用户名: 密码: 验证码:
可倾瓦轴承—转子系统的非线性动力学分析与主动控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大型旋转机械向高转速、高负载、高精度等方向发展,其核心部件轴承—转子系统的非线性动力失稳问题越来越突出。因此,需要深入研究轴承—转子系统的非线性动力学特性和失稳机理以及其结构参数和运行参数对稳定性的影响规律。滑动轴承的油膜力是其中极为典型的非线性因素之一,建立一个合理且易于解析处理的油膜力模型对于轴承—转子系统运动稳定性分析和工程应用都具有重要意义。另一方面,要对导致轴承—转子系统动力失稳的因素加以控制,采用有效措施提高系统的运动稳定性,转子在工作中一旦出现异常振动现象,要立即采取有效的纠正措施,避免动力失稳后产生更加严重的后果。对于轴承—转子系统的振动控制问题,控制装置的设计与控制器参数的调节在很大程度上决定了控制性能的好坏。
     本文的研究工作主要集中在两个方面,即可倾瓦轴承非线性油膜力解析模型的建立和轴承—转子系统的振动主动控制。首先建立了可倾瓦滑动轴承的非线性油膜力解析模型,接着针对可倾瓦轴承—转子系统油膜失稳等问题采用主动润滑系统进行控制,并设计了多种行之有效的控制器,计算分析在各种控制器作用下转子系统油膜失稳的控制情况,取得的主要成果有:
     1.基于短轴承假设,建立了可倾瓦轴承非线性油膜力的解析模型。首先根据轴承单个瓦块与转子的运动平衡关系和几何关系,推导出了瓦块摆角的计算公式,基于短轴承假设和Reynolds边界条件求得了每个瓦块上的油膜压力分布,并采用油膜压力的修正函数来确定油膜力的自由边界条件,对每个瓦块的油膜压力进行积分得到其油膜力,进而将所有瓦块的油膜力进行矢量求和得到了整个可倾瓦轴承的非线性油膜力的解析表达式。利用油膜力解析模型分析了可倾瓦轴承—非对称转子系统的动力学特性,通过和有限差分法导出的油膜力模型的计算结果进行比较,证实了本文油膜力解析模型的有效性和实用性。
     2.针对可倾瓦轴承—非对称转子系统存在的油膜涡动等失稳现象,设计了基于PI、PID的主动润滑控制系统。本文建立了基于电液控制系统的主动可倾瓦轴承的动力学模型,包括在主动润滑下可倾瓦轴承的油膜厚度,主动润滑Reynolds方程,电液控制系统方程等。为便于控制的实现,采用工程上常用的PI、PID控制器对可倾瓦轴承—非对称转子系统进行控制,并分析其动力学响应。研究结果表明,在主动润滑控制系统的作用下,转子系统的振动得到很好的抑制,系统发生油膜涡动时的转速得到提高,系统稳定工作的转速范围得到拓宽,并且发生油膜涡动时系统的振幅也得到了抑制。
     3.针对电液控制系统存在的高度非线性、时变不确定性等问题,采用神经网络技术对主动润滑控制系统进行改进。利用RBF神经网络和BP神经网络来优化常规的PID控制器的参数,处理液压系统中的不确定性,以满足液压伺服系统的动态性能和静态性能要求。针对主动润滑控制系统设计了RBF神经网络PID和BP神经网络PID控制器。并采用基于这两种控制器的主动润滑系统对可倾瓦轴承—非对称转子系统进行控制,数值计算的结果表明,与PI、PID控制器的作用效果相比,基于神经网络PID控制的主动润滑系统在控制精度和动态性能等方面的都有明显的优越性。
     4.在利用神经网络技术优化PID控制器参数的基础上,进一步设计了模糊PID和模糊神经网络PID控制器来改进主动润滑控制系统。将模糊控制不依赖精确模型、算法灵活而神经网络具有很强的鲁棒性和非线性映射能力等特点相结合,采用模糊控制和模糊神经网络控制在线整定PID控制器的参数。分析计算了基于模糊PID和模糊神经网络PID控制器作用下可倾瓦轴承—非对称转子系统的动力学响应,与之前设计的控制器比较,模糊PID和模糊神经网络PID控制具有更好的控制性能。
     5.研究了一类可倾瓦轴承双盘外伸转子系统的非线性动力学分析和主动控制问题。基于有限元法建立了系统的非线性动力学方程,油膜力采用本文导出的可倾瓦轴承非线性油膜力解析模型。采用数值方法对该系统的耦合动力学方程进行求解,分析了转子系统的非线性动力学特性。在没有主动润滑的情况下,随着转速的升高会出现油膜涡动和油膜振荡等失稳现象,采用基于模糊PID和模糊神经网络PID控制器的主动润滑对该系统进行控制的结果表明,主动润滑系统能够完全消除油膜振荡现象,较好的抑制油膜涡动时转子系统的振幅,极大的拓宽转子系统稳定运行的转速范围。比较而言,模糊神经网络PID控制的效果优于模糊PID控制。
With the trending to high speed, high precision and high load of the large scale rotating machinery, the increasingly nonlinear dynamic instability of rotor-bearing system have become the most serious problem. It is necessary to investigate the nonlinear dynamic behaviors, instability and the influences of operating parameters on dynamic stability of rotor-bearing systems. The fluid film force model is crucial to the nonlinear dynamics analysis of a rotor-bearing system. The formulation of a reasonable and manageable analytical fluid film force model is of great significance to the stability analysis and its engineering applications of rotor-bearing systems. On the other hand, the dynamic instability factors of the rotor-bearing system must be kept under control and the effective measures must be taken to improve the dynamic stability of the system. Once the abnormal phenomenon occurs, the effective corrective measures have to be put into action in case of the more serious consequences. The effectiveness of the active control to the rotor-bearing system mainly depends on the design of the control device and the regulation of the controller parameters.
