines. Compared with existing methods based on local analysis, the proposed method is more robust, thus can be applied to more point clouds with low quality which are difficult to other methods.
     (4) A novel method for approximating point clouds with simple shape primitives is proposed to achieve accurate approximation while avoiding over-fitting, which can hinder the approximation from capturing the structures of point clouds. The proposed method combines variational surface approximation and model selection, and formulates the approximation as a global optimal problem on the partition of the surface of the given point cloud, the types of employed primitives as well as the number of the primitives by considering the cost of types and number of the primitives as well as the approximation error. Then an approximate solution for this combination optimization problem is given. A redundant set of candidate primitives is created, and then each candidate is iteratively refined using model selection and variational surface approximation until convergence. Finally a global model selection is used to determine employed primitives. Experimental results show that this method can generate accurate representation of the given surface that maximizes the approximation ability of the selected primitives, while being robust to noise. Compared with existing methods, the proposed one can automatically determine the optimal partition of the given point cloud as well as the type of primitive for each patch in the partition and achieve a trade-off between the complexity of approximation and the approximation quality while being independent on the specified number of primitives.
引文
[1]胡国飞.三维数字表面去噪光顺技术研究[D].杭州:浙江大学,2005:1~2.
    [2] Sansoni G, Trebeschi M, Docchio F. State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation [J]. Sensors, 2009, (9): 568~601.
    [3]董锦菊.逆向工程中数据测量和点云预处理研究[D].西安:西安理工大学,2007:9~11.
    [4] Bernardini F, Rushmeier H. The 3D Model Acquisition Pipeline [J]. Computer Graphics Forum, 2002, 21(2): 149~172.
    [5] Kolb A, Barth E, Koch R, Larsen R. Time-of-Flight Cameras in Computer Graphics [J]. Computer Graphics Forum, 2010, 29(1): 141~159.
    [6] Primesense Inc. Reference Design. http://www.primesense.com/?p=514, 2011-03-01.
    [7] Varady T, Martin R R, Cox J. Reverse Engineering of Geometric Models-An Introduction [J]. Computer-Aided Design, 1997, 29 (4): 255~268.
    [8]金涛,童永光.逆向工程技术[M].北京:机械工业出版社,2003:1~2,88.
    [9] Direct Dimensions. Military/Aerospace. http://www.directdimensions.com/ apps_militaryaerospace.htm, 2010-03-01.
    [10]徐祖舰,王滋政,阳锋.机载激光雷达测量技术及工程应用实践[M].武汉:武汉大学出版社,2009:61~89,135~137.
    [11] Weise T, Leibe B, Gool L V. Fast 3D Scanning with Automatic Motion Compensation [C]//Baker S, Matas J, Zabih R(eds.). IEEE Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society Press, 2007:1~8.
    [12] Weingarten J, Gruener G, Siegwart R. A State-of-the-Art 3D Sensor for Robot Navigation [C]//Asamq H, Kaneko M, Xiao J(eds.). Intl. Conf. on Intelligent Robots and Systems. Washington DC: IEEE Press, 2004:2155~2160.
    [13] Yuan F, Swadzba A, Philippsen R, Engin O, Hanheide M, Wachsmuth S. Laser-based Navigation Enhanced with 3D Time-of-Flight Data [C]//Lynch K, Chatila R, Sugano S(eds.). IEEE International Conference on Robotics and Automation (ICRA09). Washington DC: IEEE Press, 2009:2231~2237.
    [14] Thrun S, Montemerlo M, et al. Stanley: The Robot that Won the DARPA Grand Challenge [J]. Journal of Field Robotics, 2006, 23(9): 661~692.
    [15] Konica Minolta. Applications in Medical Science. http://www. konicaminolta.com/sensingusa/application_notes/3D-Scanning/Applications-In-Medical-Science, 2011-03-01.
    [16] Levoy M, Pulli K, Curless B, Rusinkiewicz S, Koller D, Pereira L, Ginzton M, Anderson S, Davis J, Ginsberg J, Shade J, Fulk D. The Digital Michelangelo Project: 3D Scanning of Large Statues [C]//White J(ed.). The 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH00). New York: ACM Press, 2000:131~144.
    [17]孙芮英.三维数字让文物活了[N].计算机世界,2010-05-17(40).
    [18] Microsoft. Introducing Kinect for Xbox 360. http://www.xbox.com/en-US/ kinect, 2011-03-01.
    [19] Wikipedia. Point Cloud. http://en.wikipedia.org/wiki/Point_cloud, 2011-01-27 /2011-03-01.
    [20]肖春霞.点模型数字几何处理技术研究[D].杭州:浙江大学,2006:1~4.
    [21] Gross M, Pfister H. Point-Based Graphics [M]. San Francisco: Morgan Kaufmann Publishers Inc., 2007: 1~93.
    [22]缪永伟.点模型的几何处理和形状编辑[D].杭州:浙江大学,2007:1~6.
    [23]王仁芳.点模型数字几何处理若干技术研究[D].杭州:浙江大学,2007:1~12.
    [24] Weyrich T, Pauly M, Keiser R, Heinzle S, Scandella S, Gross M. Post-processing of Scanned 3D Surface Data [C]//Alexa M, Rusinkiewicz S(eds.). Eurographics Symposium on Point-Based Graphics. Geneve: Eurographics Association, 2004:85~94.
