用户名: 密码: 验证码:
微加速度计的机电耦合特性及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静电驱动与检测技术被大规模地应用于MEMS(Micro-Electro-Mechanical Systems,微电子机械系统)转换器与传感器中,具有灵敏度高、响应速度快、精度高、容易制造与加工以及易于与CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)技术相集成等优点。本论文以微电子机械系统中的直线轮廓平行板电容结构为研究对象,结合其在电容式微加速度计和谐振式微加速度计的应用特点,总结得出“弹簧—质量—电容”结构的三种宏模型形式:单弹簧单电容模型、双弹簧单电容模型和单弹簧双电容模型,课题研究了三类模型的结构组成、误差模型、机电耦合特性及其在微加速度计中的应用技术,主要研究内容包括以下几个方面:
     1.根据MEMS平行板电容器的应用特点提取出了“弹簧—质量—电容器”宏模型,并分析了弹簧、质量与电容器在微电子机械系统中的表现形式。重点研究了两类折叠梁形式的“微弹簧”结构的刚度误差依赖性,指出了“内折叠分散桁架”的折叠梁结构在正偏差影响下刚度误差灵敏度较小;结合微工艺深刻蚀特点得出:选用内折叠分散桁架结构来支撑微器件中的可动质量块具有工艺简单、误差灵敏度较小、易于扩展等优点。
     2.分析了宏模型的静电刚度效应与“吸附”效应等机电耦合特性。研究了开、闭环刚度的形成条件及解析表达式,以及双弹性支撑下结构位移刚度的耦合特性;运用能量法研究了阶跃电压下的宏模型响应,得出了结构发生“吸附”现象的刚度比为1/4;分析了双电容结构“吸附”电压的间隙误差依赖性,其理论结果与仿真分析结果的相对误差小于5%.
     3.结合双电容宏模型的闭环刚度特性研究了力平衡式微加速度计在线性反馈电压下的机电耦合特性及位移刚度“刚化”与“软化”效应;结合微加工工艺特点,重点研究了间隙非对称误差与电路零偏情况下的机电耦合特性及其对加速度计输出零偏的影响。指出了在深度反馈条件下,间隙非对称误差对零偏输出的影响远大于电路零偏的影响,并在此结论的基础上提出了结合解析法与逆标度法的微加速度计表芯加工工艺线非对称误差预测技术,得出的预测结果与经验值相吻合。此预测技术合理地运用了成熟器件与加工工艺的特点,将机电耦合的理论结果应用到工程实践中来满足工程实际需求,为MEMS结构研究开辟了新的方法。
     4.基于机械刚度与静电刚度耦合原理,提出静电刚度与谐振原理相结合的理论分析方法,设计出了基于静电刚度变化的谐振式微加速度计表芯结构。整个结构设计过程包括了谐振原理与静电刚度结合理论、静电刚度谐振器设计及频率鲁棒性设计与输入输出关系推导以及性能参数设计与版图尺寸确立。在运用静电刚度与谐振原理相结合的理论结果设计表芯结构及尺寸时,考虑到了频率的鲁棒性条件,使加工完成的样机灵敏度与设计值十分接近,整个结构仅经历两次制版与加工就达到了预期设计指标。这不仅说明理论结果的正确性,还说明了理论设计的有效性,降低了性能参数的工艺依赖性,提高了结构设计效率。
     5.运用微工艺的深反应离子刻蚀技术(DRIE, Deep Reaction Ion Etching)与硅微键合技术制造出了加速度计的表芯结构,并通过原理样机的离心机测试验证了理论的正确性与有效性。
     本论文运用宏模型原理分析MEMS平行板电容器的机电耦合特性,简化了复杂系统的分析过程,使理论推导过程更明确更直观。提出了运用机械场与静电场的耦合效应来开辟MEMS设计分析新方法,包括基于电路参数补偿的鲁棒性设计方法、基于系统测试的工艺误差预测方法以及基于静电刚度的微谐振器研制等。
Electrostatic driving and sensing technology is broadly applied in MEMS (Micro-Electro-Mechanical Systems) transducers and sensors, due to its advantages of high sensitivity, high speed of response, high precise, easy fabrication and easy integration with CMOS (Complementary Metal Oxide Semiconductor) technology. The parallel plates capacitors with straight line outline in micro-electro-mechanical-systems and its characteristics of application in capacitive micro accelerometer and resonant micro accelerometer are studied, and three types of macro-model are extracted in common spring-mass-capacitor structure:one with single spring and single capacitor, one with double springs and single capacitor, and one with single spring and double capacitor. The structure form, error model, electromechanical coupling characteristics and apllication technology in micro acceleroemter of those models are studed in paper, which contain subsequent aspects:
     1. The macro models of spring-mass-capacitor are extracted according to the application traits of MEMS parallel plate capacitors, and the concrete forms of spring, mass and capacitor in MEMS are analyzed. The concentration of research is on the error dependence of stiffness of two typical micro-spring structure builded as folded beams. It is concluded that the one with inner fold and discontinuous truss has smaller sensitivity under positive error, and also has the advantages of simple process and easily expanding under considering the characteristics of deep etching when used as a supporting structure of movable sensing mass block.