     In this dissertation two challenging issues in the investigation of large-scale rotor-bearing system are investigated, i.e. the formulation of analytical fluid film force model of a tilting pad bearing and active control of the self-excited vibration problem. Firstly, the nonlinear fluid film force model of a tilting pad journal bearing is deduced based on the short bearing assumption. And then an active lubrication device is adopted to eliminate the self-induced vibration of the rotor-bearing system. Correspondingly, several active control strategies are designed to regulate the electro-hydraulic control system. The nonlinear dynamic responses of the active lubricated rotor-bearing system based on different controllers are worked out and the inhibitions of self-excited vibration of the systems with various controllers are compared. The main achievements are listed below:
     1. Based on the assumption of the short journal bearing,the fluid force model of the tilting pad journal bearing is formulated. Taking as a reference of the Capone model which is formulated based on the assumption of the short journal bearing,the fluid film pressure distribution is derived in each pad’s own local reference frame. The relation of the pad rotation angle and motion of the rotor is figured out. Then the fluid film pressure distribution of the tilting pad bearing in global reference frame is obtained by coordinate transformations. The nonlinear fluid force model of the tilting pad is formulated by integrating the fluid film pressure distribution. A numerical model for an unsymmetrical flexible-rotor supported by two tilting pad bearings is given and the dynamic response is worked out. The fluid force model based on the finite difference model for the tilting pad journal bearing are deduced to confirm that the analytical model is valid to deal with the problem of nonlinear dynamics of the rotor-bearing system. The calculated results show that the analytical model proposed can be used to analyze the dynamical behavior of the rotor-bearing system qualitatively and to save the computing cost for solving the system.
     2. To eliminate the whirl and whip instability of the rotor bearing system, the active lubrication action is adopted to simultaneous reduction of wear and vibration between rotating and stationary machinery parts. The dynamic model of the electro-hydraulic active control system including the active lubricated tilting pad journal bearing and the electro-hydraulic system is formulated. In order to facilitate the realization of the control device, the design strategies of PI and PID controllers, applied to a tilting-pad journal bearing, are analyzed and discussed. Numerical results show that an effective vibration reduction of the unbalance response of an asymmetric rotor is performed for the system with PI or PID controllers. The feasibility of eliminating rotor-bearing instabilities (phenomena of whirl) by using active lubrication is also investigated, that illustrates clearly one of its most promising applications.
     3. To deal with the disadvantages of highly nonlinear, time-varying uncertainty and delay characteristics in the electro-hydraulic control system, the neural network (NN) technology is applied to improve the active lubricated control system. The most efficient neural network, radical basis function (RBF) and back propagation (BP) are designed to optimize the parameters of the PID controller to settle the uncertainty and inaccuracy of the hydraulic system. Then the dynamic performance requirements of hydraulic servo system are achieved. Then two kinds of NN-PID controllers are applied to an active lubricated tilting-pad bearing system, and the dynamic responses of the asymmetric rotor-bearing system are analyzed and calculated. Comparing with the results based on the PI and PID controllers, the NN-PID controller show better performance.
     4. The fuzzy PID control and fuzzy neural network PID control are designed to improve the active lubricated system after the successful application of neural network technology in optimizing PID parameters. Fuzzy controller does not rely on accurate models and possess flexible algorithms especially is suitable for the control of the system with nonlinear, large delay, time-varying characteristics. While the neural network has the advantage of strong robustness, memory capacity, non-linear mapping capabilities and a self-learning ability. So the fuzzy PID controller and fuzzy neural network PID controller are designed to regulate the active lubrication of the tilting pad bearing. Then the dynamic responses of the asymmetrical rotor-bearing system with fuzzy PID and fuzzy neural network PID controllers are worked out. Comparing with the results based on the other control laws, the fuzzy neural network PID controller shows better performance.
     5. The nonlinear dynamics analysis and active control of the overhang rotor system with double disks supported by two tilting pad journal bearings is investigated. The nonlinear dynamic model of the overhang rotor system is formulated based on the finite element theory. The analytical fluid film force model of the tilting pad journal bearing proposed in this dissertation are applied to analyze the nonlinear dynamic characteristics of the rotor system. Numerical method is used to solve the coupled dynamic equations and the result shows that whirl and whip phenomena occur when the rotational speed is increasing upto the critical case. Thus the active lubrication systems based on both fuzzy PID and fuzzy neural network PID controller are designed to suppress the vibration of the overhang rotor system. The results show that by active lubrication the whirl amplitude of the system is greatly suppressed and whip instability is totally eliminated. The stable operating speed range of the rotor system is widely broadened. The control performance of the fuzzy neural network PID controller is better than that of fuzzy PID controller.
