用户名: 密码: 验证码:
天基光学监视系统目标跟踪技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间已成为维护国家安全和国家利益的战略“制高点”,对空间目标的快速捕获与高精度跟踪是利用空间、控制空间的前提和基础。天基光学监视系统结合了天基平台和光学传感器两者的优势,具有不受国界限制、覆盖范围广、测量精度高、隐蔽性强等优点,越来越受到各国的高度重视。本文针对天基光学监视系统中的目标跟踪问题进行了深入研究,重点就传感器像平面单目标跟踪、传感器像平面多目标跟踪、多平台多传感器像平面轨迹关联以及三维空间目标跟踪等关键技术进行了详细研究和讨论。论文主要工作如下:
     第二章首先对目标的运动特性进行了分析,明确了目标运动模型中的主要影响因素;然后给出了基本的坐标系定义及转换关系,并根据天基光学传感器的成像过程,建立了传感器观测模型;接下来研究了天基光学传感器的视线测量误差,建立了视线测量误差分析模型;最后结合视线测量误差分析模型,进一步推导了目标的理论定位精度。第二章将为后续章节的研究提供支撑。
     第三章研究了传感器像平面内的单目标轨迹起始与跟踪问题。首先,建立了像平面内的目标运动模型和测量模型;其次,在随机有限集理论框架下,通过将目标状态和量测数据建模为随机有限集,提出了一种不需要数据关联的基于随机有限集理论的像平面单目标跟踪算法;接着针对该算法得不到闭式解的问题,研究了一种基于序贯蒙特卡罗的算法实现技术和一种基于高斯混合的算法实现技术。仿真结果表明,该算法相对于经典单目标跟踪算法IPDA的跟踪性能更优。
     第四章研究了传感器像平面内的多目标轨迹起始与跟踪问题。尝试将近年兴起的概率假设密度(Probability Hypothesis Density,PHD)滤波器引入到本问题中,并从PHD滤波器像平面跟踪的跟踪性能、计算效率以及算法实现等方面分别进行了研究。首先,利用信号幅度信息,提出了一种幅度参数辅助的像平面PHD滤波器,改善了在低信噪比环境下的多目标跟踪性能;其次,借鉴传统多目标跟踪方法中的加窗技术,提出了一种加窗的像平面PHD滤波器,提高了在强杂波环境中的计算效率;最后,结合sigma点滤波和高斯混合模型,提出了一种基于高斯混合sigma点滤波的PHD滤波器实现技术,从而将GM-PHD滤波器从线性、高斯条件扩展到非线性、非高斯条件。
     第五章研究了多平台多感器之间的像平面轨迹关联问题。首先,将量测-量测关联问题中的GNN关联准则引入到倾角差假设检验算法中,提出了一种基于倾角差二维分配的像平面轨迹关联算法,仿真结果验证了该算法相对于倾角差假设检验算法的性能优势;其次,针对倾角差法存在受观测几何影响大、可能失效的缺陷,结合目标的三维运动特性,提出了一种基于极大似然的像平面轨迹关联算法,并进一步研究了与该算法密切相关的似然比表示、目标状态极大似然估计等问题。仿真结果表明,极大似然方法的像平面轨迹关联性能优于倾角差方法,但计算复杂度也更高。
     第六章在第五章像平面轨迹关联的基础上,研究了多平台多传感器观测下的高精度三维空间目标跟踪问题。首先,基于第二章目标运动特性的分析结论,建立了一种同时考虑推力加速度变化和攻角变化的主动段动力学模型,扩展了动力学模型的应用范围;其次,将多模型概念和UKF滤波引入到本问题中,提出了一种基于动力学模型和J 2摄动模型的多模型UKF滤波的目标跟踪算法。仿真结果表明,该算法可以自主判断级间分离和关机,并且获得比单模型UKF滤波器、单模型EKF滤波器更优的主动段、中段跟踪性能。
The space has become the strategic frontier for maintaining the national security and interest. The capability of target acquisition and tracking is the foundation of the space dominance and controlling. Space-based optical surveillance system combines the advantages of space-based observer and optical sensor, and has the superiority in many aspects, such as unlimited by country boundaries, wide aera survelliance, high precision measurement, self-hiding, and so on. Consequently, space-based optical surveillance system has been studied comprehensively by many acadamicians. This dissertation focuses on the target tracking problem based on such surveillance system. The key technologies are discussed and researched particularly, including single target tracking on focal plane, multiple target tracking on focal plane, track-to-track association under multiple observers and multiple sensors, target tracking in the space. The main contributions of this dissertation are demonstrated as follows:
     In chapter 2, the target kinematic characteristics are analyzed firstly, and then the main aspects of the target dynamic model are discussed. Secondly, definition and transformation of basic coordinates are introduced; a measurement model is established based on the mapping relationship from target stereo position to focal plane. Thirdly, an analytical method of the line-of-sight (LOS) measurement error is proposed for space-based optical sensor, a LOS error model is given. Lastly, theoretic target location accuracy is derived under the model. The aforementioned researches can serve as the foundation for the studies of succeeding chapters.
     In chapter 3, the issue of single target tracking on focal plane is studied. Firstly, the measurement model and target dynamic model on focal plane are both established. Secondly, a single target tracking algorithm on focal plane is proposed under the random finite set (RFS) theory framework, which avoids data association based on modeling target states and measurements as RFS variables. Thirdly, the algorithm implementation problem is taken into account; a Sequential Monte Carlo (SMC) implementation and a Gaussian Mixture (GM) implementation is presented, respectively. Simulation results demonstrate that the tracking performance of this algorithm is superior to the traditional single target tracking algorithm IPDA.