    [25] Wand M, Adams B, Ovsjanikov M, Berner A, Bokeloh M, Jenke P, Guibas L, Seidel H-P, Schilling A. Efficient Reconstruction of Nonrigid Shape and Motion from Real-time 3D Scanner Data [J]. ACM Transactions on Graphics, 2009, 28(2): No. 15.
    [26] Li H, Adams B, Guibas L J, Pauly M. Robust Single-view Geometry and Motion Reconstruction [J]. ACM Transactions on Graphics, 2009, 28(5): No. 175.
    [27]苗兰芳.点模型的表面几何建模和绘制[D].杭州:浙江大学,2005:1~26.
    [28] Nan L, Sharf A, Zhang H, Cohen-Or D, Chen B. SmartBoxes for Interactive Urban Reconstruction [J]. ACM Transactions on Graphics, 2010, 29(4): No. 93.
    [29] Zheng Q, Sharf A, Wan G, Li Y, Mitra N J, Cohen-Or D, Chen B. Non-local Scan Consolidation for 3D Urban Scenes [J]. ACM Transactions on Graphics, 2010, 29(4): No. 94.
    [30] Chen J, Chen B. Architectural Modeling from Sparsely Scanned Range Data [J]. International Journal of Computer Vision, 2008, 78(2-3): 223~236.
    [31]张连伟.散乱点云三维表面重建技术研究[D].长沙:国防科学技术大学,2009:1~16.
    [32]孟娜.基于激光扫描点云的数据处理技术研究[D].济南:山东大学,2009:1~16.
    [33] Alexa M, Behr J, Cohen-Or D, Fleishman S, Levin D, Silva C T. Point Set Surfaces [C]//Ertl T, Joy K I, Varshney A(eds.). The 11th IEEE Conference onVisualization. Washington DC: IEEE Computer Society Press, 2001:21~28.
    [34] Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W. Surface Reconstruction from Unorganized Points [J]. Computer Graphics, 1992, 26(2): 71~78.
    [35] Curless B, Levoy M. A Volumetric Method for Building Complex Models from Range Images [C]//Jii F(ed.). The 23rd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH96). New York: ACM Press, 1996:303~312.
    [36] Wheeler M D, Sato Y, Ikeuchi K. Consensus Surfaces for Modeling 3D Objects from Multiple Range Images [C]//Davis L, Zisserman A, Yachida M, Narasimhan R(eds.). The 6th International Conference on Computer Vision (ICCV98). Washington DC: IEEE Computer Society Press, 1998:917~924.
    [37] Turk G, Levoy M. Zippered Polygon Meshes from Range Images [C]//Bailey M(ed.). The 21st Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH94). New York: ACM Press, 1994:311~318.
    [38] Soucy M, Laurendeau D. Surface Modeling from Dynamic Integration of Multiple Range Views [C]//Gelsema E, Backer E(eds.). Intl. Conf. on Pattern Recognition. Washington DC: IEEE Computer Society Press, 1992:449~452.
    [39] Goshtasby A, O'Neill W D. Surface Fitting to Scattered Data by a Sum of Gaussians [J]. Computer Aided Geometric Design, 1993, 10(2): 143~156.
    [40] Krishnamurthy V, Levoy M. Fitting Smooth Surfaces to Dense Polygon Meshes [C]//Jii F(ed.). The 23rd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH96). New York: ACM Press, 1996:313~324.
    [41] Fan H, Yu Y, Peng Q. Robust Feature-Preserving Mesh Denoising based on Consistent Subneighborhoods [J]. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(2): 312~324.
    [42] Zheng Y, Fu H, Au O K-C, Tai C-L. Bilateral Normal Filtering for Mesh Denoising [J]. IEEE Trans. Vis. & Comp. Graph., To appear.
    [43] Botsch M, Pauly M, Kobbelt L, Alliez P, Levy B, Bischoff S, R?ssl C. Geometric Modeling based on Polygonal Meshes [Z]. New York: ACM Press, 2007.
    [44] Schall O, Belyaev A, Seidel H-P. Adaptive Feature-Preserving Non-local Denoising of Static and Time-varying Range Data [J]. Computer-Aided Design, 2008, (40):701~707.
    [45] Desbrun M, Meyer M, Schr?der P, Barr A H. Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow [C]//Waggenspack(ed.). The 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH99). New York: ACM Press, 1999:317~324.
    [46] Hildebrandt K, Polthier K. Anisotropic Filtering of Non-linear Surface Features[J]. Computer Graphics Forum, 2004, 23(3): 391~400.
    [47] Clarenz U, Rumpf M, Telea A. Fairing of Point Based Surfaces [C]//Cohen-Or D, Jain L, Magnenat-Thalmann N(eds.). Computer Graphics International. Washington DC: IEEE Computer Society Press, 2004:600~603.
    [48] Lange C, Polthier K. Anisotropic Smoothing of Point Sets [J]. Computer Aided Geometric Design, 2005, 22(7): 680~692.
    [49] Xiao C, Miao Y, Liu S, Peng Q. A Dynamic Balanced Flow for Filtering Point Sampled Geometry [J]. The Visual Computer, 2006, 22(3): 210~219.
    [50] Taubin G. A Signal Processing Approach to Fair Surface Design [C]//Mair S G, Cook R(eds.). The 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH95). New York: ACM Press , 1995:351~358.
    [51] Linsen L. Point Cloud Representation [R]. Karlsruhe: Faculty of Computer Science, University of Karlsruhe, 2001: 3~8.
