用户名: 密码: 验证码:
表面活性剂酸性压裂液的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硼交联胍胶及其改性产品是目前应用最为广泛的水基压裂液体系。水基压裂液伤害集中在大分子物质吸附滞留堵塞储层流体渗流通道、压裂液残渣堵塞支撑裂缝和滤饼对裂缝壁面的伤害这三个方面。近年来国内外针对这几个方面做了大量的研究工作,但大分子物质在储层孔道的吸附滞留问题以及碱性流体对储层的侵入伤害等问题始终没有得到解决。针对上述问题,本文开展了表面活性剂酸性压裂液体系的研究,该压裂液体系是由表面活性剂和反离子盐在酸溶液中溶解交联而成,分子量小,不含任何高分子,体系呈酸性,在压裂的同时进行人工裂缝周围的基质酸化,因而酸化的范围大幅度增加,不仅能酸化井筒周围的基质,解除井筒周围的污染,而且能解除随着裂缝的扩展引起近裂缝附近基质的渗透率伤害。
     最终形成的不是简单的一条主裂缝渗流通道,而是一条沿着主裂缝的渗透带,其带宽远远大于主裂缝的缝宽,彻底改善近井地带和近裂缝地带的渗流能力。
     根据粘弹性表面活性剂液体的聚集原理,合成了一种耐酸表面活性剂,所合成的表面活性剂体系是双头表面活性剂(Gemini)。经过优选组分,最终形成了酸性压裂液配方体系。通过对最终配方体系的性能测试,其耐温、耐剪切能力能够满足大庆某区块的要求,体系对岩心的伤害小于20%,对含碳酸盐岩的储层,渗透率甚至还有增加。由于采用泵后加酸,有力地预防了酸对压裂施工设备的腐蚀,解决了施工时酸腐蚀设备的技术难题,为酸性压裂液体系的现场安全实施扫清了障碍。
     虽然高效压裂液体系是保证安全施工和提高压裂效果的关键因素,但科学实用的施工监测分析系统也是提高施工效率、完善压裂设计和分析压裂效果的有力工具。本文结合新开发的表面活性剂酸性压裂液体系的流变、滤失、黏温及破胶等特征,针对大庆某区油藏地层特征,建立了裂缝延伸的拟三维模型、支撑剂运移分布模型、井筒流动模型、温度场模型及液体滤失模型,优化了算法。研制了便携式加砂压裂酸化监测仪,能够进行压裂施工数据的采集和反馈。研制了监测及解释软件系统,以数据为中心,可视化操作为主体,模块化设计,算法稳定可靠,数据采集和传输速度快,完全满足现场实时监测解释的要求。
     酸化和水力压裂均存在一定的局限性,表面活性剂酸性压裂液体系的开发使二者有机的结合起来。实时监测解释系统的开发,实现了表面活性剂酸性压裂液体系加砂压裂酸化施工、现场实时监测、数据分析、压裂设计调整一体化的单井增产技术模式。
     表面活性剂酸性压裂液体系既清除近井地带的污染和结垢,又解除了近裂缝壁面滤失带中压裂液对地层的伤害,在更大范围内降低渗流阻力。同时,该体系在地层温度下遇到油、气和地层水,将自动破胶,无残渣,返排彻底。通过表面活性剂酸性压裂液体系在大庆油田5口井的现场试验,提高了低渗透含钙砂岩的油井产能,见到了良好的效果,是一种非常有前景的技术。
Boron cross-linked hydroxylpropyl guar has being the dominant fracturing fluid for several decades although various low-residue fracturing fluids have been developed in recent years. The difficulties of the damage disposal of water-based fracturing liquid include the paths of filtration of reservoir liquid are blocked up by macromolecule matter and backup cracks are blocked up by dreg of fracturing liquid. Research on the difficulties has been performed. But they aren't sloved well.
     In the dissertation,fracturing fluid of free damage has been studied in order to avoid the difficulties above the fracturing fluid haven't macromolecule and dreg in gel breaker. Filter liquor is acidity which can improve the formation permeability.
     The damages of particle motion and the falling off of clay mineral in fractures can be avoided. The damage of filter cake to fracture surfaces and the congestion damage to artifical fractures can be eliminated because of no dreg.