     2. The electromechanical coupling characteristics including effects of electrostatic stiffness and pull-in of macro model are analyzed. The generation condition and analytical expressions of electrostatic stiffness under open loop and closed loop, and the coupling characteristics of displacement stiffness in double elastic supporting structure are studied, respectively. It is concluded that the pull-in phenomenon of macro model occurs under step voltage when the ratio of stiffness is less than 1/4, and finally, the dependence of pull-in voltage on gap error in double capacitor model is analyzed, the theoretical results have the relative error less than 5% compared with simulating results.
     3. The electromechanical coupling characteristics and 'stiffen' effects and 'soften' effects of displacement stiffness in balanced-force micro accelerometer under linear feedback voltage is studied by combining with the closed loop stiffness of double capacitor model. The studies focus on the influence of the gap asymmetric error and circuit zero bias on the electromechanical coupling characteristics and zero bias of accelerometer output, which indicate that the influence of the former part is much lager than later, based on this conclusion, a prediction theory of average gap asymmetric error from process line is established by combining analytical method and reverse calibration, and the results are coincident with the experience value. The prediction technology can meet the requirements in practical engineering by apply the theoretical results of electromechanical coupling into engineering based on the application of the characteristics of mature device and processing.
     4. The theoretical analyzing method of combining electrostatic stiffness and resonant theory is proposed and a resonant accelerometer structure based on the change of electrostatic stiffness is designed according to the coupling theory between mechanical stiffness and electrostatic stiffness. The whole structure design process consist of theory of combining resonant principle and electrostatic stiffness, design of resonator with electrostatic stiffness and its frequency robustness, the analytic relation between input and output, design of performance parameters and determination of layout dimension. The condition of robustness of frequency is considered in determining the parameters of sensing structure by the combination theory of electrostatic stiffness and resonant theory, which makes the sensitivity of fabricating prototype close to the design value. The design performance is realized only by twice plate-making and processing, which not only proves the rightness of theory results, also clarifies the validity of theoretical design, reducing the dependence of performance on process and promoting the efficiency of structural design.
     5. The structure of sensor is fabricated by DRIE (Deep Reaction Ion Etching) technology and silicon bonding technology, and finally, the experiment on centrifuge is carried to verify the feasibility and validity of theories.
     The macro model method is selected in this paper to analyze the electromechanical coupling characteristics of MEMS parallel plate capacitor, which simplified the analyzing process of complicated systems, made the whole process of derivation more definitude and explicit, it is concluded that the coupling effects of mechanical field and electrostatic field can be used to cultivate new methods of MEMS design and analysis, such as ruboust design based on compensation of quantity in circuit, method of error prediction based on results of system tests and micro resonator based on electrostatic stiffness.