    [52] Pauly M, Kobbelt L, Gross M. Multiresolution Modeling Of Point-Sampled Geometry [R]. ETH Zurich: Computer Science Department, 2002: 3~4.
    [53] Pauly M, Gross M. Spectral Processing of Point-Sampled Geometry [C]//Pocock L(ed.). The 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH01). New York: ACM Press, 2001:379~386.
    [54] Tomasi C, Manduchi R. Bilateral Filtering for Gray and Color Images [C]//Davis L, Zisserman A, Yachida M, Narasimhan R(eds.). IEEE Int. Conf. on Computer Vision. Washington DC: IEEE Computer Society Press, 1998:836~846.
    [55] Fleishman S, Drori I, Cohen-Or D. Bilateral Mesh Denoising [J]. ACM Transactions on Graphics, 2003, 22(3): 950~953.
    [56] Hu G, Peng Q, Forrest A R. Mean Shift Denoising of Point-Sampled Surfaces [J]. The Visual Computer, 2006, 22(3): 147~157.
    [57] Levin D. Mesh-independent Surface Interpolation [C]//Brunnett G, Hamann B, Müller H, Linsen L(eds.). Geometric Modeling for Scientific Visualization, Heidelberg: Spinger-Verlag, 2003:37~49.
    [58] Amenta N, Kil Y: Defining Point-Set Surfaces [J]. ACM Transactions on Graphics, 2004, 23(3): 264~270.
    [59] Alexa M, Adamson A. On Normals and Projection Operators for Surfaces Defined by Point Sets [C]//Alexa M, Rusinkiewicz S(eds.). Eurographics Symposium on Point-Based Graphics. Geneve: Eurographics Association, 2004:149~156.
    [60] Alexa M, Adamson A. Interpolatory Point Set Surfaces - Convexity and Hermite Data [J]. ACM Transactions on Graphics, 2009, 28(2): No. 20.
    [61] Amenta N, Kil Y. The Domain of a Point Set Surface [C]//Alexa M, Rusinkiewicz S(eds.). Eurographics Symposium on Point-Based Graphics.Geneve: Eurographics Association, 2004:139~147.
    [62] Guennebaud G, Gross M. Algebraic Point Set Surfaces [J]. ACM Transactions on Graphics, 2007, 26(3): No. 23.
    [63] Guennebaud G, Germann M, Gross M. Dynamic Sampling and Rendering of Algebraic Point Set Surfaces [J]. Computer Graphics Forum, 2008, 27(2): 653~652.
    [64] Mederos B, Velho L, de Figueiredo L H. Robust Smoothing of Noisy Point Clouds [C]//Lucian M, Neamtu M(eds.). SIAM Conference on Geometric Design and Computing. Seattle: Nashboro Press, 2003:405~416.
    [65] Fleishman S, Cohen-or D, Silva C T. Robust Moving Least-squares Fitting with Sharp Features [J]. ACM Transactions on Graphics, 2005, 24(3): 544~552.
    [66] Lipman Y, Cohen-Or D, Levin D. Data-dependent MLS for Faithful Surface Approximation [C]//Belyaev A, Garland M(eds.). The 5th Eurographics Symposium on Geometry Processing. Geneve: Eurographics Association, 2007:59~67.
    [67] ?ztireli C, Guennebaud G, Gross M. Feature Preserving Point Set Surfaces based on Non-linear Kernel Regression [J]. Computer Graphics Forum, 2009, 28(2): 493~501.
    [68] Lipman Y, Cohen-Or D, Levin D, Tal-Ezer H. Parameterization-free Projection for Geometry Reconstruction [J]. ACM Transactions on Graphics, 2007, 26(3): No. 22.
    [69] Schall O, Belyaev A G, Seidel H-P. Robust Filtering of Noisy Scattered Point Data [C]//Pauly M, Zwicker M(eds.). IEEE/Eurographics Symposium on Point-Based Graphics. Washington DC: IEEE Computer Society Press, 2005:71~77.
    [70] Jenke P, Wand M, Bokeloh M, Schilling A, Straβer W. Bayesian Point Cloud Reconstruction [J]. Computer Graphics Forum, 2006, 25(3): 379~388.
    [71] Zhang L, Liu L, Gotsman C, Huang H. Mesh Reconstruction by Meshless Denoising and Parameterization [J]. Computes & Graphics, 2010, 34(3): 198~208.
    [72] Avron H, Sharf A, Greif C, Cohen-Or D. L1-sparse Reconstruction of Sharp Point Set Surfaces [J]. ACM Transactions on Graphics, 2010, 29(5): No. 135.
    [73] Yoon M, Ivrissimtzis I, Lee S. Variational Bayesian Noise Estimation of Point Sets [J]. Computers & Graphics, 2009, 33(3): 226~234.
    [74] Sun X, Rosin P L, Martin R R, Langbein F C. Noise Analysis and Synthesis for 3D Laser Depth Scanners [J]. Graph. Models, 2009, 71(2): 34~48.
    [75] Abbasinejad F F, Kil Y J, Sharf A, Amenta N. Rotating Scans for Systematic Error Removal [J]. Computer Graphics Forumm, 2009, 28(5): 1319~1326.
    [76] Wand M, Berner A, Bokeloh M, Jenke P, Fleck A, Hoffmann M, Maier B,Stanecker D, Schilling A, Seidel H-P. Processing and Interactive Editing of Huge Point Clouds from 3D Scanners [J]. Computers & Graphics, 2008, 32(2): 204~220.