     The fracturing fluid is composed of the cross linking agent of surfactant and the solution of anti ion salt in acid, which has small molecular weight, and does not contain any high molecular weight, presenting acidity. During fracturing, it makes the matrix acidification around the artificial fractrues, so the extent of the acidification is increased largely, which can not only acidize the matrix near the wellbore and remove the damage of the area, but also can remove the permeability damages near the matrix with propagation of the fractures.
     The fracture finally created is not a simple main fracture seepage passage, but a permeable belt along the main fracture, the width of which is significantly larger than that of the main fracture, improving thoroughly the areas’permeability near the wellbore and fractures,
     Based on the congregation principle of viscoelastic surfactant, an acid-resisting surfactant is synthetized, the system of which is Gemini. After optimizing the compostions, the compounding formula of acidity fracturing fluid is formed. After the performance test of the system, its temperature rating and resistance to shear capabity meet the needs of a area in Daqing Oilfield. The damage of the system to the core is less than 20%, and the permeability of some corbonate formations is increased even. Because of applying acid after pumping, the corrosion of acid to fracturing equipment is prevented, solving the technical difficulties of equipment corrosion of acid during fracturing, and is beneficial for the safe implementation of the acidity fracturing fluid in the field.
     Clear and high efficient fracturing liquid is the key factor to ensure work safely and raise fracturing effect. Scientific operation monitor and analysis system will be important tool for raising efficiency,modifing fracturing design and studying fracturing effect.
     According to the formation feature of an oil field in Daqing and the properties of flowage,filtration,viscosity-temperature and gelout of our new fracturing liquid of free damage,some models have been established,such as pseudo-three-dimensional model to simulate the extend of fractures,the model of the distribution of proppant migration,the model of wellbore flow,the model of temperature field,the model of liquid filtration and so on. By building database,the data explanation is more scientific.
     By the study of data acquisition and communication,portable acidizing and sand hydraulic fracturing monitor has been developed. We build monitor and explanation software system. The center of software system is data. The main body is visual operation. The whole system is designed with modules. The calculation is stable and reliable. Data acquisition and communication is fast. It is satisfied with the commercial requirements.
     Acid treating and sand fracturing have obvious shortcomings. Fracturing fluid of free damage puts acid treating and sand hydraulic fracturing together. The development of real-time explanation and monitor system realizes the operation of acidizing and sand hydraulic fracturing,real-time monitor,data analysis,stimulation technology of single well of operation and adjustment incorporation.
     The surfactant acidic fracuring fluid system not only can remove the damage and scaling near the wellbore area, but also can release the formation damage caused by fracturing fluid in the filtration belt near the fracture wall to reduce seepage resistance in wider range. Meanwhile, when the fracturing fluid system contacts with oil, gas and formation water under the formation temperature, it will break gel automatically without residue left, and will be flowed back thoroughly. The fracturing system has been used in 5 fields tests of Daqing Oilfield, improving the wells’oil productivity in low permeability calcium sandstone, and obtaining significant results. The system is a very promising technology.
引文
[1] Alfred R. Jennings,Jr.. When Fracturing Doesn’t Work.SPE71657,2001
    [2] R W Anderson,J R Baker. Use of Guar Gum and Synthetic Cellulose in Oilfield Stimulation Fluids.SPE5005,1974
    [3]华东石油学院采油专业采油化学组.田菁粉的羟乙基化和羧甲基化[J].石油大学学报(自然科学版),1977(2):68-87.
    [4]田菁胶减阻用于油井压裂工艺取得良好效果[J].力学进展,1974,(2):34
    [5]谢朝阳,王鸿勋,陈定珊等.田菁胶残渣及其对压裂井产能的影响[J].石油大学学报(自然科学版),1993(3):39-45.
    [6]王著,赵根锁,张国宝等.钛交联羟丙基田菁胶性能研究[J].高分子材料科学与工程,1997,13(s1): 120-123.
    [7]李秀花,陈进富,佟曼丽.近期国内外水基压裂液添加剂概况[J].石油与天然气化工,1995,24(1): 12-17.
    [8]龙政军.有机锆交联剂YJZ/改性魔芋胶体系的延迟成胶特性[J].油田化学,1994,11(3):244-246.
    [9]赵以文.香豆硼冻胶压裂液[J].油田化学,1994,11(1):39-44.