     In chapter 4, the issue of multiple target tracking on focal plane is studied. The arisen probability hypothesis density (PHD) filter in recent years is applied to meet this problem, and some approaches are studied to improve the PHD filter performance on focal plane from the aspects of tracking accuracy, computation efficiency, and PHD implementation. Firstly, by using the signal amplitude information (AI), an AI auxiliary PHD filter on focal plane is proposed, which enhances the target tracking accuracy in low signal-to-noise ratio (SNR) circumstance. Secondly, by introducing the gating technology within traditional multiple target tracking methods, a gated PHD filter on focal plane is proposed, which improves the computation efficiency in strong clutter circumstance. Finally, by integrating the sigma-point filter and Gaussian mixture models (GMM) into PHD, a GM sigma-point PHD filter is proposed, which extends the GM-PHD from linear Gaussian conditions to nonlinear nonGaussian conditions.
     In chapter 5, the issue of track-to-track association under multiple observers and multiple sensors is studied. Firstly, the global nearest neighbor (GNN) principle used in measurement-to-measurement association problem is introduced into the hinge angle difference hypothesis testing method, a track-to-track association algorithm based on 2 dimensional assignment principle is proposed, treating the hinge angle difference as the cost. Simulation results demonstrate that the performance is better than the hypothesis testing method. However, the hinge angle difference based track-to-track association algorithms mentioned above have some drawbacks, such as the performance is influenced by the geometry easily, and may become invalid at certain conditions. Because the target kinetic characteristics is a valuable information, hence a maximum likelihood (ML) based track-to-track association algorithm is proposed, which makes the best of the target kinetic information. At the same time, the likelihood ratio presentation and target state ML estimation problems are also studied. Simulation results show that the performance of the ML based track-to-track association algorithm is better than the hinge angle difference based track-to-track association algorithm, at the cost of additional computation.
     In chapter 6, the issue of target tracking in the space is studied. Firstly, a booster kinetic model is established, which considers the thrust acceleration variation and the attack angle variation at the same time. This booster kinetic model extends the application scope of the constant attack angle kinetic model. Then, the multiple model concept and UKF filter are integrated into this tracking problem, a target tracking algorithm based on multiple model and UKF filter is proposed, which uses 2 kinetic models, one is the booster kinetic model, and the other is the J2 Keplerian model. Simulation results show that this algorithm can adapt to interstage separation and burnout time automatically, and gets better tracking performance than single model UKF filter and single model EKF filter.
引文
[1] Missile Defense, the Space Relationship, & the Twenty-First Century[R]. Washington,DC: The Institute for Foreign Policy Analysis, 2007.
    [2] Smith M S. Military Space Programs: Issues Concerning DOD’s SBIRS and STSS Programs[R]. Congressional Research Service, 2006.
    [3] Status of the Space Based Infrared System Program[R]. Washington,DC: Office of the Secretary of Defense, 2005.
    [4] Spaced Based Infrared Systems Low-Earth Orbit (SBIRS LEO) Industry Day[R]. Washington,DC: U.S. Airforce, 1996.
    [5]谭莹.天基空间目标探测技术探讨[J].空间电子技术, 2006, (3):5-9.
    [6] Space Based Space Surveillance (SBSS)[EB/OL].http://www.globalsecurity.org /space/systems/sbss.htm, 2010-09-26.
    [7] A Space Roadmap for The 21st Century Aerospace Force[R]. Washington DC: Scientific Advisory Board Study, 1998.
    [8] Stair A T, Mill J D. The Midcourse Space Experiment(MSX)[C]//Proceedings of the 1997 IEEE Aerospace Conference, Snowmass, CO: IEEE, 1997: 233-245.
    [9] Graham W. ULA successfully launch STSS-Demo via Delta II[EB/OL].http: //www.nasaspaceflight.com, 2009-9-25.
    [10] Vandenberg Afb C. STSS Demo Satellites Track Two-Stage Interceptor in Missile Defense Test[EB/OL].http://www.asdnews.com/news, 2010-7-8.
    [11] Bradford J. Tracking and Surveillance System Demonstration Satellites Observe June 28 THAAD Intercept Flight Test[EB/OL].http://www.defenseprocurement -news.com, 2010-7-22.
    [12] Bar-Shalom Y, Blair W D. Multitarget-Multisensor Tracking:Applications and Advances[M]. Norwood, MA: Artech House, 2000.
    [13] Blackman S, Popoli R. Design and Analysis of Modern Tracking Systems[M]. Norwood, MA: Artech House, 1999.
    [14]韩崇昭,朱洪艳,段战胜.多源信息融合[M].北京:清华大学出版社, 2006.
    [15]何友,王国宏,陆大紟,等.多传感器信息融合及应用[M].北京:电子工业出版社, 2000.
    [16] Brian L M. Exploratory Model Analysis of the Space Based Infrared System (SBIRS) Low Global Scheduler Problem[D]. Monterey, California: Naval Postgraduate School, 1999.
    [17] Blackman S. Multiple-Target Tracking with Radar Applications[M]. Dedham, MA: Artech House, 1986.
    [18] Bar-Shalom Y, Fortmann T E. Tracking and Data Association[M]. New York:Academic, 1988.
    [19] Bar-Shalom Y. Multitarget-Multisensor Tracking: Advanced Applications[M]. Boston: Artech House, 1990.
    [20] Bar-Shalom Y, Li X R. Multitarget Multisensor tracking: Principles and Techniques[M]. Storrs: YBS Publishing, 1995.
    [21] Bar-Shalom Y, Li X R. Estimation and Tracking: Principles,Techniques,and Software[M]. Boston: Axtech House, 1993.
    [22] Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with Applications to Tracking and Navigation[M]. Hoboken: Wiley, 2001.
    [23] Kaplan L M, Bar-Shalom Y, Blair W D. Assignment Costs for Multiple Sensor Track-to-Track Association[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(2): 655-677.
    [24] Singer P F. Track-to-Track Association using Intrinsic Statistical Properties[C] //Signal and Data Proceesing of Small Targets, San Diego, CA, United states: SPIE, 2007: 1-9.