    [77] Medioni G, Lee M-S, Tang C-K. A Computational Framework for Segmentation and Grouping [M]. Amsterdam: Elsevier, 2000: 33~64.
    [78] Huhle B, Schairer T, Jenke P, Straβer W. Fusion of Range and Color Images for Denoising and Resolution Enhancement with a Non-local Filter [J]. Comput. Vis. Image Underst., 2010, 114(12): 1336~1345.
    [79] Shen J, Yoon D, Shehu D, Chang S-Y. Spectral Moving Removal of Non-isolated Surface Outlier Clusters [J]. Computer-Aided Design. 2009, 41(3): 256~267.
    [80] Umasuthan M, Wallace A M. Outlier Removal and Discontinuity Preserving Smoothing of Range Data [J]. Vision Image Signal Process., 1996, 143(3): 191~200.
    [81] Liu S, Chan K-C, Wang C C L. Iterative Consolidation of Unorganized Points [J]. IEEE Computer Graphics and Applications, 2011, to appear.
    [82] Huang H, Li D, Zhang H, Ascher U, and Cohen-Or D. Consolidation of Unorganized Point Clouds for Surface Reconstruction [J]. ACM Transactions on Graphics, 2009, 28(5): No. 176.
    [83] Ju T. Fixing Geometric Errors on Polygonal Models: A Survey [J]. Journal of Computer Science and Technology, 2009, 24(1):19~29.
    [84] Bendels G H, Schnabel R, Klein R. Detecting Holes in Point Set Surfaces [J]. Journal of WSCG, 2006, 14(1-3): 89~96.
    [85] Davis J, Marschner S, Garr M, Levoy M. Filling Holes in Complex Surfaces Using Volumetric Diffusion [C]//Cortelazzo G M, Guerra C(eds.). International Symposium on 3D Data Processing, Visualization and Transmission. Washington DC: IEEE Computer Society Press, 2002:428~438.
    [86] Park S, Guo X, Shin H, Qin H. Shape and Appearance Repair for Incomplete Point Surfaces [C]//Chaudhuri S, Freeman B, Gool L V(eds.). The 10th IEEE International Conference on Computer Vision (ICCV2005), Washington DC: IEEE Computer Society Press, 2005:1260~1267.
    [87] Xiao C, Zheng W, Miao Y, Zhao Y, Peng Q. A Unified Method for Appearance and Geometry Completion of Point Set Surfaces [J]. The Visual Computer, 2007, 23(6): 433~443.
    [88] Fischler M A, Bolles R C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography [J]. Comm. of the ACM, 1981, 24(6): 381~395.
    [89] Schanbel R, Degener P, Klein R. Completion and Reconstruction with Primitive Shapes [J]. Computer Graphics Forum, 2009, 28(2): 503~512.
    [90] Rusinkiewicz S, Levoy M. Qsplat: A Multiresolution Point Rendering System for Large Meshes [C]//White J(ed.). The 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH00). New York: ACM Press, 2000:343~352.
    [91] Zwicker M, Pfister H, van Baar J, Gross M. Surface Splatting [C]//Pocock L(ed.). The 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH01). New York: ACM Press, 2001:371~378.
    [92] Ohtake Y, Belyaev A, Alexa M, Turk G, Seidel H-P. Multi-level Partition of Unity Implicits [J]. ACM Transactions on Graphics, 2003, 22(3): 463~470.
    [93] Shen C, O’Brien J F, Shewchuk J R. Interpolating and Approximating Implicit Surface from Polygon Soup [J]. ACM Transactions on Graphics, 2004, 23(3): 896~904.
    [94] Kazhdan M, Bolitho M, Hoppe H. Poisson Surface Reconstruction [C]//Sheffer A, Polthier K(eds.). The 4th Eurographics Symposium on Geometry Processing. Geneve: Eurographics Association, 2006:61~70.
    [95] Pauly M, Keiser R, Kobbelt L P, Gross M. Shape Modeling with Point-Sampled Geometry [J]. ACM Transactions on Graphics, 2003, 22(3): 641~650.
    [96] Lalonde J-F, Unnikrishnan R, Vandapel N, Hebert M. Scale Selection for Classification of Point-Sampled 3D Surfaces [C]//Rushmeier H, Fisher R(eds.). The 5th International Conference on 3D Digital Imaging and Modeling. Washington DC: IEEE Computer Society Press, 2005:285~292.
    [97] Mitra N J, Nguyen A. Estimating Surface Normals in Noisy Point Cloud Data [C]//de Berg M, Mount D(eds.). The 19th Annual Symposium on Computational Geometry. New York: ACM Press, 2003:322~328.
    [98] Yoon M, Lee Y, Lee S, Ivrissimtzis I, Seidel H-P. Surface and Normal Ensembles for Surface Reconstruction [J]. Comput. Aided Des., 2007, 39(5): 408~420.
    [99] Amenta N, Bern M. Surface Reconstruction by Voronoi Filtering [C]//Janardan R(ed.). The 14th Annual Symposium on Computational Geometry. New York: ACM Press, 1998:39~48.
    [100] Dey T K, Goswami S. Provable Surface Reconstruction from Noisy Samples [J]. Comput. Geom. Theory Appl., 2006, 35(1): 124~141.
    [101] OuYang D, Feng H-Y. On the Normal Vector Estimation for Point Cloud Data from Smooth Surfaces [J]. Computer-Aided Design, 2005, 37(10): 1071~1079.