引文
[1] Baxter N L. Case Study of Rotor in Stability in the Utility Industry[J]. Public Service,1984:40-46.
    [2] Mayes I W. The Vibration Behavior of a Rotating Shaft System Containing a Transverse Crack[C]. Conf. Vib. In rot,1976:53-64.
    [3]徐龙祥.高速旋转机械轴系动力学设计[M].长沙:国防工业出版社,1994:27-28.
    [4]冀大伟,叶春,韩晖等.望亭电厂9F燃机油膜振荡故障诊断及原因分析和处理[J].东华电力,2009,37(3):506-508.
    [5] Jeffcott H H. The Lateral Vibration of Loaded Shaft in the Neighborhood of a Whirling Speed:the Effect of Want of Balance[J]. Phil. Mang,1919:37-46.
    [6] Newkirk B L,Taylor H D. Shaft Whipping due to Oil Action in Journal Bearing[J]. General Electric review,1925 (28):559-568.
    [7] Frene J,Nieolas D,et al. Hydrodynamic Lubrication:Bearings and Thrust Bearings[J]. Tribology Series, 33. Amsterdam: Elsevier Science, 1997 :Chap.6.
    [8] Muszynska A. Rotordynamics[M],London:Taylor & Francis Group. 2005,110(3):207-227.
    [9]陈予恕,曹登庆,黄文虎.近代机械非线性动力学与优化设计技术的若干问题[J].机械工程学报,2007,43(11):17-26
    [10] Tower B. First Report on Friction Experiments (Friction on Lubricated Bearings)[C]. Proceedings of the Institution of Mechanical Engineers,1883:632-659.
    [11] Reynold O. On the Theory of Lunbrication and its Application to Mr. Beauchamp Tower’s Experiment,Including an Experimental Determination of the Viscosity of Olive Oil[J]. Phil Trans,1886,177(1):157-234.
    [12] Sommerfeld A. Zur hydrodynamischen Therorle der Schmiermitterlreibunh[J]. Z. Math. u. Physik,1904,50:97-106.
    [13] Michell A G M. Progress of Fluid-Film Lubrication[J]. Transaction of the ASME,1929,51:153-163.
    [14] Ocvirk F W,Dubois G B. Analysis Derivation and Experimental Evaluation of Short Bearing Approximation Full Journal Bearing[J]. NACA Report,1953,1157.
    [15]钟一谔,何衍宗,王正.转子动力学[M].北京:清华大学出版社,1987:41-68.
    [16] Lund J W. The Stability of an Elastic Rotor in Journal Bearing with Flexible Damped Support[J]. Journal of Applied Mechanics,1965,32:911-920.
    [17] Capone G. Descizione Analitica del Campo di Forze Fluidodinamico nei Cuscinetti cilindrici Lubrificati[J]. L’Energia Elettrica 3,1991:105-110.
    [18] Lahmar M,Haddad A,Nicolas D. An Optimised Short Bearing Theory for nonlinear dynamic analysis of turbulent journal bearings[J]. European Journal of Mechanics/Solids,2000,19:151-177.
    [19] Muszynska A. Rotordynamics[M]. London:Taylor & Francis Group,2005,110(3):227-232.
    [20]王文,张直明.油叶型轴承非线性油膜力数据库[J].上海工业大学学报,1993,14 (4):299-305.
    [21] Klit P,Lund J W. Calculation of the Dynamic Coefficients of a Journal Bearing Using a Variational Approach[J]. ASME Journal of Tribology,1986,108:421-425.
    [22]张文,郑铁生,马建敏,等.油膜轴承瞬态非线性油膜力的力学建模及其表达式[J].自然科学进展,2002,12(3):255-260.
    [23] Rohde S M,Mcallister G T. A Variational Formulation for a Class of Free Boundary Problems Arising in Hydrodynamic Lubrication[J]. International Journal of Engineering Science,1975,13:841-850.
    [24] Bayada G,Chambat M. Nonlinear Variational Formulation for a Cavitation Problem in Lubrication[J]. Journal of Mathematical Analysis and Applications,1982,90(2):286-298.
    [25]张文,崔升,徐小峰等.动载轴承非稳态油膜力的一般数学模型[J].工程力学进展,1998:158-167.
    [26] Xiao Z H,Wang L P,Zheng T S. An Efficient Algorithm for Fluid Force and its Jacobi Matrix in Journal Bearing[J]. Journal of Tribology,2006,128:291-295.
    [27]王宁.基于MATLAB的滑动轴承压力分布的数值计算[J].大连:大连理工硕士学位论文,2006:22-27.
    [28] Okabe E P,Cavalca K L. Rotordynamic Analysis of Systems with a Non-linear Model of Tilting Pad Bearings Including Turbulence Effects[J]. Nonlinear Dynamics,2009,57(4):481-495.