    [25] Bar-Shalom Y, Chen H M. Multisensor Track-to-Track Association for Tracks with Dependent errors[C]//43th IEEE Conference on Decision and Control, Atlantls,Paradise Island,Bahamas: IEEE, 2004: 2674-2679.
    [26] Chong C Y, Mori S, Barker W H, et al. Architectures and Algorithms for Track Association and Fusion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 15(1): 5-13.
    [27] Chang K C, Saha R K, Bar-Shalom Y. On Optimal Track-to-Track Fusion[J]. IEEE Transactions on Aerospace and Electronic Systems,1997,33(4):1271-1276.
    [28]贾沛然,陈科俊,何力.远程火箭弹道学[M].长沙:国防科技大学出版社,2004.
    [29]张毅,杨辉耀,李俊莉.弹道导弹弹道学[M].长沙:国防科技大学出版社,1999.
    [30] Singer R A, Stein J J. An Optimal Tracking Filter for Processing Sensor Data of Imprecisely Determined Origin in Surveillance System[C]//Proceedings of the 10th Conference on Decision and Control., Miami Beach: IEEE, 1971: 171-175.
    [31] Bar-Shalom Y, Tse E. Tracking in a Cluttered Environment with Probabilistic Data Association[J]. Automatic, 1975, 11(9): 451-460.
    [32] Musicki D, Evans R, Stankovic S. Integrated Probability Data Association[J]. IEEE Transactions on Automatic Control, 1994, 39(6): 1237-1241.
    [33] Musicki D, Evans R, Stankovic S. Integrated Probabilistic Data Association (IPDA)[C]//Proceedings of the 31th Conference on Decision and Control, Tucson,Artzone: IEEE, 1992: 3796-3798.
    [34] Goodman I R, Mahler R, Nguyen H T. Mathematics of Data Fusion[M]. Dordrecht: Kluwer Academic Publishers, 1997.
    [35] Mahler R. Statistical Multisource-Multitarget Information Fusion[M]. London:Artech House, 2007.
    [36] Ba-Tuong Vo, Ba-Ngu Vo, Antonio C. The Cardinality Balanced Multi-Target Multi-Bernoulli Filter and Its Implementations[J]. IEEE Transations on Signal Processing, 2009, 57(2): 409-423.
    [37] Ba-Tuong Vo,Ba-Ngu Vo, Antonio C. Bayesian Filtering with Random Finite Set Observations[J].IEEE Transactions on Signal Processing,2008,56(4):1313-1326.
    [38] Mahler R. PHD Filters of High Order in Target Number[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523-1543.
    [39] Ba-Ngu Vo, Wing-Kin M. The Gaussian Mixture Probability Hypothesis Density Filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104.
    [40] Ba-Ngu Vo, Sumeetpal S, Arnaud D. Sequential Monte Carlo Methods for Multi-Target Filtering With Random Finite Sets[J]. IEEE Transactions on Aerospace and electronic systems, 2005, 41(4): 1224-1245.
    [41] Mahler R P S. Multitarget Bayes Filtering via First-Order Multitarget Moments [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178.
    [42] Fortmann T E, Bar-Shalom Y, Scheffe M. Sonar Tracking of Multiple Targets Using Joint Probabilistic Data Association[J]. IEEE Journal of Oceanic Engineering, 1983, 8(3): 173-184.
    [43] Fortmann T E, Bar-Shalom Y, Scheffe M. Multitarget Tracking Using Joint Probabilistic Data Association[C]//Proceedings of 19th Conference on Decision and Control including the Symposium on Adaptive Processes, Albuquerque: IEEE, 1980: 807-812.
    [44] Roecker J A, Phillips M. Suboptimal Joint Probabilistic Data Association[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(2): 510-517.
    [45] Fisher J, Casasent D. Fast JPDA Multitarget Tracking Algorithm[J]. Applied Optics, 1989, 28: 371-376.
    [46] Musicki D, Suvorova S. Tracking in Clutter Using IMM-IPDA-Based Algorighms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 111-126.
    [47] Musicki D, Evans R. Joint Integrated Probability Data Association-JIPDA[J]. IEEE Transactions on Aerospace and Electronic, 2004, 40(3): 1093-1099.
    [48] Vermaak J, Godsill S J, Perez P. Monte Carlo Filtering for Multi-Target Tracking and Data Association[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1): 309-331.
    [49] Reid D B. An Algorithm for Tracking Multiple Targets[J]. IEEE Transactions on Automatic Control, 1979, 24(6): 843-854.
    [50] Poore A B, Rijavec N, Barker T N. Data Association for Track Initiation and Extension Using Multiscan Windows[C]//Signal and Data Processing of SmallTargets, SPIE, 1992: 432-441.
    [51] Poore A B, Rijavec N. Multitarget Tracking and Multidimensional Assignment Problems[C]//Signal and Data Processing of Small Targets 1991, Orlando, FL, USA: SPIE, 1991: 345-356.
    [52] Pierskalla W. The Multidimensional Assignment Problem[J]. Operations Research, 1968, 16: 422-431.
    [53] Poore A B, Robertson A J. New Multidimensional Data Association Algorithm for Multisensor-Multitarget Tracking[C]//Signal and Data Processing of Small Targets 1995, San Diego, CA, USA : SPIE, 1995: 448-459.
    [54] Deb S, Pattipati K R, Bar-Shalom Y, et al. A Generalized S-D Assignment Algorithm for Multisensor-Multitarget State Estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(2): 523-538.
    [55] Poore A B, Robertson A J. A New Lagrangian Relaxation Based Algorithm for a Class of Multidimensional Assignment Problems[J]. Computational Optimization and Aplications, 1997, 8(2): 129-150.
    [56] Carrier J Y. Genetic Algorithm for Multiple Target Tracking Data Association[C] //Acquisition, Tracking, and Pointing, Bellingham, USA: SPIE, 1996: 180-190.