    [102] Alliez P, Cohen-Steiner D, Tong Y, Desbrun M. Voronoi-based Variational Reconstruction of Unoriented Point Sets [C]//Belyaev A, Garland M(eds.). The 5th Eurographics Symposium on Geometry Processing. Geneve: Eurographics Association, 2007:39~48.
    [103] Rousseeuw P J, Leroy A M. Robust Regression and Outlier Detection [M]. NewYork: John Wiley & Sons Inc., 1987: 1~18.
    [104] Huber P J, Ronchetti E. Robust Statistics [M]. New York: John Wiley & Sons Inc., 2009: 1~20.
    [105] Liu S, and Wang C C L. Orienting Unorganized Points for Surface Reconstruction [J]. Computers & Graphics, 2010, 34(3): 209~218.
    [106] Jones T R, Durand F, Zwicker M. Normal Improvement for Point Rendering [J]. IEEE Comput. Graph. Appl., 2004, 24(4): 53~56.
    [107] Calderon F, Ruiz U, Rivera M. Surface-Normal Estimation with Neighborhood Reorganization for 3D Reconstruction [C]//Kittler J, Rueda L, Mery D(eds.). The 12th Iberoamerican Congress on Pattern Recognition. 2007:321~330.
    [108] Kolluri R. Provably Good Moving Least Squares [C]//Buchsbaum A(ed.). ACM-SIAM Symposium on Discrete Algorithms. New York: ACM Press, 2005:1008~1018.
    [109] Cleveland W S. Robust Locally Weighted Regression and Smoothing Scatter Plots [J]. Journal of the American Statistical Association, 1979, 74(368): 859~836.
    [110] Black M, Rangarajan A. On the Unification of Line Processes, Outlier Rejection and Robust Statistics with Applications in Early Vision [J]. Intl Journal. Computer Vision, 1996, 19(1): 57~92.
    [111] Dey T, Li G, Sun J. Normal Estimation for Point Clouds: a Comparison Study for a Voronoi based Method [C]//Pauly M, Zwicker M(eds.). Eurographics/IEEE Symposium on Point-Based Graphics. Washington DC: IEEE Computer Society Press, 2005:39~46.
    [112] Attali D, Boissonnat J, Lieutier A. Complexity of the Delaunay Triangulation of Points on Surfaces: the Smooth Case [C]//Snoeyink J, de Berg M, Mitchell J S B, Rote G, Teillaud M(eds.). The 19th Annual Symposium on Computational Geometry. New York: ACM Press, 2003:201~210.
    [113] Dey T K, Giesen J, Hudson J. Delaunay based Shape Reconstruction from Large Data [C]//Breen D E, Heirich A, Koning A H J(eds.). IEEE Symposium on Parallel and Large-Data Visualization and Graphics. Washington DC: IEEE Computer Society Press, 2001:19~27.
    [114] Bokeloh M, Berner A, Wand M, Seidel H-P, Schilling A. Symmetry Detection using Feature Lines [J]. Computer Graphics Forum, 2009, 28(2): 697~706.
    [115] Daniels J I, Ha L K, Ochotta T, Silva C T. Robust Smooth Feature Extraction from Point Clouds [C]//Galin E, Pauly M, Wyvill B(eds.). IEEE International Conference on Shape Modeling and Applications (SMI). Washington DC: IEEE Computer Society Press, 2007:123~136.
    [116] Daniels J I, Ochotta T, Ha L K, Silva C T. Spline-based Feature Curves from Point-Sampled Geometry [J]. The Visual Computer, 2008, 24(6): 449~462.
    [117] Stamos I, Liu L, Chen C, Wolberg G, Yu G, Zokai S. Integrating Automated Range Registration with Multiview Geometry for the Photorealistic Modeling of Large-Scale Scenes [J]. International Journal of Computer Vision, 2008, 78(2-3): 237~260.
    [118] Gumhold S, Wang X, McLeod R. Feature Extraction from Point Clouds [C]//Chrisochoides N, Knupp P(eds.). The 10th Int. Meshing Roundtable. New Mexico: Sandia National Lab., 2001:293~305.
    [119] Pauly M, Keiser R, Gross M. Multi-scale Feature Extraction on Point-sampled Surfaces [J]. Computer Graphics Forum, 2003, 22(3): 281~289.
    [120] Demarsin K, Vanderstraeten D, Volodine T, Roose D. Detection of Closed Sharp Edges in Point Clouds Using Normal Estimation and Graph Theory [J]. Computer-Aided Design, 2007, 39(4): 276~283.
    [121] Gelfand N, Guibas L J. Shape Segmentation using Local Slippage Analysis [C]//Scopigno R, Zorin D(eds.). Eurograph. Symp. Geometry Processing. Geneve: Eurographics Association, 2004:214~223.
    [122] Cornea N D, Min P, Silver D. Curve-Skeleton Properties, Applications, and Algorithms [J]. IEEE Trans. Vis. & Comp. Graphics, 2007, 13(3): 530~548.
    [123] Au O K-C, Tai C-L, Chu H-K, Cohen-Or D, Lee T-Y. Skeleton Extraction by Mesh Contraction [J]. ACM Transactions on Graphics, 2008, 27(3): No. 44.
    [124] Ogniewicz R, Ilg M, Zurich E. Voronoi Skeletons: Theory and Applications [C]//Roeedeld A, Ahuja N(eds.). IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington DC: IEEE Computer Society Press, 1992:63~69.
