用户名: 密码: 验证码:
龙门山活动构造与汶川地震地表破裂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2008年5月12日发生于龙门山构造带的汶川Ms8.0级特大地震,是目前为止世界上有仪器记录的最大震级的陆内地震。地震在瞬间改变了地形地貌,并导致地貌体系以及与之相关的河流体系产生了相应的调整,同时也是对龙门山活动构造变形最精确、最完整和最原始的记录,从而为研究汶川地震的地表破裂及地表变形过程、发震模式以及龙门山强震复发周期的预测等方面提供了一个理想的研究资料和素材。
     地震发生后的第1天,课题组开展了国家自然科学基金应急项目《汶川特大地震地表破裂与变形特点研究》的野外调查研究工作,考察范围含盖了整个龙门山地区。在野外调查中,我们实测地表破裂数据70余组,收集整理数据资料200余组,为开展进一步的研究工作提供了良好的科研基础。
     本论文主要依托国家自然科学基金项目《汶川特大地震地表破裂与变形特点研究》(项目编号:40481010)和中国地质调查中心计划项目《青藏高原地震活动带基础地质综合调查综合研究》(项目编号:1212010918010),以《龙门山活动构造与汶川地震地表破裂研究》为题,在总结前人区域地质特征、区域构造演化史等研究成果的基础上,通过野外的实地调查,以龙门山地区的活动构造和汶川地震的地表破裂为研究对象,利用汶川地震地表破裂所揭示的地质现象,重点展开了汶川地震的同震地表破裂展布规律、垂直断距和水平断距的空间变化特征及其组合样式、汶川地震的发震模式探讨以及强震复发周期的估算等方面的研究工作,是对上述项目研究成果的总结与提升。
     (1)通过对汶川地震同震地表破裂的精确测量,本论文重点分析了汶川地震同震地表破裂的展布规律、垂直断距和水平断距的空间变化特征及其意义、破裂的变形类型、平面组合样式等。研究表明,汶川地震产生了4条具有代表性的同震地表破裂,其中,映秀—北川地表破裂和彭县—灌县地表破裂的平面展布规律基本沿袭了原先的活动断裂发育,具有逆冲兼右旋走滑的运动特征,显示为地表的高角度逆冲;同时,在小鱼洞和擂鼓地区分别出露了2条具有捩断层性质的地表破裂,显示为调节区域地壳运动的不均衡缩短,以左旋走滑为主,逆冲为辅的运动特征。
     (2)依据GPS及全站仪测点数据的整合,确定了上述地表破裂垂直断距和水平断距的空间变化特征,得出映秀—北川同震地表破裂在中南段主要以逆冲作用为主,在北段主要以右旋走滑运动为主;彭县—灌县地表破裂基本以逆冲和构造缩短为主,只在北东端出现少量的右旋走滑运动。在映秀—北川同震地表破裂带上分布了两个高值区和低值区,其高值区分别位于都江堰的八角庙和北川沙坝一带,证实了双断层面震源模型的反演结果。
     (3)基于对都江堰八角庙断层擦痕的野外实测,我们反演了汶川地震的地表破裂过程,并与由震源机制所揭示的地表破裂过程吻合。
     (4)在映秀—北川同震地表破裂的滑移量存在两个高值区和低值区,其分段边界可能与小鱼洞捩断层和擂鼓捩断层的出露有关,而位于白水河—茶坪一带的低值区正对应着彭县—灌县地表破裂出露的区域,可能是由于映秀—北川地表破裂在此区段的部分能量由彭县—灌县地表破裂释放了出来。
     (5)通过对汶川地震的地表破裂变形样式和平面结构特征的分析,总结了5种地表破裂类型和4种地表破裂的组合样式。
     (6)在充分认识汶川地震地表变形指示意义的基础上,分析了汶川地震所产生的构造缩短与隆升作用,通过其对汶川地震发震模式的启示作用,对汶川地震的发震模式进行了探讨性研究,并在时间层面和垂向层面上对其进行了分析。
     (7)在对龙门山构造带进行分段的基础上,本论文应用地震震级—标量参数经验关系式、平均强震重复间隔等计算方法对映秀—北川断裂的地震震级及强震复发周期进行了估算,大致预测了映秀—北川断裂的分段地震震级、级联破裂地震震级以及强震复发周期。得出:漩口—小鱼洞段、小鱼洞—擂鼓段以及擂鼓—石坎段发生单元特征地震的震级估值分别为7.15±0.35、7.36±0.33和7.30±0.39,发生级联破裂的地震震级估值为7.62±0.41。通过对不同估算方法的加权平均计算,估算龙门山构造带Ms8.0级地震的复发周期约为2142a;Ms7.5级地震的复发周期约为1059a;Ms7.0级地震的复发周期约为519a。同时,通过对不同学者估算的强震复发周期的比对分析,大致可预测龙门山构造带Ms8.0级地震的复发周期应介于1000-3500a左右;Ms7.5级地震的复发周期介于840-1250a左右;Ms7.0级地震的复发周期介于410-650a左右。
The Wenchuan Ms8.0 earthquake of May 12th, 2008, is the largest magnitude intraplate earthquake recorded by instruments in the world, which occurred in Longmen Shan. This earthquake changed the landform, and caused the deformation of geomorphologic system and fluvial system. It is the most accurate, complete and initial record for the active tectonics of Longmen Shan.
     In the frist day after the Wenchuan earthquake, we carried out field survey for Longmen Shan area, relying on National Natural Science Foundation Emergency Project“Study on Surface Ruptures and Deformation of Wenchuan Earthquake”, and measured 70 sets of datas to surface ruputure caused by Wenchuan earthquake, collecting 200 sets of datas. So it will offer a good studying foundation for the active tectonics of Longmen Shan and surface ruputure of Wenchuan earthquake.