    [57] Hillis D B. Using a Genetic Algorithm for Multitarget Tracking[C]//Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, San Diego, CA, USA: IEEE, 1998: 3550-3553.
    [58] Leung H. Neural Network Data Association with Application to Multiple-Target Tracking[J]. Optical Engineering, 1996, 31(3): 693-700.
    [59] Ghamasee R. Survey of Neural Networks as Applied to Target Tracking[C] //Automatic Target Recognition, Orlando, FL, USA: SPIE, 1997: 412-423.
    [60]康莉,谢维信,黄敬雄.一种基于蚁群算法的多目标跟踪数据关联算法[J].电子学报, 2008, 36(3): 586-589.
    [61] Ba-Ngu Vo, Sumeetpal S, Wing-Kin M. Tracking Multiple Speakers Using Random Sets[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal,Canada: IEEE, 2004: 357-360.
    [62] Ba-Ngu Vo, Sameer S, Arnaud D. Sequential Monte Carlo Implementation of The PHD Filter for Multi-Target Tracking[C]//International Conference on Information Fusion, Caims,Australia: IEEE, 2003: 792-799.
    [63] Vihola M. Random Set Particle Filter for Bearings-Only Multitarget Tracking[C] //Signal Processing, Sensor Fusion, and Target Recognition, Orlando,FL: SPIE, 2005: 301-312.
    [64] Sidenbladh H. Multi-Target Particle Filtering for The Probability Hypothesis Density[C]//6th International Conference on Information Fusion, Cairns, Australia: IEEE, 2003: 800-806.
    [65] Wing-Kin M, Ba-Ngu Vo, Sumeetpal S S, et al. Tracking an Unknown Time-Varying Number of Speakers Using TDOA Measurements: a Random Finite Set Approach[J]. IEEE Transactions on Signal Processing, 2006, 54(9): 3291-3304.
    [66] Whiteley N, Singh S, Godsill S. Auxiliary Particle Implementation of Probability Hypothesis Density Filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1437-1454.
    [67] Ba-Ngu Vo, Wing-Kin M. A Closed-Form Solution for the Probability Hypothesis Density Filter[C]//7th International Conference on Information Fusion, Philadelphia: IEEE, 2005: 856-863.
    [68] Daniel C, Kusha P. The GM-PHD Filter Multiple Target Tracker[C]//9th International Conference on Information Fusion, Florence,Italy: IEEE, 2006: 1-8.
    [69] Daniel C, Ba-Ngu Vo, Judith B. GM-PHD Filter Multitarget Tracking in Sonar Images[C]//Signal Processing, Sensor Fusion, and Target Recognition, Kissimmee: SPIE, 2006: 62350.
    [70] Ba-Tuong Vo, Ba-Ngu Vo, Antonio C. Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3553-3567.
    [71] Ulmke M, Erdinc O, Willett P. Gaussian Mixture Cardinalized PHD Filter for Ground Moving Target Tracking[C]//The 10th International Conference on Information Fusion, Quebec,Canada: IEEE, 2007.
    [72] Ba-Tuong Vo, Ba-Ngu Vo, Antonio C. The Cardinalized Probability Hypothesis Density Filter for Linear Gaussian Multi-Target Models[C]//40th Annual Conference on Information Sciences and Systems, Princeton, NJ, United states: IEEE, 2006: 681-686.
    [73] Kusha P, Daniel C, Ba-Ngu Vo. Data Association and Track Management for the Gaussian Mixture Probability Hypothesis Density Filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1003-1016.
    [74] Johansen A M, Singh S,Doucet A,et al. Convergence of the SMC Implementation of the PHD Filter[J]. Methodology and Comuting in Applied Probability, 2006, 8(2): 265-291.
    [75] Daniel C, Judith B. Convergence Results for the Particle PHD Filter[J]. IEEE Transactions on Signal Processing, 2006, 54(7): 2652-2661.
    [76] Daniel C, Ba-Ngu Vo. Convergence Analysis of the Ggaussian Mixture PHD Filter[J]. IEEE Transactions on Signal Processing, 2007, 55(4): 1204-1212.
    [77] Mahler R. "Second-Generation" PHD/CPHD Filters and Multitarget Calculus[C] //Signal and Data Processing of Small Targets 2009, San Diego, CA, United states: SPIE, 2009: 1-12.
    [78] Mahler R. The Multisensor PHD Filter,I: General Solution via MultitargetCalculus[C]//Signal Processing, Sensor Fusion, and Target Recognition, Orlando, FL, United states: SPIE, 2009: 1-12.
    [79] Mahler R. The Multisensor PHD Filter,II: Erroneous Solution via "Poisson Magic"[C]//Signal Processing, Sensor Fusion, and Target Recognition, Orlando, FL, United states: SPIE, 2009: 1-12.
    [80] Ba-Ngu Vo, Syed A P, Hoang D T. A Gaussian Mixture PHD Filter for Nonlinear Jump Markov Models[C]//45th IEEE Conference on Decision and Control, San Diego, CA, United states: IEEE, 2006: 3162-3167.
    [81] Ahmed P S, Ba-Ngu Vo, Duogn T H, et al. A Gaussian Mixture PHD Filter for Jump Markov System Models[J]. IEEE Transations on Aerospace and Electronic Systems, 2009, 45(3): 919-937.
    [82] Pasha S A, Tuan H D, Apkarian P. The LFT Based PHD Filter for Nonlinear Jump Markov Modles in Multi-Target Tracking[C]//48th IEEE Conference on Decision and Control held jointly with 2009 28th Chinese Control Conference, Shanghai: IEEE, 2009: 5478-5483.
    [83] Ba-Tuong Vo. Random Finite Sets in Multi-Object Filtering[D]. The University of Western Australia, 2008.
    [84] Panta K. Multi-Target Tracking Using 1st Moment of Random Finite Sets[D]. Melbourne: The University of Melbourne Australia, 2007.