    [10]崔明月,陈彦东,杨振周.制备延迟交联耐高温硼压裂液的途径[J].油田化学,1994,11(3):214-219.
    [11]卢拥军,赵忠扬.香豆胶锆压裂液在超深井中的应用研究[J].石油与天然气化工,1995,24(1):4-11.
    [12] Hawkins,G.W.Laboratory Study of Proppant-Pack Permeability Reduction Caused by Fracturing Fluids Concentrated During Closure.SPE18261,1988.
    [13] R.L.Thomas,J.E.Brown.The Impact of Fracturing Fluids on Conductivity and Performance in Low-Temperature Wells.SPE18862,1989.
    [14] Cooke Jr., C.E., Esso Production Research Co.,Conductivity of Fracture Proppants in Multiple Layers.SPE4117-PA.
    [15] H.D.Brannon , M.G.Ault.New , Delayed Borate-Crosslinked Fluid Provides Improved Fracture Conductivity in High-Temperature Applications.SPE22838,1991.
    [16] Gulbis , Janet , M.T.King , et al..Encapsulated Breaker for Aqueous Polymeric Fluids[J].SPEPE,1992(FEB): 9-14.
    [17] H.D.Brannon , Tjon-Joe-Pin.Biotechnological Breakthrough Improves Performance of Moderate to High-Temperature Fracturing Applications.SPE 28513 ,1994.
    [18]张学锋,杨震,赵平文等.化学破胶剂SD02用于压裂后地层处理[J].油田化学,2004,21(1): 16-18.
    [19]陈红军,郭建春,赵金洲.压裂裂缝伤害室内模拟及裂缝清洗酸化工艺的应用[J].石油勘探与开发,2004,31(4):136-138.
    [20]张杰,张伟峰,宋和平等.多脉冲高能气体压裂-二氧化氯复合解堵技术研究[J].西安石油学院学报(自然科学版),2003,18(3):21-25.
    [21]刘洪升,王俊英,郑宇印等.支撑裂缝处理剂性能研究与应用[J].油田化学,2001,18(3):212-214.
    [22]林永茂、向丽、黄禹忠.新型泡沫压裂液研究及应用[J].钻采工艺,2010,4(5):132-136.
    [23]李同锋,郑勇,高瑞民等.压裂裂缝处理剂的研制及在油井增产中的应用[J].石油与天然气化工,2001,30(5):253-257.
    [24]曾雨辰.中原油田二氧化碳压裂改造初探[J].天然气勘探与开发,2005,28(2):27-31.
    [25]宋振云,李振铎,李康民等.长庆上古生界气层CO2增能压裂工艺[J].石油钻采工艺,2002,20(4):50-53.
    [26]周继东,朱伟民,卢拥军等.二氧化碳泡沫压裂液研究与应用[J].油田化学,2004,24(4):316-319.
    [27]许卫,李勇明,郭建春等.氮气泡沫压裂液体系的研究与应用[J].西南石油学院学报,2002,24(3):64-68.
    [28] Dawson J.Cramer,H.D.Le. Reduced Polymer Based Fracturing Fluid: Is Less Really More?. SPE 90851,2004.
    [29] David D.Cramer,George T.Woo,C.Jeffrey.Dawson.Development and Implementation of a Low-Polymer-Concentration Crosslinked Fracturing Fluid for Low-Temperature Applications.SPE91418,2004.
    [30]胡忠前马喜平.国外低伤害压裂液体系研究进展,能源科学进展,2006, 3 (4):132-136.
    [31] M.Samuel,R.J.Card,E.B.Nelson et al.Polymer-free Fluid for Fracturing.SPE38622,1997
    [32] P.C. Harris, R.G. Morgan, and S.J. Heath, Halliburton.Measurement of Proppant Transport ofFrac Fluids,SPE95287-MS,1998 .
    [33] W.L Nehmer.Viscoelastic Gravel-Pack Carrier Fluid.SPE17168,1988
    [34] HASHIM.A.Application of a New Class of Surfactants in Stimulation Treatments.SPE 84898,2003.
    [35] D.P.Kundert,D.E.Smink.Improved Stimulation of the Escondido Sandstone.SPE7912,1979.
    [36]汪竹、宋克炜、芦维国.有机氟硼酸在王家岗敏感性地层的应用[J],油田化学, 2004,2(3):99-112.