     This paper will rely on National Natural Science Foundation Emergency Project“Study on Surface Ruptures and Deformation of Wenchuan Earthquake”and China Geological Survey Plan Project“Study on the basic Geology of seismic Activity Belt in the eastern Margin of Tibetan Plateau”, titled as“Study on the active Tectonics of Longmen Shan and Surface Ruputure of Wenchuan Earthquake”. Based on the previous research achievements of geological background and field survey in the Longmen Shan area, taking the active tectonics of Longmen Shan and surface ruputure of Wenchuan earthquake as research objects, using the geological phenomena revealed surface ruputure of Wenchuan earthquake, this paper which is a proving for the two projects, will study on the distributing feature and plane fabric pattern of Wenchuan earthquake surface ruputure, spatial variation characteristic of displacement, seismogenic model, recurrence intervals of strong earthquakes and so on. The main research results are as follows:
     (1) Based on accurate measurement for the surface ruputure of Wenchuan earthquake, This paper mainly analyzes the distributing feature, spatial variation characteristic of displacement, types of deformation of Wenchuan earthquake surface ruputure and so on. research shows that there are four mainly surface ruputures of Wenchuan earthquake in Longmen Shan area, including Yingxiu-Beichuan surface ruputure, Pengxian-Guanxian surface ruputure, Xiaoyudong surface ruputure and Leigu surface ruputure. Yingxiu-Beichuan surface ruputure and Pengxian-Guanxian surface ruputure show thrust flexural belt, striking to NE45-55°, along their active faults, with high dip angle ranged form 50-70°. Yingxiu-Beichuan surface ruputure turns out to be characterized by thrust and dextral strike-slip, extending about 245 km. Pengxian-Guanxian surface ruputure shows thrust without evident slip, extending about 70-80 km. In addition, Xiaoyudong surface ruputure and Leigu surface ruputure are two tear faults in Xiaoyudong and Leigu area, having characteristics of fragile with approximately N-S striking. The two surface ruptures pattern shows that Xiaoyudong tear fault and Leigu tear fault formed by differential movement of thrusting of Longmen Shan thrust zone during the Wenchuan Earthquake, striking to N-S direction which approximately is vertical to the strike of Yingxiu-Beichuan fault and Penxian-Guanxian fault and dipped at high angles with thrust and left lateral. So the Xiaoyudong fault and Leigu fault are two tear faults, having clear characteristics with adjusting the imbalance shorten between two blocks in the Xiaoyudong and Leigu area.