    [85] Vihola M. Random Sets for Multitarget Tracking and Data Fusion[D]. Tampere: Tampere University of Technology, 2004.
    [86]张洪建.基于有限集统计学的多目标跟踪算法研究[D].上海:上海交通大学, 2009.
    [87]赵欣.基于随机集理论的被动多传感器多目标跟踪技术[D].西安:西安电子科技大学, 2009.
    [88]孟凡彬.基于随机集理论的多目标跟踪技术研究[D].哈尔滨:哈尔滨工业大学, 2010.
    [89] Daniel C, Judith B. Bayesian Multiple Target Tracking in Forward Scan Sonar Images Using the PHD Filter[J]. IEE Proceedings -Radar,Sonar,and Navigation, 2005, 152(5): 327-334.
    [90] Daniel C, Judith B, Saint-Pern J, et al. PHD Filter Multi-Target Tracking in 3D Sonar[C]//Oceans 2005 - Europe, Brest,France: IEEE, 2005: 265-270.
    [91] Hongjian Z, Zhongliang J, Shiqiang H. Bearing-Only Multi-Target Location Based on Gaussian Mixture PHD Filter[C]//10th International Conference on Information Fusion, Quebec, QC, Canada: IEEE, 2009.
    [92] Vihola M. Random set particle filter for bearings-only multitarget tracking[Z]. Orlando,FL.Mar.2005: SPIE, 2005.
    [93] Tobias M, Lanterman A. A Probability Hypothesis Density Based MultitargetTracking with Multiple Bistatic Range and Doppler Observations[J]. Proc. IEE Radar Sonar and Navigation, 2005, 152(5): 327-334.
    [94] Pollard E, Plyer A, Pannetier B, et al. GM-PHD Filters for Multi-Object Tracking in Uncalibrated Aerial Videos[C]//12th International Conference on Information Fusion, Seattle,WA,USA: IEEE, 2009: 1171-1178.
    [95] Juang R, Burlina P. Comparative Performance Evaluation of GM-PHD Filter in Clutter[C]//12th International Conference on Information Fusion, Seattle,WA, USA: IEEE, 2009: 1195-1202.
    [96] Svensson D, Wintenby J, Svensson L. Performance Evaluation of MHT and GM-CPHD in a Ground Target Tracking Scenario[C]//12th International Conference on Information Fusion, Seattle,WA,USA: IEEE, 2009: 300-307.
    [97] Panta K, Ba-Ngu Vo, Sumeetpal S. Probability Hypothesis Density Filter versus Multiple Hypothesis Tracking[C]//Signal Processing, Sensor Fusion, and Target Recognition, Florida, USA: SPIE, 2004: 284-295.
    [98] Singer R A, Kanyuck A. Correlation of Multi-Site Track Data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1970, 6: 180-187.
    [99] Singer R A, Kanyuck A. Computer Control of Multiple-Site Track Correlation[J]. Automatica, 1971, 7: 455-463.
    [100] Singer R A, Behnke K. Real-Time Tracking Filter Evaluation and Selection for Tactical Applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, 7(1): 100-110.
    [101] Bar-Shalom Y. On the Track-to-Track Correlation Problem[J]. IEEE Transactions on Automatic Control, 1981, 26(2): 571-572.
    [102] Bar-Shalom Y, Campo L. The Effect of the Common Process Noise on the Two-Sensor Fused-Track Covariance[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, 22(6): 803-805.
    [103]何友.多传感器数据融合中的两种新的航迹相关算法[J].电子学报,1997,25(9): 10-14.
    [104] Zhu J, Bogner R, Bouzerdoum A, et al. Application of Neural Network to Track Association in over the Horizon Radar[C]//Sensor Fusion and Aerospace Applications , Orlando, FL, USA: SPIE, 1994: 224-235.
    [105] Odeberg H. Distance Measures for Fuzzy Sensor Opinions[J]. Measurement Sci. Technol. Formerly J. Phys. Sci. Instruments, 1993, (8): 808-815.
    [106] Midwood S A, Glenn I N, Tummala M. A Multi-Sensor Data Fusion Algorithm for the USCG's Vessel Traffic Services System[C]//Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, Monterey,CA: IEEE, 1998: 545-548.
    [107] Smith J. A Fuzzy Logic Multisensor Association Algorithm[C]//Signal Processing,Sensor Fusion, and Target Recognition, Orlando, FL, USA: SPIE, 1997: 76-87.
    [108] Midwood S A. A Computationally Efficient and Cost Effective Multisensor Data Fusion Algorithm for the USCG Vessel Traffic Service Systems[D]. Monterey, CA: Naval Postgraduate School, 1997.
    [109] Wide P, Driankov D. A Fuzzy Approach to Multi-Sensor Data Fusion for Quality Profile Classification[C]//Proceedings of the 1996 IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems, Washington, DC, USA: IEEE, 1996: 215-221.
    [110] Aziz A M, Tummala M, Cristi R. Fuzzy Logic Data Correlation Approach in Multisensor-Multitarget Tracking Systems[J]. Signal Process, 1999, 76(2): 195-209.
    [111] Abidi M A, Gonzalez R C. Data Fusion in Robotics and machine Intelligence[M]. San Diego,CA: Academic Press, 1992.
    [112] Olsen J R, Phillips M. Internetted Fighter Surveillance[C]//Proceedings of the IEEE 1984 National Aerospace and Electronics Conference, Dayton, OH, USA: IEEE, 1984: 254-261.
    [113] Kolitz S E. Passive Sensor Data Fusion[C]//Signal and Data Processing of Small Targets, Orlando, FL, USA: SPIE, 1991: 329-340.
    [114] Varad R. Scalar Correlation Algorithm: Multi-Target Multiple Sensor Data Fusion[C]//Proceedings of 1th National Symposium on Sensor Fusion, IEEE, 1988: 433-441.
    [115] Blackburn T R. A Proctical Correlation Test for Cooperation Passive Optical Sensors[J]. Journal of Guidance and Control, 1983, 6(1): 62-64.