引文
[1]Mohamed Gad-el-Hak. The MEMS Handbook [M]. Roca Raton, London, New York, Washington D. C:CRC PRESS,2002.
    [2]Stephen Beeby, Graham Ensell, Michael Kraft, and Neil White. MEMS Mechanical Sensors [M]. Boston, London:Artech House, Inc.2004.
    [3]Judy J. W.. Microelectromechanical Systems (MEMS):Fabrication, Design and Applications[J]. Smart Materials and Structures,2001, Vol.10:1115-1134.
    [4]Wang Zheyao.微系统设计与制造[M].清华大学出版社,2008,2:3-5.
    [5]孙立宁,周兆英,龚振.MEMS国内外发展状况及我国MEMS发展战略的思考[OL]. http://www.eeword.com.cn
    [6]Fan L S. IC-processed electrostatic micromotors [J]. Sensors and Actuators A, 1989,20:41-47.
    [7]Feynman R P. Infinitesimal machinery [J]. Journal of MEMS,1993,2:4-14.
    [8]Younse Jack M. Mirrors on a chip [J]. IEEE Spectrum,1993,30(11):27-31.
    [9]Van Kessel Peter F., Hornbeck Larry J., Meier Robert E., Douglass Michael R.. MEMS based projection display [J]. Proceedings of IEEE,1998,86(8):1687-1704.
    [10]Nadim Maluf and Kirt Willims. An Introduction to Microelectromechanical Systems Engineering (Second Edition) [M]. Boston·London, Artech House, Inc.2004.
    [11]Nicolae Lobontiu, and Ephrahim Garcia. Mechanics of Microelectromechanical Systesms [M]. Boston:Kluwer Academic Publishes,2005.
    [12]R. Puers. Capacitive sensors:when and how to use them [J]. Sensors and Actuators A, 1993,37-38:93-105.
    [13]M. H. Bao.Micro Mechanical Transducers:Pressure Sensors, Accelerometers and Gyroscopes [M]. ELSEVIER Publishing,2000:139.
    [14]S.J. Sherman, W.K. Tsang, T.A. Core, R.S. Payne, D.E. Quinn, K.H.-L. Chau, J.A. Farash, S.K. Baum. A Low Cost Monolithic Accelerometer; Product/Technology Update [C]. Proceedings of the Technical Digest of International Electron Devices Meeting, New York, NY, USA,1992:501-504.
    [15]J. Bernstein, S. Cho, A.T. King, A. Kourepenis, P. Maciel, M. Weinberg. A Micromachined Comb-Drive Tuning Fork Rate Gyroscope [C]. Proceedings of the IEEE Micro Electro Mechanical Systems Workshop, Ft. Lauderdale,1993:143-148.
    [16]T. Bourouina, A. Bosseboeuf, J.-P. Grandchamp, Design and simulation of an electrostatic micropump for drug-delivery applications [J]. Journal of Micromechanical and Microengineering,1997,7 (3):186-188.
    [17]Francais, I. Dufour, Enhancement of elementary displaced volume with electrostatically actuated diaphragms:application to electrostatic micropumps [J]. J. Micromech. Microeng.2000,10 (2):282-286.
    [18]L. Yobas, D.M. Durand, GG Skebe, F.J. Lisy, M.A. Huff. A novel integrable microvalve for refreshable Braille display system [J]. Journal of Microelectromechanical System.2003,12 (3):252-263.
    [19]J. Brank, Z.J. Yao, M. Eberly, A. Malczewski, K. Varian, C.L. Goldsmith. RF MEMS-based tunable filters [J]. International Jornal of RF Microwave and Computer-Aided Engineering.2001,11 (5):276-284.
    [20]Ki Bang Lee. Closed-form solutions of the parallel plate problem [J]. Sensors and Actuators A,2007,133:518-525.
    [21]W. A. Clark.Micromachined Vibratory Rate Gyroscopes[D]. Ph.D:University of California, Berkeley,1997.
    [22]Y. Mochida, M. Tamura, and K. Ohwada. A micromachined vibrating rate gyroscope with indepent beam for the drive and detection mode[J]. Sensors and Actuators A, 2000,80:170-178.