    [37]王贯中、张光明、张顶学.低渗透酸敏性地层酸化技术研究[J] ,石油天然气学报, 2009 ,1(4): 102-106.
    [38]尹先清、曹方起.粘土稳定剂的研究进展[J] ,内蒙古石油化工,2009年,18(4):132-136.
    [39]刘长龙、赵立强、邢杨义.油气井酸化过程中铁离子的沉淀及其预防[J],重庆科技学院学报(自然科学版), 2009,6(4): 13-17.
    [40] D.V.S. Gupta, BJ Services Co., and T.T. Leshchyshyn, BJ Services Co. Canada. CO2-Energized Hydrocarbon Fracturing Fluid: History and Field Application in Tight Gas Wells, SPE95061-MS.
    [41] Amoco Production Co. (USA); Norman, Lewis R., Halliburton Services; Colbert, Jason R., Amoco Production Co. (USA); Nelson, David O., Halliburton Services.Use of a Novel Liquid Gelling Agent for Acidizing in the Levelland Field, Leggett, Brude, SPE11121-MS.
    [42]原励.胶凝酸酸化技术在磨溪气田应用效果的认识[J],石油与天然气化工,2004,2(4):132-136.
    [43]乳化酸,杀菌剂网上资料, 2008,11(24).
    [44]张宏伟,刘超.泡沫酸酸化技术现场应用分析[J],内蒙古石油化工, 2009,2(4):132-136.
    [45]郑云川,赵立强,刘平礼.粘弹性表面活性剂胶束酸在砂岩储层分流酸化中的应用[J],石油学报,2006,2(6):120-126.
    [46]刘中信.接力式酸降压增注工艺技术的应用[J],石油与天然气化工,2004,2(5):100-105.
    [47]李勇明,郭建春,赵金洲,刘学利.裂缝性油藏酸液滤失模型研究[J],西南石油学院学报,2004,2(5):222-227
    [48]郭素华.碳酸盐岩油藏深度酸压技术研究及应用[J],断块油气田,2008,3(6):102-108.
    [49]季川疆,袁飞.前置液酸压技术在石炭系油藏改造中的应用[J],新疆石油天然气,2005,2(6):130-136.
    [50]小分子有机胶凝剂和凝胶推进剂的研究进展[M],火炸药学报,2003,4(4):151-155.
    [51]龙学,曹学军,李晖,唐祖兵,陈科.多级交替注入酸压工艺在大湾地区的应用,油气田地面工程, 2010,12(6):123-129.
    [52]中国石油油气气藏改造重点实验室编,油气藏改造论文集,石油工业出版社.
    [53] California,S. Vasudevan, D.M. Willberg, J.A. Wise, Schlumberger; T.L. Gorham, Chevron; R.C. Dacar, P.F. Sullivan, C.L. Boney, F. Mueller, Schlumberger. Field Test of a Novel Low Viscosity Fracturing Fluid in the Lost Hills Field, SPE68854-MS
    [54] D.L.Craddock,B.T.Goza,J.C.Bishop.Case History--Fracturing the Morrow in Southern Blaine and Western Canadian Counties,Oklahoma.SPE11567,1983
    [55] D.N Meenhan.Stimulation Results in the Giddings(Austin Chalk)Field.SPE24783,1992
    [56] M.J.Mayerhofer,M.F.Richard,R.N.Walker,et al..Proppants? We Don’t Need No Proppants. SPE38611,1997
    [57] M.J.Mayerhofer,D.N.Meehan.Waterfracs-Results from 50 Cotton Valley Wells.SPE 49104,1998
    [58] Gerald R. Coulter,Edward G. Benton ,Clifford L. Thomson.Water Fracs and Sand Quantity: A Barnett Shale Example.SPE 90891,2004
    [59] Mukul M. Sharma,Phani B. Gadde,Richard Sigal.Slick Water and Hybrid Fracs in the Bossier: Some Lessons Learnt. spe89876,2004
    [60] D.Pope,L.Britt,V.Constien,et al. Field Study of Guar Removal From Hydraulic Fractures. SPE 31094,1995
    [61] Mahmoud Asadi,Robert W. Woodroof,William S. Malone.Monitoring Fracturing Fluid
    [62] R. Sullivan,R. Woodroof,A. Steinberger-Glase et al.Optimizing Fracturing Fluid Cleanup in the Bossier Sand Using Chemical Frac Tracers and Aggressive Gel Breaker Deployment.spe90030,2004
    [63] T. Leshchyshyn, Fracmaster; A. Poleschuk, K. Hemke, Crestar Energy; M. Lamb, Schlumberger Oilfield Services.Technical And Economic Rationalization of Oil Refracture Programs On Wells Previously Stimulated With Water-based Fracture Fluids, PETSOC99-60
    [64] Michiko Kodama,et al. Calorimetric Invest:atIons of the Stability of Octadecyl trimethyl ammonium Halde-water Systems. J. phys. yL chem,1990,94,815-819.