    [116]张涛.地球同步轨道预警卫星系统中的弹道估计技术研究[D].长沙:国防科学技术大学, 2006.
    [117] Roecker J A. Track Monitoring when Tracking with Multiple 2-D Passive Sensors [J]. IEEE Transations on Aerospace and Electronic Systems,1991,27(6):872-876.
    [118]谢恺.天基红外低轨星座对目标的定位与跟踪[D].长沙:国防科学技术大学, 2006.
    [119] Li X R, Jilkov V P. A Survey of Maneuvering Target Tracking—Part II: Ballistic Target Models[C]//In Proceedings of the 2001 SPIE Conference on Signal and Data Processing of Small Targets, San Diego,CA,USA: SPIE, 2001: 559.
    [120] Sviestins E. Multi-Radar Tracking for Theater Missile Defense[C]//Signal and Data Processing of Small Target, San Diego, CA, USA: SPIE, 1995: 384-394.
    [121] San Jose A P. Theater Ballistic Missile Defense-Multisensor Fusion, Targeting and Tracking Techniques[D]. California: Naval Postgraduate School, 1998.
    [122] Leon A. Tracking and Classification of Boost Phase Ballistic Missiles[D]. Massachusetts Institute of Technology, 1995.
    [123] Rudd J G. Surveillance and Tracking of Ballistic Missile Launches[J]. IBM Journal of Research and Development, 1994, 38(2): 195-216.
    [124] Hough M E. Nonlinear Recursive Filter for Boost Trajectories[J]. Journal of Guidance,Control and Dynamics, 2001, 24(5): 991-997.
    [125] James R, Zandt V. Boost Phase Tracking with an Unscented Filter[C]//Signal and Data Proceesing of Small Targets, Orlando, FL, United states: SPIE, 2002: 263-274.
    [126]李盾.空间预警系统对目标的定位与预报[D].长沙:国防科学技术大学, 2001.
    [127] Sitzman G L, Drescher G H. Tactical Ballistic Missiles Trajectory State and Error Covariance Propagation[J]. IEEE Position Location and Navigation Symposium, 1994, : 839-844.
    [128] Woods E, Queeney T. Multi-Sensor Detection and Tracking of Tactical Ballistic Missile Using Knowledge-Based State Estimation[C]//Signal Processing, Sensor Fusion, and Target Recognition, Orlando, FL, USA: SPIE, 1994: 111-121.
    [129] Danis N J. Space-Based Tactical Ballistic Missile Launch Parameter Estimation [J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(2): 412-424.
    [130]张涛,安玮,周一宇.基于推力加速度模板的主动段弹道跟踪方法[J].宇航学报, 2006, 27(3): 385-389.
    [131] Yi-Cong L, Kirubarajan T, Bar-Shalom Y, et al. Trajectory and Launch Point Estimation for Ballistic Missiles from Boost Phase LOS Measurements[C]//IEEE Aerospace Applications Conference Proceedings, Snowmass,CO USA: IEEE, 1999: 425-442.
    [132] Yeddanapudi M, And Bar-Shalom Y. Trajectory Prediction for Ballistic Missiles Based on Boost Phase LOS Measurements[C]//Signal and Data Processing of Small Target 1997, San Diego, CA, United states: SPIE, 1997: 316-328.
    [133] Bate R R, Mueller D D, White J E. Fundamentals of Astrodynamics[M]. Dover Publications, 1971.
    [134] Ming J, Fannie A R. Angle-Only Tracking and Prediction of Boost Vehicle Position[C]//Signal and Data Processing of Small Targets 1991, Orlando, FL, USA: SPIE, 1991: 281-291.
    [135] Bikdash M U, Speyer J, Cliff E M. An Algorithm for Space-Based Tracking with Bearings-Only Measurements[C]//Proceedings of the AIAA Conference on Tracking, Guidance, and Navigation, Baltimore, Maryland: AIAA, 1995: 656-669.
    [136] Julier S J. The Scaled Unscented Transformation[C]//Proceedings of the American Control Conference, Jefferson City: IEEE, 2002: 4555-4559.
    [137] Julier S J, Uhlmann J K. Unscented Filtering and Nonlinear Estimation[J].Proceedins of the IEEE, 2004, 92(3): 401-422.
    [138] Arulampalam M S, Maskell S, Gordon N, et al. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussion Bayessian Tracking[J]. IEEE Transaction on Signal Processing, 2002, 50(2): 174-188.
    [139]李庆扬,易大义,王能超.现代数值分析[M].北京:高等教育出版社,1995.
    [140]王新洲.非线性模型参数估计理论与应用[M].武汉:武汉大学出版社,2002.
    [141] Cappe O, Godsill S, Moulines E. An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo[J]. Proceedings of the IEEE, 2007, 95(5): 899-924.
    [142]张涛,安玮,周一宇.基于UKF的主动段弹道跟踪算法[J].弹道学报,2006,18(2): 15-18.
    [143] Saulson B, Chang K C. Comparison of Nonlinear Estimation for Ballistic Missile Tracking[C]//Signal and Data Processing of Small Targets, Orlando,FL USA: SPIE, 2003: 13-24.
    [144] Harlanbakis C. Space Tracking and Surveillance System(STSS) block 06 sensor suit[EB/OL].http:∥w ww.raytheonmissiledefense.com, 2009-08-17.
    [145] Lomheim T S, Milne E L, Kwok J D, et al. Performance/Sizing Relationships for a Short-Wave/Mid-Wave Infrared Scanning Point-Source Detection Space Sensor[C]//Proceedings of the 1999 IEEE Aerospace Conference, Snowmass at Aspen, CO, USA: IEEE, 1999: 113-138.
    [146] Klungle R, Haque H. Stereo Tracking & Target Recognition in IR Space Sensors [C]//AIAA Space Technology Conference & Exposition, Albuquerque , New Mexico: AIAA, 1999: 1-10.