    [23]Toshiyoshi H, et al. Linearization of electrostatically actuated surface micromachined 2-Doptical scanner[J]. Journal of MEMS,2001,10:205-214.
    [24]Dokmeci M R. Two-axis single-crystal silicon micromirror arrays [J]. Journal of MEMS,2004,13:1006-1017.
    [25]Hyeon Cheol Kim, Seunho Seok. Inertial-Grade Out-of-Plane and In-Plane Differential Resonant Silicon Accelerometers (DRXLs) [C]. The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, June 5-9,2005.
    [26]Yun W. Surface micromachined digitally force-balanced accelerometer with integrated CMOS detection circuitry[C]. Transducers' 93:126-131.
    [27]Drieenhuizen B P, et al. Force-balanced accelerometer with mG resolution fabricated using silicon fusion bonding and deep reactive ion etching [C]. Transducers'97:1229-1230.
    [28]李伟剑.微机电系统的多域耦合分析与多学科设计优化[D].西北工业大学博士论文,2004:10-11.
    [29]T. Sasayama, et al.. Highly Reliable Silicon Micro-Machined Physical Sensors in Mass Production [C]. IEEE Transducers' 95, Stockholm, Sweden,25-29 June 1995: 687-690.
    [30]Hin-Leung Chau, K.D. Wise. An ultraminiature solid-state pressure sensor for a cardiovascular catheter [J]. IEEE Trans. Electron. Devices,1988,35(12):2355-2362.
    [31]W.C. Tang, et al., Laterally Driven Polysilicon Resonant Microstructures [C]. IEEE MEMS'89 Workshop, Salt Lake City, UT, February 1989:53-59.
    [32]T. Yasuda, et al., Electrostatically driven micro elastic joints [C]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh, PA,5-9 August 1995:242-245.
    [33]R.X. Gao, et al., Miniaturized surface-driven electrostatic actuators:design and performance evaluation [J]. IEEE/ASME Trans. Mechatronics,1997,2(1):1-7.
    [34]J.-E. Wong, et al., An electrostatically actuated MEMS switch for power applications [C]. Proceedings of the IEEE MEMS 2000 Conference, Miyazaki, Japan,23-27 January 2000:633-638.
    [35]S. Kamisuki, et al., A high resolution, electrostatically driven commercial inkjet head [C]. Proceedings of the IEEE MEMS 2000 Conference, Miyazaki, Japan,23-27 January 2000:793-798.
    [36]H. Schenk, et al., An electrostatically excited 2d-micro-scanningmirror with an in-plane configuration of the driving electrodes [C]. Proceedings of the IEEE MEMS 2000 Conference, Miyazaki, Japan,23-27 January 2000:473-478.
    [37]http://www.dlp.com/.
    [38]L. A. Rocha, E. Cretu, R. F. Wolffenbuttel. Full characterisation of pull-in in single-sided clamped beams [J]. Sensors and Actuators A,2004,110:301-309.
    [39]L. A. Rocha, E. Cretu, R. F. Wolffenbuttel. Compensation of temperature effects on the pull-in voltage of microstructures [J]. Sensors and Actuators A,2004,115: 351-356.
    [40]P. Bruschi, A. Nannini, D. Paci, F. Pieri. A method for cross-sensitivity and pull-in voltage measurement of MEMS two-axis accelerometers [J]. Sensors and Actuators A, 2005,123-124:185-193.
    [41]Jao-Hwa Kuang and Chao Jung Chen, Adomian decomposition method used for solving nonlinear pull-in behavior in electrostatic micro-actuators [J]. Mathematical and Computer Modeling,2005,41:1479-1491.
    [42]J. M. Huang, A. Q. Liu, Z. L. Deng, Q. X. Zhang. A modeling and analysis of spring-shaped torsion micromirrors for low-voltage applications [J]. International Journal of Mechanical Science,2006,48:650-661.