    [65]卢拥军,方波,房鼎业等.粘弹性胶束压裂液的形成与流变性质[J].油田化学,2003,20(4):27-30.
    [66] R.赞恩(主编),程绍近译.表面活性剂溶液研究新方法[M].北京:石油工业出版社,1992,208.
    [67] Martins,J P,Harpor,T R. Min-frac Pressure Decline Analysis for Fracture from Long Perforated Interval and Uneffected by Confinly Strata. SPE 13869.
    [68]王鸿勋,张士诚.水力压裂设计数值计算方法.北京:石油工业出版社,1998.
    [69]李干佐,隋华等.表面活性剂研究新近展[[J].日用化学工业,1999,(1:24-26.
    [70] Rao URK,Manohar C,et al. Micellar Chain Model for the Origin of the Viscoelasticity in Dilute Surfactant Solutions. J. phys. chem.,1987,91,3286-3291.
    [71] A.R. Crockett, R.M. Willis Jr., Resources Engineering Systems Inc.; M.P. Cleary, Massachusetts Inst. of Technology.Improvement of Hydraulic Fracture Predictions by Real-Time History Matching on Observed Pressures,SPE15264-PA
    [72]刘伟,刘建机.VES-80粘弹性表面活性剂压裂液实验研究.钻井液与完井液[J],2004,21(3)
    [73]万里平,刘宇程,赵立志.氧化-吸附法联合处理油田酸化废水[J].油气田环境保护,2001,11(2):33-34.
    [74] Clausem T M,et al. Viscoelastic Micellar Solutions,Microsopy and Rheology. J. phys. chem. 1992,96,474.
    [75]刘先灵.水力压裂实时监测及解释技术研究与应用[J],西南石油学院2003年博士论文
    [76] Proppant Settling Velocities in Nonflowing Slurries,Kirkby, L.L., The Dow Chemical Company; Rockefeller, H.A., Dowell Schlumberger,SPE13906-MS
    [77]刘先灵.水力压裂实时监测及解释技术研究与应用,西南石油学院2003年博士论文
    [78] A.R. Crockett, R.M. Willis Jr., Resources Engineering Systems Inc.; M.P. Cleary, Massachusetts Inst. of Technology .Improvement of Hydraulic Fracture Predictions by Real-Time History Matching on Observed Pressures, SPE15264-PA
    [79]宋彩霞,王德宝等.表面活性剂有序聚集体在纳米材料制备中的应用[J].材料导报,2002(9):56-59
    [80] Aswal V K,Goyal P S,ThiZyagarajan P.Small-Angle Neutron-Scattering and Viscosity Studies of CTAB/Nasal Viscostic Micellar Solutions.1.Phys.chem. B,1998,102.2469-2473.
    [81]陈馥,王安培等.国外粘弹性表面活性剂压裂液的研究进展.西南石油学报[[J],2002,24 ( 5 ) .65-67.
    [82]王珂昕.压裂液和酸化解堵施工残液的无害化处理[J].油气地面工程,2007,26(5):37-38
    [83]田玲,王九思,李玉金,水处理絮凝剂的絮凝原理及其研究进展[J].辽宁化工,2004,18(1):54-57.
    [84]万里平,赵立志,孟英峰.油田酸化废水COD去除方法的研究[J].石油与天然气化工,2001,30(6):318-320.
    [85] Economides,M J,Nolte,KG.油藏增产技术(第二版).张宏过等译.山东:石油大学出版社,1991.
    [86] Gidley,J L,Nolte,KG等.水力压裂技术新进展.蒋闻等译.北京:石油工业出版社,1995.
    [87] Economides,M J,Nolte,K G.油藏增产技术(第三版).张保平等译.北京:石油工业出版社,2002.