    [147] Miller M D, Drumond O E, Perrella A J. Multiple-Model Filters for Boost-to-Coast Transition of Theater Ballistic Missiles[C]//Signal and Data Processing of Small Targets, Orlando,Florida: SPIE, 1998: 355-376.
    [148] Fowler J L. Boost and Post-Boost Target State Estimation with Angles-Only Measurements in a Dynamic Spherical Coordinate System[C]//Proceedings of the AAS/AIAA Astrodynamics Conference, Durango, CO: AIAA , 1991: 13-18.
    [149] Li X R. Multilpe-Model Estimation with Variable Structure-Part II: Model-Set Adaptation[J].IEEE Transactions on Automatic Control,2000, 45(11):2047-2060.
    [150] Li X R, Jilkov V P. Survey of Maneuvering Targets Tracking. Part V: Multiple -Model Methods[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1255-1321.
    [151] Bar-Shalom Y, Birmiwal K. Variable Dimension Filter for Maneuvering Target Tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 1982, 18(5): 621-629.
    [152] Blom H A P, Bloem E. Combing IMM and JPDA for Tracking MultipleManeuvering Targets in Clutter[C]//5th International Conference on Information Fusion, Annapolis,MD: IEEE, 2002: 705-712.
    [153] Bojilov L, Alexiev K, Konstantinova P. An Accelerated IMM-JPDA Algorithm for Tracking Multiple Maneuvering Targets in Clutter[J]. Information & Security, 2002, 9: 141-153.
    [154] Lancaster J, Blackman S, Taniguchi E. Joint IMM/MHT Tracking and Identification with Applications to Ground Tracking[C]//Signal and Data Processing of Small Targets 2005, San Diego, CA, USA: SPIE, 2005: 1-12.
    [155]孙仲康,周一宇,何黎星.单多基地有源无源定位技术[M].北京:国防工业出版社, 1996.
    [156] Torrieri D J. Statistical Theory of Passive Location Systems[J]. IEEE Transations on Aerospace and Electronic Systems, 1984, 20(2): 183-197.
    [157]张萍,易东云,吴翊.空间预警系统的视线测量误差特性分析[J].中国空间科学技术,2004, (6): 48-53.
    [158]崔书华,王敏,胡绍林.光学跟踪测量数据及处理对飞行器航迹定位精度的影响分析[J].弹箭及制导学报,2008,28(1): 229-233.
    [159]石章松,占明锋,邢昌风.双声纳基阵二维目标联合测向交叉定位算法精度分析[J].指挥控制与仿真, 2009, 31(1): 50-53.
    [160] Brehard T, Cadre J P L. Closed-Form Posterio Cramer-Rao Bounds for Bearings- Only Tracking[J]. IEEE Transations on Aerospace and Electronic Systems, 2006, 42(4): 1198-1223.
    [161] Dezert J. Ballistic Track Initialization from a Bisatellite Surveillance Imaging System[C]//5th International Conference on Information Fusion, IEEE, 2002: 1015-1022.
    [162]郗晓宁,王威,高玉东.近地航天器轨道基础[M].长沙:国防科技大学出版社, 2003.
    [163]李骏.空间目标天基光学监视跟踪关键技术研究[D].长沙:国防科学技术大学, 2009.
    [164]肖业伦.航空航天器运动的建模—飞行动力学的理论基础[M].北京:北京航空航天大学出版社,2003.
    [165]王贵甫,陈桂林,陈雨良.以反射镜物镜作为卫星二维扫描成像扫描镜的新思路[J].光学技术,2001,27(3): 249-251.
    [166]谢凯,韩裕生,薛模根.低轨红外预警星座无源定位精度分析[J].信号处理,2008, 24(3): 343-348.
    [167] Maitre H. Using Models to Improve Stereo Reconstruction[J]. IEEE Transactions on PAMI, 1992, : 269-277.
    [168] Budianto A I, Olds R J. A Collaborative Optimization Approach to Design andDeployment of a Space Based Infrared System Constellation[C]//IEEE Aerospace Conference Proceedings, Big Sky, Montana: IEEE, 2001: 385-393.
    [169] Doucet A, Godsill S, Andricu C. On Sequential Monte Carlo Sampling Methods for Bayesian Filtering[J]. Statistical Computing, 2000, 10: 197-208.
    [170] Ristic B, Arulampalam M S, Gordon N. Beyond the Kalman filter:particle filters for tracking applications[M]. London: Artech House, 2004.
    [171] Kotecha J H, Djuric P M. Gaussian Sum Particle Filtering[J]. IEEE Transactions on Signal Processing, 2003, 51(10): 2602-2612.
    [172] Ito K, Xiong K. Gaussian filters for nonlinear filtering problems[J]. IEEE Transactions on Automatic Control, 2000, 45(5): 910-927.
    [173] Alspach D L, Sorenson H W. Nonlinear Bayesian Estimation using Gaussian Sum Approximation[J]. IEEE Transactions on Automatic Control, 1972, 17(4): 439-448.
    [174] Mahler R. Multisensor-Multitarget Sensor Management: A Unified Bayesian Approach[C]//Signal Processing, Sensor Fusion, and Target Recognition, Orlando, FL, United states: Proceedings of SPIE , 2003: 222-233.
    [175] Mahler R. Optimal/Robust Distributed Data Fusion:a Unified Approach[C] //Signal Processing, Sensor Fusion, and Target Recognition, Orlando: SPIE, 2000: 128-138.
    [176] Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing Images using the Hausdorff Distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 850-863.
    [177] Hoffman J, Mahler R. Multitarget Miss Distance via Optimal Assignment[J]. IEEE Transactions on Systems, Man and Cybernetics-Part A, 2004, 34(3): 327-336.
    [178] Schuhmacher D, Ba-Ngu Vo, Ba-Tuong Vo. A Consistent Metric for Performance Evaluation of Multi-Object Filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447-3457.