    [43]M. moghimi Zand, M. T. Ahmadian. Characterization of coupled-domain multi-layer microplates in pull-in phenomenon, vibrations and dynamics [J]. International Journal of Mechanical Science,2007,49:1226-1237.
    [44]Karkkainen, N. Tisnek, A. Manninen, N. Pesonen, A. Oja, H. Seppa. Electrical stability of a MEMS-based AC voltage reference [J]. Sensors and Actuators A,2007, 137:169-174.
    [45]Gusso, G. J. Delben. Influence of the Casimir force on the pull-in parameters of silicon based electrostatic torsional actuators [J]. Sensors and Actuators A,2007,135: 792-800.
    [46]Anurekha Sharma, P. J. George. A simple method for calculation of the pull-in voltage and touch-point pressure for the small deflection of square diaphragm in MEMS [J]. Sensors and Actuators A 141,2008:376-382.
    [47]Y. C. Hu, C. M. Chang, S. C. Huang. Some design considerations on the electrostatically actuated microstructures [J]. Sensors and Actuators A,2004,112: 155-161.
    [48]V. Rochus, D. J. Rixen, J. C. Golinval. Electrostatic coupling of MEMS structures,transient simulations and dynamic pull-in [J]. Nonlinear Analysis,2005,63: e1619-1633.
    [49]Wu JianXin, Li Qiang, Zhao WeiGuo, Sun Yan. Dynamic analysis and optimization of electromechanical coupling system [J]. International Technology and Innovation Conference,2006:1474-1478.
    [50]Da-Yong Qiao, Wei-Zheng Yuan, Xiao-Ying Li. A two-beam method for extending the working range of electrostatic parallel-plate micro-actuators [J]. Journal of Electrostatics,2007,65:256-262.
    [51]Asghar Ramezani, Aria Alasty, Javad Akbari. Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces [J]. International Journal of Solids and Structure,2007,44:4925-4941.
    [52]S.Chaterjee, G. Pohit. A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams [J]. Journal of Sound and Vibration, 2009,322(4-5):969-986.
    [53]李伟剑,苑伟政,马炳和,乔大勇.硅微陀螺的静电-结构耦合分析与模拟[J].西北工业大学学报.2006,21(6):753-756.
    [54]李丽伟,朱荣,周兆英.基于能量法的微驱动器静电弹性耦合分析[J].MEMS器件与技术.2006,5:244-246.
    [55]朱毅,郭丹.微梳齿驱动性能的耦合仿真研究[J].工程力学,2008,25(7):206-211.
    [56]张凯,彭云峰.一种微构件的多物理场耦合求解方法[J].机械设计与制造.2006,2:1-3.
    [57]贾晓丽.微梁机电耦合动力学[D].燕山大学硕士论文,2007.
    [58]吴振彤.微板机电耦合动力学研究[D].燕山大学硕士论文,2008.
    [59]李圣怡,刘宗林,吴学忠.微加速度计研究的进展[J].国防科技大学学报.2004,26(6):34-37.
    [60]Navid Yazdi, Fanrokh Ayazi, Khalil Najafi. Micromachined Inertial Sensors [J], Proceedings of the IEEE,1998,86(8):1640-1659。
    [61]T. Meydan. Recent trends in linear and angular accelerometers [J]. Sensors and actuator A 59,1997:43-50.
    [62]胡雪梅.微机械电容式加速度计的系统分析[D].西安电子科技大学,2006.3.
    [63]M. Elwenspoek, R. Wiegerink. Mechanical Microsensors[M].北京:中国宇航版社.2003.9:1-3.
    [64]郝一龙,贾玉斌.谐振加速度计的非线性分析[J].纳米技术与精密工程.2003.1(1):31-33.
    [65]W. Kuehnel, Steven Sherman. A surface micromachined silicon accelerometer with on-chip detection circuitry [J]. Sensors and Actuators, A45,1994:7-16.