    [29] Santiago O D,Andrés L S. Field Methods for Identification of Bearing SupportParameters-Part II : Identification from Rotor Dynamic Response due to Imbalances[J]. Journal of Engineering for Gas Turbines and Power,2007,129(1):213-225.
    [30] Santiago O D,Andrés L S. Field Methods for Identification of Bearing Support Parameters-Part I:Identification from Transient Rotor Dynamic Response due to Impacts[J]. Journal of Engineering for Gas Turbines and Power,2007,129(1):205-212.
    [31]吕延军,虞烈,刘恒.椭圆轴承—转子系统非线性运动及稳定性分析[J].机械工程学报,2006,42(4):89-95.
    [32] Cheng Z B,Jiao Y H. Non-Synchronous Response Bifurcation Analysis for a Rigid-Bearing System Using Oil Film Force Database[J]. Journal of Harbin Institute of Technology,2000,7(2):87-90.
    [33]焦映厚,陈照波,夏松波,等.转子—轴承系统非线性动力学行为的研究[J].中国机械工程,2000,11(6):697-699.
    [34]陈照波,焦映厚,夏松波等.转子—椭圆轴承系统混沌运动的研究[J].哈尔滨工业大学学报,2001,33(2):147-150.
    [35]焦映厚,陈照波,刘福利等. Jeffcott转子—可倾瓦轴承滑动轴承系统不平衡响应的非线性分析[J].中国电机工程学报,2004,24(12):228-232.
    [36] Lund J W,Nielsen H B. Instability Threshold of an Unbalanced,Rigid Rotor in Short Journal Bearings[C]. IME Conference,Vibration in rotating machinery,1980:91-95.
    [37] Gardner M,Myers C,Savage M. Analysis of Limit-Cycle Response in Fluid-Film Journal Bearings using the Method of Multiple Scales[J]. The Quarterly Journal of Mechanics and Applied Mathematics,1985,38:27-45.
    [38] Ehrich F F. Some Observations of Chaotic Vibration Phenomena in High Speed Rotordynamics[J]. Journal of Vibration and Acoustics,1991,113:50-57.
    [39] Hollis P. Hopf Bifurcation to Limit Cycles in Fluid Film Bearings[J],Journal of Tribology,1986,108(2):184-189.
    [40] Brown R D,Addison P. Chaos in the Unbalance Response of Journal Bearings[J]. Nonlinear Dynamics,1994,5:421-432.
    [41] Wang J K,Khonsari M M. Application of Hopf Bifurcation Theory to Rotor-Bearing System with Consideration of Turbulent Effects[J]. Tribology International,2006,36:701-714.
    [42] Brancati R,Russo M. On the Stability of an Unbalanced Rigid Rotor on Lubricated Journal Bearing[J]. Nonlinear Dynamics,1996,10:175-185.
    [43]陈予恕,丁千,孟泉.非线性转子的低频振动失稳机理分析[J].应用力学学报,1998,15(1):113-117.
    [44]陈予恕,孟泉.非线性转子—轴承系统的分叉[J].振动工程学报,1996,9(3):266-275.
    [45]孟泉,陈予恕.非线性转子—轴承系统油膜失稳新机理研究[J].非线性动力学学报,1995,2(3):189-197.
    [46]陈予恕,丁千.非线性转子动力学的稳定性和分岔[J].非线性动力学学报,1996,3(1):13-22.
    [47]夏南,孟光.非线性系统周期强迫不平衡响应的稳定性分析[J].力学学报,2001,33(1):128-133.
    [48]郑惠萍,陈予恕,梁建术.滑动轴承不平衡弹性转子系统周期运动的稳定性[J].天津大学学报,2002,35(3):298-303.
    [49]徐小峰,张文.一种非稳态油膜力模型下刚性转子的分叉和混沌特性[J].振动工程学报,2000,13(2):247-253.
    [50] Ding Q,Leung A Y T. Non-Stationary Processes of Rotor-Bearing System in Bifurcations[J]. Journal of Sound and Vibration,2003,268(1):33-48.
    [51]孟志强,孟光,朱均等.轴承—转子系统自激振动及迟滞、跳跃现象[J].润滑与密封,2007,32(1):7-10.
    [52] Wang X,Noah S. Nonlinear Dynamics of a Magnetically Supported Rotor on Safety Auxiliary Bearings[J]. Journal of Vibration and Acoustics,1998,120:595-606.
    [53]李立,许庆余,郑铁生.非线性转子—轴承系统瞬态响应求解的分块直接积分法[J].振动工程学报,1996,9(1):64-68.
    [54]李立,郑铁生,许庆余.求非线性转子—轴承系统周期响应的一种计算方法[J].应用力学学报,1995,12(3):21-25.
    [55]李志刚,张直明.多跨转子—滑动轴承系统非线性动力学仿真[J].自然杂志,1997,19(增刊):76-82.
    [56]李志刚,张直明.不平衡质量的大小和分布对柔性转子—轴承系统稳定性的影响[J].振动与冲击,1997,16(1):15-19.