    [125] Sharf A, Lewiner T, Shamir A, Kobbelt L. On-the-fly Curve-skeleton Computation for 3D Shapes [J]. Computer Graphics Forum, 2007, 26(3): 323~328.
    [126] Tagliasacchi A, Zhang H, Cohen-Or D. Curve Skeleton Extraction From Incomplete Point Cloud [J]. ACM Transactions on Graphics, 2009, 28(3): No. 71.
    [127] Cao J, Tagliasacchi A, Olson M, Zhang H, Su Z. Point Cloud Skeletons via Laplacian Based Contraction [C]//Rossignac J, Spagnuolo M, Véron P(eds.). IEEE Conf. on Shape Modeling and Applications (SMI). Washington DC: IEEE Computer Society, 2010:187~197.
    [128] Lazarus F, Verroust A. Extracting Skeletal Curves from 3D Scattered Data [C]//Pasko A, Spagnuolo M(eds.). IEEE Conf. on Shape Modeling and Applications (SMI). Washington DC: IEEE Computer Society Press, 1999:194~201.
    [129] Xu H, Gossett N, Chen B. Knowledge and Heuristic-based Modeling of Laser-scanned Trees [J]. ACM Transactions on Graphics, 2007, 26(4): No. 19.
    [130] Livny Y, Yan F, Olson M, Chen B, Zhang H, El-Sana J. Automatic Reconstruction of Tree Skeletal Structures from Point Clouds [J]. ACM Transactions on Graphics, 2010, 29(6): No. 151.
    [131] Bucksch A, Lindenbergh R. CAMPINO-a Skeletonization Method for Point Cloud Processing [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(1): 115~127.
    [132] Bucksch A, Lindenbergh R, Menenti M. Skeltre-Fast Skeletonisation for Imperfect Point Cloud Data of Botanic Trees [C]//Pratikakis I, Spagnuolo M, Theoharis T, Veltkamp R(eds.). Eurographics Workshop on 3D Object Retrieval. Geneve: Eurographics Association, 2009:13~20.
    [133] Bucksch A, Lindenbergh R, Menenti M. Skeltre-Robust Skeleton Extraction from Imperfect Point Clouds [J]. The Visual Computer, 2009, 26(10): 1283~1300.
    [134] Li G, Liu L, Zheng H, Mitra N J. Analysis, Reconstruction and Manipulation Using Arterial Snakes [J]. ACM Transactions on Graphics, 2010, 29(6): No. 152.
    [135] Gotsman C, Gumhold S, Kobbelt L. Simplification and Compression of 3D Meshes [C]//Iske A, Quak E, Floater M S(Eds.). Tutorials on Multiresolution in Geometric Modelling. Heidelberg: Springer-Verlag, 2002:319~361.
    [136] Pauly M, Gross M, Kobbelt L. Efficient Simplification of Point-Sampled Surfaces [C]//Swan E, Thomas J(eds.). IEEE Visualization 2002. Washington DC: IEEE Computer Society Press, 2002:163~170.
    [137] Fleishman S, Alexa M, Cohen-Or D, Silva C T. Progressive Point Set Surfaces [J]. ACM Transactions on Graphics, 2003, 22(4): 997~1011.
    [138] Moenning C, Dodgson N A. Intrinsic Point Cloud Simplification [C]//Thalmann D, Kuzmin Y(eds.). International Conference on the Computer Graphics and Vision. Moscow: Graphicon, 2004:1147~1154.
    [139] Song H, Feng H Y. A Global Clustering Approach to Point Cloud Simplification with a Specified Data Reduction Ratio [J]. Computer-Aided Design, 2008, 40(3): 281~292.
    [140] Wu J, Kobbelt L. Optimized Sub-Sampling of Point Sets for Surface Splatting [J]. Computer Graphics Forum, 2004, 23(3): 643~652.
    [141] Wu J, Zhang Z. Kobbelt L. Progressive Splatting [C]//Pauly M, Zwicker M(eds.). Eurographics Symposium on Point-Based Graphics. Washington DC: IEEE Computer Society Press, 2005:25~32.
    [142] Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-Completeness [M]. New York: W. H. Freemann, 1979: 190~191.
    [143] Hoppe H. Progressive Meshes [C]//Jii F(ed.). The 23rd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH96). New York: ACM Press, 1996:99~108.
    [144] Cohen-Steiner D, Alliez P, Desbrun M. Variational Shape Approximation [J]. ACM Transactions on Graphics, 2004, 23(3): 905~914.
    [145] Lloyd S P. Least Squares Quantization in PCM [J]. IEEE Transactions on Information Theory, 1982, 28(2): 129~136.
    [146] Wu J, Kobbelt L. Structure Recovery via Hybrid Variational Surface Approximation [J]. Computer Graphics Forum, 2005, 24(3): 277~284.
    [147] Attene M, Falcidieno B, Spagnuolo M. Hierarchical Mesh Segmentation based on Fitting Primitives [J]. The Visual Computer, 2006, 22(3): 181~193.
    [148] Lafarge F, Keriven R, Brédif M. Insertion of 3D Primitives in Mesh Based Representations: Towards Compact Models Preserving the Details [J]. IEEE Trans. Img. Proc., 2010, 19(7): 1683~1694.