     (2) Having measured by GPS and EDM, this four surface ruputures cut varieties of terrain units. The spatial variation characteristic of vertical and horizontal offset along this surface ruputures shows that Yingxiu-Beichuan surface ruputure turns out to be characterized by obvious segmented features, in the middle and south segments from Yingxiu to Leigu town, thrusting with little dextral strike-slip occurred, while in the north segment from Beichuan to Qingchuan, with thrust and dextral strike-slip along this segment. Pengxian-Guanxian surface ruputure shows thrusting without evident dextarel slip, while turning out to be a litile component of dextarel slip in the northern and eastern segment. There are two high displacement and two low displacement zone along the Yingxiu-Beichuan surface ruputure from SW-NE. The two high displacement zone are located in the Bajiaomiao village of Dujiangyan and Shaba village of Beichuan. And this spatial variation characteristic of displacement in Yinxiu-Beichuan fault is matched with the result of the double-listric finite-fault model.
     (3) According to the typical outcrop (N31°8.719’, E103°41.513’) of Yingxiu-Beichuan fault scratch in the Bajiaomiao village where is 20km far away from Dujiangyan city, we can reflect the surface rupture process of Wenchuan Earthquake. Based on the attitude variance of the two kinds of scratch in the outcrop, this result suggests that the motion characater of the causative fault is thrust and dextral strike slip, which is in agreement with the results of surface rupture process inversed by Wenchuan earthquake focal mechanism solution.
     (4) There are two high displacement and two low displacement area along the Yingxiu-Beichuan surface ruputure from SW-NE. And the segment boundaries beiween high displacement and low displacement zone maybe related to the Xiaoyudong tear fault and Leigu tear fault. The Baishui River-Chaping low displacement zone is corresponding to the Pengxian-Guanxian surface ruputure in the plane fabric pattern.
     (5) Based on the plane fabric pattern and deformation style of the surface ruptures of Wenchuan earthquake, it can be divided into four patterns and five types, including parallel thrust fault, echelon thrust fault linked by a tear fault, branching fault, the rift valley on the top and peripheral thrust along the frontal margin. And the profile pattern of the rupture is consisting of two imbricated thrust fault in the depth.
     (6) On the basis of studying the denotative meaning of surface ruputure of Wenchuan earthquake, we analyze the tectonic shortening and uplifting caused by Wenchuan earthquake, discussing on the seismogenic model of Wenchuan earthquake.
     (7) Based on studying previous research achievements in active tectonic of Longmen Shan, measuring the offset data of surface rupture of Wenchuan earthquake, and making activity segmentations to Yingxiu-Beichuan fault. This paper will use calculation methods of earthquake magnitude to assess magnitudes of the coming earthquakes in Yingxiu-Beichuan fault, and estimate the recurrence intervals of strong earthquakes for Longmen Shan. The results show the estimations of magnitudes are 7.15±0.35 in Xuankou-Xiaoyudong segmentation, 7.36±0.33 in Xiaoyudong-Leigu segmentation, 7.30±0.39 in Leigu-Shikan segmentation, 7.62±0.41 in Yingxiu-Beichuan for the coming earthquakes, and the recurrence interval of strong earthquake for Ms 8.0 is 2142a, for Ms 7.5 is 1059a, for Ms 7.0 is 519a in Longmen Shan.
引文
[1] Avouac J P, Ayoub F, Leprince S, Konca O, Helmberger D V. The Mw7.6 Kashmir earthquake: Sub pixel correlation of ASTER images and seismic waveforms analysis[J]. Earthquake and Planetary Science Letters, 2006, 249:514-528.
    [2] Avouac J P, Tapponnier P . Kinematic model of active deformation in central Asia[J]. Geophysical Resear ch Letter s, 1993, 20: 895-898.
    [3] Burbank D W. Anderson R S. Tectonic geomorphology[M]. Blackwell Publishing, 2005.
    [4] Burchfiel B C,Chen Z,Lin Y et al. Tectonics of the Longmenshan and adjacent regions,central China[J].International Geology Review,1995,37:661—7350.
    [5] Burchfiel.New technology, new geological challenges[J].GSA Today,14(2):4-9.