    [57] Adams M L,Abu-Mahfouz I A. Exploratory Research on Chaos Concepts as Diagnostic Tools for Assessing Rotating Machinery Vibration Signatures[C].Proceedings of IFToMM Fourth International Conference on Rotor Dynamics,Chicago,USA,1994(2):29-39.
    [58]崔颖,刘占生,黄文虎等.高维转子—轴承系统非线性动力稳定性分析[J].哈尔滨工业大学学报,2005,37(11):1465-1468.
    [59]张彦梅,陆启韶.非稳态油膜力作用下转子振动的分岔与稳定性分析[J].航空学报,2003,24(1):36-38.
    [60]袁小阳,朱均.多圆盘转子—滑动轴承系统自激振动的计算与分析[J].西安交通大学学报,1997,31(8):80-86.
    [61]袁小阳,朱均.不平衡转子滑动轴承系统稳定性的非线性研究[J].振动与冲击,1996,15(1):71-76.
    [62]李德信,徐健学.求解非线性动力系统周期解推广的打靶法[J].应用力学学报,2003,20(4):80-85.
    [63]刘恒,陈绍汀.非线性系统全局动态特性分析的PCM法及其在转子轴承系统中的应用[J].应用力学学报,1995,12(3):7-15.
    [64]郭丹,陈绍汀.非线性动力系统全局分析的变胞胞映射法与转子—轴承系统的全局稳定性[J].应用力学学报,1996,13(4):8-15.
    [65]俞翔,朱石坚,刘树勇. PMUCR方法在高维非线性动力学系统中的应用[J].应用力学学报,2006,23(2):232-236.
    [66]钟万勰.结构动力学方程的精细时程积分方法[J].大连理工大学学报,1994,34(2):131-136.
    [67]张亚红,华军,许庆余,等.精细积分法在迷宫密封系统非线性动力学特性计算中的应用[J].计算力学学报,2005,22(5):541-545.
    [68] Muszynska A,Grant J W. Stability and Instability of a Two-Mode Rotor Supported by Two Fluid-Lubricated Bearings[J]. Journal of vibration and Acoustics,1991,113(3):316-324.
    [69] Deepak J C,Noah S T. Experimental Verification of Subcritical Whirl Bifurcation of a Rotor Supported on a Fluid Film Bearing[J]. Journal of Tribology,1998,120:605-609.
    [70] Adiletta G,Guido A R,Rossi C. Nonlinear Dynamics of a Rigid Unbalanced Rotor in Journal bearings. Part II : Experimental Analysis[J]. Nonlinear Dynamics,1997,14:157-189.
    [71] Adiletta G,Guido A R,Rossi C. Nonlinear Dynamics of a Rigid Unbalanced Rotor in Journal bearings. Part I:Theoretical Analysis[J]. Nonlinear Dynamics,1997,14: 57-87.
    [72] Adiletta G,Guido A R,Rossi C. Chaotic Motions of a Rigid Rotor in Short Journal Bearings[J]. Nonlinear Dynamics,1996,10:251-269.
    [73]祝长生,冯心海,徐健康.柔性转子挤压油膜阻尼器系统双稳态特性的实验研究[J].航空动力学报,1988,3(2):105-108.
    [74]张学延,冠胜利,孙岱霞.国产200WM汽轮发电机油膜振荡的现场测试与分析[J].动力工程,1992,12(5):32-37.
    [75]张家忠.挤压油膜阻尼器—滑动轴承—转子动力系统的非线性动力特性研究运动稳定性及分岔[D].西安:西安交通大学博士学位论文,1997:36-52
    [76] Ding Q,Leung A Y. Numerical and Experimental Investigations on Flexible Multi-Bearing Rotor Dynamics[J]. Journal of Vibration and Acoustics,2005,127:408-415.
    [77]毛居全,李朝峰,王得刚等.转子支座松动故障的数值仿真与实验研究[J].机械与电子,2008,3:3-6.
    [78]郑龙席,贺尔铭,朱述川等.单盘含裂纹转子系统的非线性响应分析与实验研究[J].机械强度,2003,25(1):1-4.
    [79]任朝晖,陈宏,李鹤等.双盘悬臂转子轴承系统碰摩故障数值仿真与实验分析[J].中国机械工程,2006,17(17):1829-1833.
    [80]卢文秀,禇福磊.转子系统碰摩故障的实验研究[J].清华大学学报(自然科学版),2005,45(5):614-617.
    [81]刘长利,姚红良,李鹤等.碰摩裂纹转子轴承系统的周期运动稳定性及实验研究[J].应用力学学报,2004,21(4):52-55.
    [82]万方义,许庆余,宋笔锋等.滑动轴承—转子系统非线性裂纹故障特征及其实验研究[J].应用力学学报,2004,21(3):38-42.
    [83] Boyd J,Raimondi A. An Analysis of the Pivoted Pad Journal Bearing[J]. Mechanical Eng,1953,380-386.
    [84] Elwell R C,Findlay J A. Design of Pivoted Pad Journal Bearings[J]. ASME J. of Lubrication Technology,Series F,1969,91:87-103.