    [149] Wahl R, Guthe M, Klein R. Identifying Planes in Point-clouds for Efficient Hybrid Rendering [C]//Gotsman C, Manocha D, Wu E(eds.). The 13th Pacific Conference on Computer Graphics and Applications. Macau: Pacific Graphics, 2005:1~8.
    [150] Schnabel R, Wahl R, Klein R. Efficient RANSAC for Point-Cloud Shape Detection [J]. Computer Graphics Forum, 2007, 26(2): 214~226.
    [151] Schnabel R, M?ser S, Klein R. Fast Vector Quantization for Efficient Rendering of Compressed Point-Clouds [J]. Computers & Graphics, 2008, 32(2): 246~259.
    [152] Schnabel R, Wessel R, Wahl R, Klein R. Shape Recognition in 3D Point-clouds [C]//Skala V(ed.). The 16th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision. Plzen: UNION Agency- Science Press, 2008:65~72.
    [153] Jones T R, Durand F, Desbrun M. Non-iterative, Feature-preserving Mesh Smoothing [J]. ACM Transactions on Graphics, 2003, 22(3): 943~949.
    [154] Meer P, Mintz D, Rosenfeld A, Kim D Y. Robust Regression Methods for Computer Vision: A Review [J]. Int. J. Comput. Vision, 1991, 6(1): 59~70.
    [155] Lee K-M, Meer P, Park R-H. Robust Adaptive Segmentation of Range Images [J]. IEEE Trans. Pattern Anal. Mach. Intell, 1998, 20(2): 200~205.
    [156] Miller J V, Stewart C V. Muse: Robust Surface Fitting using Unbiased Scale Estimates [C]//Dyer C, Ikeuchi(eds.). IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington DC: IEEE Computer Society Press, 1996:300~306.
    [157] Bab-Hadiashar A, Suter D. Robust Motion Segmentation using Rank Ordering Estimatiors [C]//Chin R, Pong T C, Tsuji S(eds.). The 3rd Asian Conference on Computer Vision. Heidelberg: Springer-Verlag, 1997:599~606.
    [158] Bab-Hadiashar A, Suter D. Robust Segmentation of Visual Data using Ranked Unbiased Scale Estimate [J]. Robotica, 1999, 17(6): 649~660.
    [159] Chen H, Meer P. Robust Computer Vision Through Kernel Density Estimation[C]//Heyden A, Sparr G(eds.). The 7th European Conference on Computer Vision. Heidelberg: Springer-Verlag, 2002:236~250.
    [160] Wang H. Robust Adaptive-scale Parametric Model Estimation for Computer Vision [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26(11): 1459~1474.
    [161] Wang H, Mirota D, Hager G. A Generalized Kernel Consensus based Robust Estimator [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32(1): 178~184.
    [162] Sheung H, Wang C C L. 2009. Robust Mesh Reconstruction from Unoriented Noisy Points [C]//Bronsvoort W, Gravesen J, Keyser J(eds.). SIAM/ACM Joint Conference on Geometric and Physical Modeling. New York: ACM Press, 2009:13~24.
    [163] Silverman B W. Density Estimation for Statistics and Data Analysis [M]. New York: Chapman and Hall/CRC, 1986: 38~43.
    [164] Terrell G R, Scott D W. Over Smoothed Nonparametric Density Estimates [J]. Journal of the American Statistical Association, 1985, 80(389): 209~214.
    [165] Diebel J, Thrun S, Brünig M. A Bayesian Method for Probable Surface Reconstruction and Decimation [J]. ACM Transactions on Graphics, 2006, 25(1): 39~59.
    [166] Xie H, McDonnell K T, Qin H. Surface Reconstruction of Noisy and Defective Datasets [C]//Brady R, Chen B(eds.). IEEE Visualization. Washington DC: IEEE Computer Society Press, 2004:259~266.
    [167] Boykov Y, Veksler O, Zabih R. Fast Approximate Energy Minimization via Graphcuts [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23(11): 1222~1239.
    [168] Hough P. Method and Means for Recognizing Complex Patterns [P]. US Patent: 3069654, 1962-12-18.
    [169] Lee Y, Lee S, Ivrissimtzis I, Seidel H-P. Overfitting Control for Surface Reconstruction [C]//Sheffer A, Polthier K(eds.). The 4th Eurographics Symposium on Geometry Processing. Geneve: Eurographics Association, 2006:231~234.
    [170] Burnham K P, Erson D R. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach [M]. Heidelberg: Springer-Verlag, 2002: 62~98.
    [171] Darrell T J, Sclaroff S, Pentland A P. Segmentation by Minimal Description [C]//Nagao M, Eklundh J-O, Kak A, Tsuji S(eds.). The 3rd International Conference on Computer Vision (ICCV90). Washington DC: IEEE Computer Society Press, 1990:112~116.
    [172] Leonardis A, Gupta A, Bajcsy R. Segmentation of Range Images as the Search for Geometric Parametric Models [J]. International Journal of Computer Vision, 1995, 14(3): 253~277.
    [173] Agarwal P K, Suri S. Surface Approximation and Geometric Partitions [J]. Journal of Computing, 1998, 27(4): 1016~1035.
    [174] Garland M, Heckbert P S. Surface Simplification using Quadric Error Metrics [C]//Whitted T(ed.). The 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH97). New York: ACM Press, 1997:209~216.
    [175] Kalvin A D, Taylor R H. Superfaces: Polygonal Mesh Simplification with Bounded Error [J]. IEEE Comput. Graphics Appl., 1996, 16(3): 64~77.