    [179] Keil K H, Hupfer W. Simulation of Signal and Data Processing for a pair of GEO IR Sensors[C]//Signal and Data Proceeding of Small Targets 2007, San Diego: SPIE, 2007: 1-12.
    [180]刘福声,罗鹏飞.统计信号处理[M].长沙:国防科技大学出版社,1999.
    [181] Mahler R, Hely M O. Multitarget Detection and Acquisition: a Unified Approach [C]//Signal and Data Processing of Small Targets 1999, Denver, CO, USA: SPIE, 1999: 219-229.
    [182] Subhash C, Ba-Ngu Vo, Wang X. Bayesian Approaches to Track Existence-IPDA and Random Sets[C]//5th Proceedings International Conference on Information Fusion, Annapolis, Maryland, USA: IEEE, 2002: 1228-1235.
    [183] Vihola M. Rao-Blackwellised Particle Filtering in Random Set Multitarget Tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 689-705.
    [184] Liu W, Han C, Lian F. Multitarget State and Track Estimation for the Probability Hypothesis Density Filter[J]. Journal of Electronics, 2009, 26(1): 2-12.
    [185]庄泽森,张建秋,尹建君.Rao-Blackwellized粒子概率假设密度滤波算法[J].航空学报, 2009, 30(4): 689-705.
    [186] Kirubarajan T, Bar-Shalom Y. Low Observable Target Motion Analysis Using Amplitude Information[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1367-1384.
    [187] Lerro D, Bar-Shalom Y. Automatic Track Formation with Target Amplitude Information[C]//Ocean Technologies and Opportunities in the Pacific for the 90's, Honolulu, HI, USA: IEEE, 1991: 1460-1467.
    [188] Lerro D, Bar-Shalom Y. Interacting Multiple Model Tracking with Target Amplitude Feature[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(2): 494-509.
    [189] Van Keuk G. MultihypothesisTracking Using Incoherent Signal Strength Information[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(3): 1164-1170.
    [190] Ehrman L M, Blair I A. Comparison of Methods for Using Target Amplitude to Improve Measurement-to-Track Association in Multitarget Tracking[C]//9th International Conference on Information Fusion, Florence,Italy: IEEE, 2006.
    [191] Brekke E, Hallingstad O, Glattetre J. Tracking Small Targets in Heavy-Tailed Clutter Using Amplitude Information[J]. IEEE Journal of Oceanic Engeering, 2010, 35(2): 314-329.
    [192] Zhang H, Zhongliang J, Shiqiang H. Localization of Multiple Emiters Based on the Sequential PHD Filter[J]. Signal Processing, 2010, 90: 34-43.
    [193] Julier S J, Uhlman J K, Durrant-Whyte H F. A New Method for the Nonlinear Transformation of Means and Covariance in Filters and Estimators[J]. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482.
    [194] West M. Mixture Models, Monte Carlo, Bayesian Updating and Dymamic Models[J]. Computing Science and Statistics, 1993, 24: 325-333.
    [195] Levanon N, Shor M. Order Statistic CFAR for Weibull Background[J]. IEE Proceedings-F Radar and Signal Processing, 1990, 137(3): 157-162.
    [196] Ward K D, Tough R J A, Watts S. Sea Clutter: Scattering, the K Distribution and Radar Performance[J]. IET Radar,Sonar and Navigation, 2006, 20.
    [197] Askar H, Li X F, Li Z M. Performance Analysis of Dim Point Target Detection Algorithms[C]//IEEE 2002 International Conference on Communications,Circuits and Systems and West Sino Expositions, IEEE, 2002: 605-609.
    [198] Mcwilliams J K, Strinath M D. Performance Analysis of a Target Detection System using Infrared Imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, 20(1): 38-48.
    [199] Mclachlan G J, Krishnan T. The EM Algorithm and Extensions[M]. New York: John Wiley, 1997.
    [200] Li X R, Jilkov V P. Survey of Maneuvering Target Tracking,Part I: Dynamic Models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1333-1364.
    [201] Poore A B, Rijavec N, Liggins M, et al. Data Association Problems Posed as Multidimensional Assignment Problems:Problem Formulation and Numerical Simulations[C]//Signal and Data Processing of Small Targets 1993, Orlando, FL, USA: SPIE, 1993: 552-573.
    [202] Kadar I, Eadan E, Gassner R. Comparison of Robustized Assignment Algorithms[C]//Signal and Data Proceeding of Small Targets, Orlando, FL, USA: SPIE, 1997: 240-249.
    [203] Malkoff D B. Evaluation of the Jonker-Volgenant-Castanon(JVC) Assignment Algorithm for Track Association[C]//Signal and Data Proceeding of Small Targets, Orlando, FL, USA: SPIE, 1997: 228-239.
    [204] Pierce J F, Laskey J S. Improved Combinatorial Programming for a Class of All-Zero-One Integer Programming Problems[J]. Management Science, 1973, 19(5): 528-543.
    [205] Balas E, Saltzman M J. An Algorithm for Three-Index Assignment Problem[J]. Operations research, 1991, 39(1): 150-161.
    [206] Yeddanapudi M, Bar-Shalom Y, Yeddanapudi M, et al. Ballistic Missile Track Initiation from Satellite Observations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(3): 1054-1071.
    [207] Yeddanapudi M, Bar-Shalom Y, Pattipati K R. Ballistic missile track initiation from satellite observations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 31(3): 1054-1071.
    [208]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
    [209] Magill D T. Optimal Adaptive Estimation of Sampled Stochastic Processes[J]. IEEE Transactions on Automatic Control, 1965, 10: 434-439.
    [210] Blom H A P, Bar-Shalom Y. The Interacting Multiple Model Algorithm for Systems with Markovian Switching Coefficients[J]. IEEE Transactions on Automatic Control, 1988, 33(8): 780-783.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700