    [85] Lund J W. Spring and Damping Coefficients for the Tilting-Pad Journal Bearing[J]. ASLE Transactions,1964,7:342-352.
    [86] Nicholas J C,Gunter E J,Allaire P E. Stiffness and Damping Coefficients for the Five-Pad Tilting Pad Bearing[J]. ASLE Transaction,1979,22(2):113-124.
    [87] Orcutt F K. The Steady State and Dynamic Characteristics of the Tilting Pad Journal Bearing in Laminar and Turbulent Flow Regimes[J]. Journal of Lubrication Technology,Transaction ASME. Series F,1967,89:392-404.
    [88] Rouch K E. Dynamics of Pivoted Pad Journal Bearings , Including Pad Translation and Rotation Effects[J]. ASLE Transaction,1983,26(1):102-109.
    [89] Parsell J K,Allaire P E,Barren L E. Frequency Effects in Tilting Pad Journal Bearing Dynamic Coefficients[J]. ASLE Transaction,1983,26(2):222-227.
    [90] Allaire P E,Parsell J K,Barren L E. A Pad Perturbation Method for the Dynamic Coefficients of Tilting Pad Journal Bearings[J]. Wear,1981,72(1):29-44.
    [91] Adams M L,Payandeh S P. Self Excited Vibration of Statically Unloaded Pads in Tilting Pad Journal Bearings[J]. ASME J. of Lubrication Technology,1983,105:377-384.
    [92]张直明.计入支点弹性和阻尼时可倾瓦轴承支承的转子系统的动力稳定性[J].机械工程学报,1983,19(2):9-21.
    [93]虞烈.轴承—转子系统的稳定性与振动控制研究[D].西安:西安交通大学博士论文,1987:8-13.
    [94] Lund J W,Pedersen L B. The Influence of Pad Flexibility on the Dynamic Coefficients of a Tilting Pad Journal Bearing[J]. ASME J. of Tribology,1987,109(1):65-70.
    [95] Barrett L E,Aliaire P E,Wilson B W. The Eigenvalue Dependence of Reduced Tilting Pad Bearing Stiffness and Damping Coefficients[J]. Tribology Transactions, 1988,31:411-419.
    [96] Desbordes H,Fillon M,Chan C H W,Frene J. Dynamic Analysis of Tilting Pad Journal Bearing-Influence of Pad Deformations[J]. ASME J. of Tribology,1994,116:621-628.
    [97] White M F,Chan S H. The Subsynchronous Dynamic Behavior of Tilting Pad Journal Bearings[J]. ASME J. of Tribology,1992,l14:167-173.
    [98] Yang P , Rodkiewicz C M. Time-Dependent TEHL Solution to Centrally Supported Tilting Pad Bearings Subjected to Harmonic Vibration[J]. Triboiogy International,1996,29(5):433-443.
    [99] Desbordes H,Fillon M,Frene J,et al. The Effects of Three-Dimensional Pad Deformations on Tilting Pad Journal Bearings under Dynamic Loading[J]. ASME J. of Tribology,1995,117:379-384.
    [100] Earles L L,PalazzoIo A B,Armentrout R M. A finite Element Approach to Pad Flexibility Effects in Tilt Pad Journal Bearings:Part II-assembled bearings and system analysis[J]. ASME J. of Tribology,1990,112:178-182.
    [101] Rodkiewicz C M,Yang P. A Non-Newtonian TEHL Analysis of Tilting Pad Bearings Subjected to Inlet Pressure Build-up[J]. ASME J. of Tribology,1995,117:461-67.
    [102] El-Butch A M,Ashour N M. Analysis of Heavy Duty Tilting Pad Journal Bearing Taking into Account Pad Distortion and Possible Adoption of Rubber Pad Segments[J]. Tribology International,1999,32:285-293.
    [103] Yang P,Rodkiewicz C M. On the Numerical Analysis to the Thermo Elastic Hydrodynamic Lubrication of a Tilting Pad Inclusive of Side Leakage[J]. Tribology Transactions,1997,40(2):259-266.
    [104] Tripp H,Murphy B. Eccentricity Measurements on a Tilting Pad Bearing[J]. ASLE Transaction,1985,28:217-222.
    [105] Fillon M,Bligoud J C,Frene J. Expermental Study of Tilting Pad Journal Bearings Comparison with Theoretical Thermo Elastic Hydrodynamic Results[J]. ASME J. of Lubrication Technology,1992,114:579-588.
    [106] Fu W B,Parking D W. Mathematical Analysis for the Clearance Space of a Tilting Pad Journal Bearing[J]. STLE Tribology Transactions,1995,38:525-532.
    [107] Brockwell K R,Kieinbub D,Dmochowski W. Measurements of the Dynamic Operating Characteristics of the Five Shoe Tilting Pad Journal Bearing[J]. Tribology Transactions,1990,33:481-492.
    [108]徐华,姜歌东,丛红,等.四瓦可倾瓦径向滑动轴承动力特性的实验研究[J].摩擦学学报,2001,21(5):225-229.