    [176] Sheffer A. Model Simplification for Meshing using Face Clustering [J]. Computer-Aided Design, 2001, 33(13): 925~934.
    [177] Garland M, Willmott A, Heckbert P S. Hierarchical Face Clustering on Polygonal Surfaces [C]//Hughes J F, Sequin C H(eds.). ACM Symposium on Interactive 3D Graphics (I3D). New York: ACM Press, 2001:49~58.
    [178] Marinov M, Kobbelt L. Automatic Generation of Structure Preserving Multiresolution Models [J]. Comput. Graph. Forum, 2005, 24(3): 479~486.
    [179] Hoppe H, Derose T, Duchamp T, Mcdonald J, Stuetzle W. Mesh Optimization [C]//Kajiya J(ed.). The 20th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH93). New York: ACM Press, 1993:19~26.
    [180] Yan D, Liu Y, Wang W. Quadric Surface Extraction by Variational Shape Approximation [C]//Sheffer A, Polthier K(eds.). The 4th Eurographics Symposium on Geometry Processing. Geneve: Eurographics Association, 2006:73~86.
    [181] Chiosa I, Kolb A. Variational Multilevel Mesh Clustering [C]//Spagnuolo M, Cohen-Or D, Gu X D(eds.). IEEE International Conference on Shape Modeling and Applications (SMI). Washington DC: IEEE Computer Society Press, 2008:197~204.
    [182] Turk G. Re-tiling Polygonal Surfaces [J]. Computer Graphics, 1992, 26(2): 55~64.
    [183] Lee A W F, Sweldens W, Scharoder P, Cowsar L, Dobkin D. MAPS: Multiresolution Adaptive Parameterization of Surfaces [C]//Cohen M F(ed.). The 25nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH98). New York: ACM Press, 1998:95~104.
    [184] Kobbelt L, Vorsatz J, Labsik U, Seidel H-P. A Shrink Wrapping Approach to Remeshing Polygonal Surfaces [J]. Computer Graphics Forum, 1999, 18(3): 119~130.
    [185] Alliez P, Attene M, Gotsman C, Ucelli G. Recent Advances in Remeshing of Surfaces [C]//De Floriani L, Spagnuolo M(eds.). Shape Analysis and Structuring. Heidelberg: Springer-Verlag, 2008:53~82.
    [186] Marinov M, Kobbelt L. A Robust Two-step Procedure for Quad-dominant Remeshing [J]. Computer Graphics Forum, 2006, 25(3): 537~546.
    [187] Pottmann H, Randrup T. Rotational and Helical Surface Approximation for Reverse Engineering [J]. Computing, 1998, 60(4): 307~322.
    [188] Benk(o|¨) P, Kós G, Várdy T, Andor L, Martin R R. Constrained Fitting in Reverse Engineering [J]. Computer Aided Geometric Design, 2002, 19(3): 173~205.
    [189] Pottmann H, Leopoldseder S, Hofer M, Steiner T, Wang W. Industrial Geometry: Recent Advances and Applications in CAD [J]. Computer-Aided Design, 2005, 37(7): 751~766.
    [190] Fitzgibbon A W, Eggert D W, Fisher R B. High-level CAD Model Acquisition from Range Images [J]. Computer-Aided Design, 1997, 29(4): 321~330.
    [191] Vanco M, Hamann B, Brunnett G. Surface Reconstruction from Unorganized Point Data with Quadrics [J]. Comput. Graph. Forum, 2008, 27(6): 1593~1606.
    [192] Leonardis A, Bischof H, Maver J. Multiple Eigenspaces [J]. Pattern Recognition, 2002, 35(11): 2613~2627.
    [193] Akaike H. Information Theory and an Extension of the Maximum Likelihood Principle [C]//Petrov B N, Csádki F(eds.). The 2nd International Symposium on Information Theory. Budapest: Akademiai Kaidó, 1973: 267~281.
    [194] Leontaritis I J, Billings S A. Model Selection and Validation Methods for Nonlinear Systems [J]. Int. J. Control, 1987, 45(1): 311~341.
    [195] Wallace C S, Boulton D M. An Information Measure for Classification [J]. The Computer Journal, 1968, 11(2): 185~194.
    [196] Rissanen J. Modeling by Shortest Data Description [J]. Automatica, 1978, 14(1): 465~471.
    [197] Schwarz G. Estimating the Dimension of a Model [J]. The Annals of Statistics, 1978, 6(1): 461~464.
    [198] Bab-Hadiashar A, Gheissari N. Range Image Segmentation using Surface Selection Criterion [J]. IEEE Transactions on Image Processing, 2006, 15(7): 2006~2018.
    [199] Kverh B, Leonardis A. A Generalisation of Model Selection Criteria [J]. Pattern Anal. Appl., 2004, 7(1): 51~65.
    [200] Hansen M H, Yu B. Model Selection and the Principle of Minimum Description Length [J]. Journal of the American Statistical Association, 2001, 96(454): 746~774.
    [201] Stricker M, Leonardis A. Exsel++: A General Framework to Extract Parametric Models [C]//Hlavác V, Sára R(eds.). International Conference on Computer Analysis of Images and Patterns. Heidelberg: Springer-Verlag, 1995:90~97.
    [202] Schindler K, Suter D, Wang H. A Model Selection Framework for Multibody Structure-and-Motion of Image Sequences [J]. International Journal of Computer Vision, 2008, 79(2): 159~177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700