    [66]Zhixiong Xiao, Min Chen, Guoying Wu, Changde Zhao, Dacheng Zhang, Yilong Hao, Guobing Zhang, and Zhihong Li. Silicon micro-accelerometer with mg resolution, high linearity and large frequency bandwidth fabricated with two mask bulk process [J]. Sensors and Actuators 77,1999:113-119.
    [67]陈雪冬.力平衡式加速度计闭环伺服系统动态数学模型[J].传感器技术,2001,20(5):5-8.
    [68]陈宇晓.电容式微机械静电伺服加速度计系统分析[D].电子科技大学硕士学位论文,2002年.
    [69]寇剑菊.叉指式微加速度计的系统仿真分析[D].中国工程物理研究院硕士学位论文,2003年.
    [70]刘宗林.电容式微惯性器件设计理论与方法研究[D].国防科技大学博士学位论文,2004年.
    [71]李疆,高钟毓,董景新.微加速度计摆片质量的测量方法研究[J].机械工程学报.2004,40(3):115-118.
    [72]车录锋,徐志农,熊斌等.力反馈微加速度计的准静态和阶跃响应模型[J].机械工程学报.2004,40(10):102-108.
    [73]朱武,孟逢逢,张佳民.电容式加速度计自动校零技术的研究[J].传感器技术学报.2005,24(7):44-46.
    [74]吴天准,董景新,刘云峰.电容式微机械加速度计闭环系统的零偏[J].清华大学学报(自然科学版).2005,45(2):201-204.
    [75]陈伟平,赵振刚,刘晓为,韩天.力平衡框架结构加速度计的设计[J].传感技术学报,2006,19(5):2193-2196.
    [76]刘云峰,董景新.静电力反馈微加速度计的吸合失效[J].机械工程学报.2006,42(12):128-131.
    [77]吴天准,董景新,赵长德,冯宇翔.梳齿式微机械加速度计闭环系统的线性度[J].清华大学学报(自然科学版).2006,45(2):201-204.
    [78]吴天准,董景新,刘云峰,赵长德.梳齿式微机械加速度计闭环系统性能的分析与优化[J].仪器仪表学报,2006,27(3):285-289.
    [79]刘民杰,董景新.电容式微加速度计零偏的补偿方法[J].中国惯性技术学报.2008,16(1):86-89.
    [80]Zhang Yufeng, Liu Xiaowei, and Chen Weiping. System-level Modeling and Simulation of Force-balace MEMS Accelerometer [J]. Journal of Seniconductors, 2008,29(5):917-922.
    [81]张扬,曲延滨.力平衡式微加速度计系统特性研究[J].福州大学学报(自然科学版).2008,36,增刊:53-56.
    [82]宋星,房建成,盛蔚.电容式微加速度计闭环检测电路[J].北京航空航天大学 学报.2009,35(3):384-388.
    [83]李童杰,刘云峰,董景新.力反馈式加速度计动态特性分析及重要参数选择[J].中国惯性技术学报.2009,17(4):483-487.
    [84]J. Fricke, E. Obermeier. An accelerometer made in a two-layer surface-micromachining technology [J]. Sensors and Actuator A 54,1996:651-655.
    [85]K. H.-L. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli. An intergrated force-balanced capacitive accelerometer for low-g applications [J]. Sensors and Actuator A 54,1996:472-476.
    [86]Michael Kraft, Christopher Lewis,Thomas Hesketh, and Stefan Szymkowiak. A novel micromachined accelerometer capacitive interface [J]. Sensors and Actuator A 68, 1998:466-473.
    [87]Jonathan Soen, Alina Voda, and Cyril Condemine. Controller design for a closed-loop micromachined accelerometer [J]. Control Engineering Practice.2007,15:57-68.
    [88]Lasse Aaltonen, Kari Hanlonen. Continuous-time interface for a micromachined capacitive accelerometer with NEA of 4μg and bandwidth of 300Hz [J]. Sensor and Actuators A:Physical,2009,154:46-56.
    [89]J.C.Greenwood. Resonant Pressure Sensors [J]. IEE, Savoy Place, London,1993, pp.1-2.