    [88] Schmidt,R A,Huddle,C W.Effect of Confining Pressureon Fraeture Toghness of Indiana Limestone.Intl J Rock Meeh Min Sci,1977.
    [89] Clifton,R J,et al.Determination of the Critieal Stress-Intensity Factor Kicina Circular Ring.ExPMeeh,1976.
    [90] Nolte,K G. Determination of Fracture Parameter from Fracturing Pressure Decline. SPE8341,54th SPE Annual Technical Confereneeand Exhibition,LasVegas,Nevada,Sept,1979.
    [91] Lee,W S. Study of Fluid Rheology on Minifrac Analysis. SPE 16916,62nd SPE Annual Technical Conference and Exhibition,Dallas,Texas,Sept,1987
    [92]张士诚,王鸿勋.压降曲线三维分析方法及应用.石油学报,11(3),1990.
    [93] Ahmed,S,Abou-Sayed,Arfon HJ.Proeess for Measuring the Fracture Toughness of Roekunder Simulated Down-HoleStress Conditions.United States Patent4,1979,152,941.
    [94]孟维宏,王鸿勋.一种确定裂缝参数的新方法.石油大学学报(自然科学版),12(4),1988.
    [95] Ely,J W,Haskett,S E,Holditeh,S A. Field Measurement of Fracturing Fluid Viscosity,at In-Situ Condition of Temperature and Shear. SPE16195.
    [96] Ding Zhu,Hill,A D. The Effect of Temperature on Minifrac Pressure Decline. SPE22874.
    [97]中国航空研究院主编.应力强度因子手册,北京:科学技术出版社,1981.
    [98] Nolte,K G. A General Analysis of Fracturing Pressure Decline with Application to Three Models. Soc Pet Eng Formation Evaluation,Dec,1986.
    [99]王红霞,张高勇.非离子表面活性剂液晶的线性粘弹性研究[[J]北学学报,2001,59(11).1888-1893.
    [100] Khristianovic,S A,Zheltov,Y P. Formation of Vertical Fractures by Means of Highly Viscous Liquids. Proceeding of the fourth World Petroleum Congress,SectionII,1955.
    [101]中国石油油气藏改造重点实验室编.油气藏改造论文集.北京:石油工业出版社,2001.
    [102] Lee ,W S. Pressure Decline Analysis with the Christianovich and Zheltov and Penny-shaped Geometry Model bf Fracturing. SPE/DOE 13872,May,1985.
    [103]江体乾.工业流变学[[M].化学工业出版社.1995 ,72.
    [104]郭大立,赵金洲,郭建春,曾晓慧.压后压降分析的拟三维模型和数学拟合方法.天然气工业,21(5),2001.
    [105]蒋闻等.压裂压力分析及应用. SPE,1988.
    [106] Nolte,K G,et al. A Systematic Method for Applying Fracturing Pressure Decline:Part1 .SPE 25845.
    [107] Castillo,J L. Modified Fracture Pressure Decline Analysis Including Pressure Dependent Leakoff. SPE 16417.
    [108] Meyer,B R. Design Formula for 2-D and 3-D Vertical Hydraulic Fractures:Model Comparison and Parametric Studies. SPE 15240.
    [109] Lee,W S. New Method of Mini-Frac Analysis Offers Greater Accuracy and Enhanced Applicability. SPE 15941,Eastern Regional Meeting,Columbus,Ohio,Nov,1986
    [110] Meyer,B R. Hagel,M W. Simulated Mini-Frac Analysis. J of Canadian Pet Eng,Sept-Oct,1989.
    [111]张平,郭大立,陈汉斌,赵金洲.压裂后压力测试资料分析解释技术.天然气工业,17(5),1997.
    [112]郭大立,陈汉斌,赵金洲.压裂后压力递减分析新方法.石油钻采工艺,19(4),1997.
    [113] Perkins,T K,Kern,L R. Widths of Hydraulic Fractures. JPT,Sept,1961.
    [114] Ely,J W,Haskett,S E,Holditeh,S A. Field Experience with the GRI Rheology Unit. SPE17715;低渗透油气田开发译文集.北京:石油工业出版社,1992.
    [115] Norgren,R P. Propagation of a Vertical Hydraulic Fracture. SPEJ,Aug,1972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700