    [109] Ha H C,Yang S H. Excitation Frequency Effects on the Stiffness and Damping Coefficients of a Five-Pad Tilting Pad Journal Bearing[J]. ASME J. of Tribology,1999,121:517-522.
    [110] Pagano S,Rocca E,Russo M,et al. Dynamic Behavior of Tilting Pad Journal Bearings[J]. Proc. Inst. Mech. Engrs,1995,209:275-285.
    [111] Brancati R,Rocca E,Russo R. Nonlinear Stability Analysis of a Rigid Rotor on Tilting Pad Journal Bearings[J]. Tribology International,1996,29(7):571-578.
    [112]闻邦椿,顾家柳,夏松波,王正.高等转子动力学理论、技术与应用[M].北京:机械工业出版社,1999:25-45.
    [113]李文忠,王黎钦.高速转子系统振动控制技术评述[J].机械强度,2005,25(1):44-49.
    [114]贺世正.弹性支承转子临界转速分析[J].流体机械,1999,27(10):9-12.
    [115]张志谊,崔春满,杨文凯.波纹环阻尼减振效果的理论分析[J].哈尔滨工业大学学报,1997,29(1):107-109.
    [116] Hamburg G,Parkinson J. Gas Turbine Shaft Dynamics[J]. SAE Trans,1962,70:774-784.
    [117] Copper S. Preliminary Investigation of Oil Film for the Control of Vibration[J]. Int. Mech. Eng,1963,(2):305-315.
    [118] Holmes R. Vibration and its Control in Rotating System[C]. Proc. of the Symposium on the Dynamics of Rotor,IUTAM,Copenhagen,1972:56-182.
    [119] Holmes R. The Damping Characteristics of Vibration Rotors Used in Gas Turbines[J]. J. of Mech. Eng. Sci,1977,19(6):271-277.
    [120] Holmes R. The Nonlinear Performance of Squeeze Film Bearing[J]. J. of Mech. Eng. Sci,1972,19(6):74-77.
    [121] Williams R,Holmes R. Determination of the Linear Characteristics of Squeeze Films[C]. Proc. Int. Mech. Eng. Tribology Convention,1971:135-141.
    [122] Shafei A E,Erank R V. Dynamic Analysis of SFDB Supported Rotor Using Equivalent Linearization[J]. ASME J. of Eng. Gas Turbines Power,1994,116(3):682-691.
    [123] Xie H J. The Dynamic Characteristics of SFDB System with Flexible Rotor. ASME International Gas Turbine and Aero[J]. Engine Congress and Exposition,1993-GT-32,1993:156-162.
    [124] Roboters J B,Ellis J,Carrasco A. Experiment Study of the Nonlinear Behavior of SFDB[J]. ASME J. of Tribology,1993,115:312-318.
    [125] Shafei A E. Stability Analysis of Inter Shaft SFDB[J]. J. Sound and Vib,1991,148(3):395-408.
    [126] Zhang J X,Robert J B. Frequency Domain Parameter Identification Method for Studying the Nonlinear Performance of SFDB[J]. J. Sound and Vibration,1996,189(2):173-191.
    [127] Zhang J X,Robert J B. Identification of Nonlinear Force Coefficients for the Identification for Radial Motion of a SFDB[C]. Proc. Int. Mech. Eng.,Part J. 1994,(2):235-245.
    [128]汪海航,汪希萱.转子振动主动控制的研究现状及存在问题[J].中国机械工程,1996,7(1):54-57.
    [129] Bonneau O,Frene J. Nonlinear Behavior of a Flexible Shaft Partly Supported by a Squeeze Film Damper[J]. Wear,1997,206:244-250.
    [130]骆志明,冯庚斌,任兴民.可控挤压油膜阻尼器-转子系统主动控制试验[J].振动、测试与诊断,1999,19(4):343-346.
    [131]赵杰,晏砺堂,朱梓根.新型可动外环挤压油膜阻尼器减振特性研究[J].航空动力学报,1998,13(4):353-356.
    [132]李运华,王占林,陈介力.电液主动控制挤压油膜阻尼器的理论分析[J].北京航空航天大学学报,1999,25(4):422-425.
    [133]孟光,殷达章,姚国治.电流变阻尼器用于转子振动控制的实验研究[J].航空动力学报,1996,11(3):265-268.
    [134] Yao G Z,Meng G,Fang T. Parameter Estimation and Damping Performance of Electro Rheological Dampers[J]. J of Sound and Vibration,1997,204(4):575-584.
    [135] Ehrgott R C,Masri S F. Modeling the Oscillatory Dynamic Behavior of ER Materials in Shea[J]. J. Smart Materials and Structures,1992,(4):275-285.
    [136] Nikolajsen J L. An Electroviscous Damper for Rotor Applications[J]. Libration and Acoustics (ASME),1990,112(4):440-443.
    [137]姚国治,孟光.电流变减振器的参数估计与减振性能研究[J].振动工程学报,1997,10(3):387-393.
    [138]汪建晓,孟光.磁流变液阻尼器在转子振动控制中的应用[J].化学物理学报,2001,14(5):548-554.