    [90]钟莹,张国雄,李醒飞.谐振原理在硅微机械加速度计中的应用[J].传感器技术.2006,28(3):1-3.
    [91]Meldrum, M. A, Application of vibrating beam technology to digital acceleration measurement[J]. Sensors and Actuators, Vol. A21-A23,1990:377-380.
    [92]R. J. Pitcher, J. S. Burdess, A. J. Harris, D. Wood, S. Hainsworth. Analysis of Resonant Silicon Bridges[J]. The Institution of Electrical Engineers. IEE, Savoy Place, London WE2R 0BL, UK,1995:625-628
    [93]Terry V. Roszhart, Hal Jerman, Joe Drade, and Constant de Cotiis. An inertial-grade Micromachined Vibrating Beam Accelerometer [C]. The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX. Stockholm, Sweden, June 25-29,1995:656-658.
    [94]张相庭,王志培,黄本才,王国砚.结构振动力学[M].上海:同济大学出版社.2005,8.
    [95]Trey Allen William Roessig. Intergrated MEMS Tuning Fork Oscillators for Sensor Applictions[D]. UNIVERSITY of CALIFORNIA, BERKELEY. Spring,1998.
    [96]钟莹,张国雄,李醒飞.新型谐振式硅微机械加速度计[J].纳米技术与精密工程.2003,1(1):34-37.
    [97]陈雪萌,李昕欣等.一种新结构硅微机械压阻加速度计[J].传感器技术学报.2005,18(3):500-503.
    [98]贾玉斌,郝一龙,钟莹等.基于谐振原理的硅微机械加速度计[J].微纳电子技 术.2003,8:271-273.
    [99]郑晓虎.一种谐振式微加速度计的设计[J].压电与声光.2006,28(3):294-296.
    [100]Ashwin Arunkumar Seshia. Integrated Micromechanical Resonant Sensors for Inertial Measurement Systems[D]. UNIVERSITY of CALIFORNIA, BERKELEY. Fall 2002.
    [101]Ashvin A. Seshia, Moorthi Palaniapan, Trey A. Roessig, Roger T. Howe, Roland W. Gooch, Thomas R. schimert and Stephen Montague. A Vacuum Packaged Surface Micromachined Resonant Accelerometer[J]. Journal of Microelectromechanical systems,2002,11(6):784-793.
    [102]Lin He, Yong-Ping Xu, and Anping Qiu. Folded Silicon Resonant Accelerometer with Temperature Compensation [J]. Proceeding of IEEE Sensors, Vol.1,2004:512-515.
    [103]Chrirtlan Burrer, Jaume Esteve and Emillo Lora-Tammyo. Resonant Silicon Accelerometers in Bulk Micromachining Technology-An Approach [J]. IEEE, Journal of microelectromechanical systems, Vol.5, No.2, June,1996:122-130.
    [104]Susan X. P. Su Henry S. Yang. A resonant Accelerometer with Two-stage Microleverage Mechanisms Fabricated by SOI-MEMS Technology [J]. IEEE Sensors Journal,2005,5(6):1214-1223.
    [105]Yoshiteru Omura, Yutaka Nonomura and Osamu Tabata. New Resonant Accelerator Based on Rigidity Change [C]. International Conference on Solid-State Sensors and Actuators, IEEE, Chicago, June 16-19,1997:855-858.
    [106]何晓平,张德,文贵印.静电伺服微加速度计的量程设计[J].中国惯性技术学报.2003,11(6):90-93.
    [107]K. Y. Park, C. W. Lee, H. S. Jang, Y. s. Oh, and B. J. Ha. Capacitive sensing type surface micromachined silicon accelerometer with a stiffness tuning capability [C]. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS),1998: 637-642.
    [108]Byeung-Leul Lee, Chang-Hoon Oh Soo Lee. A Vacuum packaged differential resonant accelerometer using gap sensitive electrostatic stiffness changing effect [C]. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS),2000: 352-357.
    [109]Seonho Seok, Hak Kim, and Kukjin Chun. An Inertial-grade laterally-driven MEMS Differential Resonant Accelerometer [J]. Proceedings of the IEEE Sensors,2004,2: 654-657.
    [110]Gary K. Fedder. Structured Dsign of Integrated MEMS [C]. IEEE Proceedings of the 1999 12th IEEE International Conference on Micro Electro Mechanical Systems, MEMS. Orlando, FL, USA. January 17-21,1999:1-8.
    [111]赵江铭,沈雪瑾,张海霞等.弓型悬臂梁微静电谐振器力学建模[J].微纳电子技术.2003,7(8):22-26.
    [112]袁磊,沈雪瑾,赵江铭等.之字型支撑梁硅微谐振器机械性能分析[J].中国机 械工程.2005,16(10):892-895.
    [113]丁晓红,陈晓阳,沈雪瑾.静电梳微谐振子蟹脚型结构的振动特性[J].机械设计与制造工程.2000,29(4):10-12.
    [114]丁晓红,陈晓阳,沈雪瑾.静电梳微谐振子直脚型结构的振动特性[J].机械设计与制造工程.2000,29(3):6-8.
    [115]Kovacs G. T., Maluf N. I. and Petersen. Bulk micromachining of Silicon [C]. Proceedings of the IEEE,1998,86(8):1536-1551.
    [116]Bustillo J. M., Howe R. T. and Muller R. S., Surface Micromachining for Microelectromechanical Systems [C]. Proceedings of the IEEE,1998,86(8):1552-1574.
    [117]Feynma R., Infinitesimal machinery [J]. Journal of Microelectromechanical Systems, 1993,2(1):4-14.
    [118]Stephen D. Senturia.微系统设计Microsystem Design [M].刘泽文,王晓红,黄庆安等译.北京:电子工业出版社.
    [119]Xuesong Liu, Chengwei Wang, Yong Zhu, Guizhen Yan. Vertical profiles and CD loss control in deep RIE technology [C].7th International Conference on Solid-State and Integrated Circuits Technology Proceedings, ICSICT 2004.2004:1848-1851.
    [120]王成伟,闫桂珍,朱泳.ICP硅深槽刻蚀中的线宽控制问题研究[J].微纳电子技术.2003,7-8:104-107.
    [121]Dan B. Marghitu. Mechanical Egineer's Handbook[M]. San Diego:Academic Press, Aug.2001:150-151.
    [122]Yin Zhang, Ya-pu Zhao. Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading [J]. Sensors and Actuators A 127,2006: 366-380.
    [123]Gang Dai, Mei Li, Wei Su and Beibei Shao. Systematic Error Analysis and Modeling of MEMS Close-loop Capacitive Accelerometer [C]. Proceedings of the 5th IEEE International Conference on Nano/Micro Egineering and Molecular Systems, Xiamen, P. R. China, NEMS2010, January 20-23,2010:92-96.
    [124]H. Kawai, M. Tamura, K. Ohwada. Diirect measurement of mechanical coupling in a microgyroscope using a two-dimensional laser displacement meter [C]. Proceedings of the IEEE International Conference on Solid-State Sensors, Actuators and Microsystems, Sendai, Japan, June 7-10,1999:1556-1559.
    [125]Alfredo C, Elisaetta L, Marcello V. Electrical method to measure the dynamic behaviour and the quadrature error of a MEMS gyroscope error [J]. Sensors and Actuators A,2007,134:88-97.
    [126]Singiresu S. Rao. Mechanical Vibrations [M]. Second Edition. Massachusetts: Addison-Welsley Publishing Company,2000.
    [127]Rong L, Brad P. MEMS Resonators that are robust to process-induced feature width variations [J]. J. Microelectromech. Syst..2002,11(5):505-511.
    [128]李普,杨华,方玉明.电信系统中的硅微机械滤波器结构鲁棒设计[J].机械工程学报.2005,41(5):132-136.
    [129]Jon S Wilson. Sensor Technology Handbook [M]. Amsterdam:ELSEVIER,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700