    [139]汪建晓,孟光.磁流变液阻尼器用于转子振动控制的实验研究[J].华中科技大学学报,2001,29(7):47-49.
    [140]阎晓军,聂景旭,孙长任.用于高速转子振动主动控制的智能变刚度支承系统[J].航空动力学报,2000,15(1):63-66.
    [141] Huang S J,Lin L C. Fuzzy Dynamic Output Feedback Control with Adaptive Rotor Imbalance Compensation for Magnetic Bearing Systems[J]. IEEE Transactions on Systems,Man and Cybernetics,Part B:Cybernetics,2004,34(4):1854-1864.
    [142] Higuchi T. Digital Control System for Magnetic Bearings with Automatic Balancing[C]. 2nd International Symposium on Magnetic Bearings,Tokyo,1990:121-128.
    [143] Nonami K,Fan Q. Unbalance Vibration Control of Magnetic Bearing SystemsUsing Adaptive Algorithm with Disturbance Frequency Estimation[C]. 6th International Symposium on Magnetic Bearings,MIT,Cambridge,USA,1998:212-216.
    [144]张德魁,江伟,赵鸿宾.磁悬浮轴承系统不平衡振动控制的方法[J].清华大学学报:自然科学版,2000,40(10):28-31.
    [145] Montiel M A , Navarro G. S. Finite Element Modeling and Unbalance Compensation for a Two Disks Asymmetrical Rotor system[C]. 2008 5th International Conference on Electrical Engineering,Computing Science and Automatic Control (CCE 2008),Mexico City,2008:146-153.
    [146] Keogh P,Cole M,Sahinkaya N,et al. On the Control of Synchronous Vibration in Rotor Magnetic Bearing Systems Involving Auxiliary Bearing Contact[C]. ASME TURBO EXPO 2002 Amsterdam,Netherlands,2002:95-101.
    [147] Uhn J N,Alan P. Optimized Realization of Fault-Tolerant Heteropolar Magnetic Bearings[J]. Journal of Vibration and Acoustics,2000,122:209-220.
    [148] Santos I F,Russo F H. Tilting Pad Journal Bearings with Electronic Radial Oil Injection[J]. Journal of Tribology,1998,120:583-594.
    [149] Santos I F,Nicoletti R. THD Analysis in Tilting Pad Journal Bearings Using Multiple Orifice Hybrid Lubrication[J]. Transactions of the ASME,1999,121:892-900.
    [150] Santos I F,Nicoletti R. Influence of Orifice Distribution on the Thermal and Static Properties of Hybrid Lubricated Bearings[J]. International Journal of Solids and Structures,2001,38:2069-2081.
    [151] Santos I F,Scalabrin A. Control System Design for Active Lubrication with Theoretical and Experimental Examples[J]. Journal of Engineering for Gas Turbines and Power,2003,125:75-80.
    [152] Nicoletti R,Santos I F. Linear and Non-linear Control Techniques Applied to Actively Lubricated Journal Bearings[J]. Journal of Sound and Vibration,2003,260:927-947.
    [153] Nicoletti R,Santos I F. Active Lubrication:Feasibility and Limitations on Reducing Vibration in Rotating Machinery[C]. ABCM Symposium Series in Mechantronics,2004,12:434-443.
    [154] Santos I F,Nicoletti R,Scalabrin A. Feasibility of Applying Active Lubrication to Reduce Vibrations in Industrial Compressors[J]. Transactions of the ASME,2004,126:848-854.
    [155] Nicoletti R,Santos I F. Frequency Response Analysis of an Actively Lubricated Rotor Tilting Pad Bearing System[J]. Transactions of the ASME,2005,127:638-645.
    [156] Wang J L,Cao D Q,Huang W H. A New Fluid Film Force Model of Elliptical Bearing:Modeling and Case Studies[J]. Journal of Engineering Tribology,2010,224(7):595-608.
    [157] Wang L G,Cao D Q,Huang W H. Nonlinear Coupled Dynamics of Flexible Blade Rotor Bearing Systems[J]. Tribology International,2010,43(4):759-778.
    [158] Thayer W J. Transfer Functions for MOOG Servo Valves[J]. MOOG Technical Bulletin,1965,103:129-134.
    [159]王书堂.浅析汽轮机油膜振荡[J].山西焦煤科技,2008,6(3):106-108.
    [160]杜大军.网络控制系统的学习和控制策略研究[D].上海:上海大学博士论文,2010:20-38.
    [161]史春朝. BP神经网络算法的改进及其在PID控制中的应用研究[D].天津:天津大学硕士论文,2006:18-44.
    [162]陈浩锋.船舶运动模拟平台电液伺服控制系统研究[D].长沙:国防科技大学硕士论文,2005:37-52.
    [163]李逊.基于模糊神经网络的PID控制器研究与设计[D].北京:中国石油大学硕士论文,2007:30-36.
    [164]祁乃斌,袁奇,饶金阳.长外伸段转子高速动平衡时支承方式的研究[J].热能动力工程,2008,23(4):373-377.
    [165]张学延.汽轮发电机转子外伸端质量不平衡引起的振动分析[J].热力发电, 2004,10(4):55-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700