    [6] Chen S F,Wilson C J L,Deng Q D,et al. Active faulting and block movement associated with large earthquakes in the Min Shan and Longmen Mountains, northeastern Tibetan Plateau[J].Journal of Geophysical Research,1994,99:24025-24038.
    [7] Chen Z L,Burchfiel B,Liu Y P,et al. Global positioning system measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation[J].Journal of Geophysical Research,2001,105(B7): 16215-16227
    [8] Clark M K,House M A,Royden L H,et al. Late Cenozoic uplift of southeastern Tibet[J].Geology,2005,33:525-528.
    [9] de Michele, M., Raucoules, D., de Sigoyer, et al. Three-dimensional surface displacement of the 2008 May 12 Sichuan earthquake (China) derived Synthetic Aperture Radar: evidence for rupture on a blind thrust[J]. Geophys. J. Int., 2010, 183, 1097-1103.
    [10] Densmore A L,Ellis M A,Li Yong,et al. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau[J].Tectonics, 2007,80(8):113-127.
    [11] Densmore A L,Ellis M A,Li Yong,et al. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau[J] .Tectonics,2007,80(8):113-127.
    [12] Densmore A L,Li Yong,Ellis M,et al. Active tectonics and erosional unloading of eastern margin[J]. Journal of Mountain Science, 2005,2(2):146-154.
    [13] Densmore,A.L. , Yong Li , Richardson, N.J. , et al. The Role of Late Quaternary Upper-Crustal Faults in the 12 May 2008 Wenchuan Earthquake[J]. Bulletin of the Seismological Society of America,2010,5B(100):2700-2712.
    [14] Dirks P,Wilson C,Chen S F,Lou Z,and Liu S. Tectonice volution of the NE margin of the Tibetan Plateau: Evidence from the central Longmen Mountains, Si chuan Province, China[J].Southeast Asian Earth Sci,1994,9:181–192.
    [15] England P, Molnar P . Right-lateral shear and rotation as the explanation for strike-slip faulting in Eastern Tibet . Nature, 1990,344: 140-142.
    [16] Hodges K V, Wobus C, Ruhl K, Schildgen T, et al. Quaternary deformation, river stepping, and heavy precipitation at the front of the Higher Himalayan ranges[J]. 2004, 220:379-389.
    [17] Kirby E,Reiners P W,Krol M A,et al. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: inference from 40Ar/39Ar and (U-Th)/He thermochronology[J].Tectonics,2002,21(1):1-19
    [18] Li Yong,Allen P A,Densmore A L,et al. Evolution of the Longmen Shan Foreland Basin (western Sichuan, China) during the Late Triassic Indosinian Orogeny[J]. Basin Res.,2003,15:117-138.
    [19] Li Yong,Densmore A L, Allen P A,et al.Sedimentary responses to thrusting and strike-slipping of Longmen Shan along eastern margin of Tibetan Plateau, and their implication of Cimmerian continents and India/Eurasia collision[J]. Scientia Geologica Sinica,2001,10(4):223-243.
    [20] Li Yong,Ellis M A, Densmore A L,et al. Active Tectonics in the Longmen Shan Region, Eastern Tibetan Plateau[J].EOS Transactions of the American Geophysical Union,2001,81(48):1109.
    [21] Li Yong,Zhou Rongjun,Densmore A L,et al. The Geology of the Eastern Magin of the Qinghai-Tiben Plateau[M].北京:地质出版社,2006.
    [22] Meng,Qingren , Hu Jianmin , Wang Erchie , et al. Late Cenozoic denudation by large-magnitude landslides in the eastern edge of Tibetan Plateau[J].EPSL,2006,243:252-267.
    [23] Philip, H., E. Rogozhin,A. Cisternas,et al. The Armenian earthquake of 1998 December 7: faulting and folding, neotectonics and paleoseismicity[J]. Geophys. J. Int,1992,110,141-158.
    [24] Robert, A., Pubellier, M., de Sigoyer, J., et al. Structural and thermal characters of the Longmen Shan (Sichuan, China) [J]., Tectonophysics, 2010, 491,165-173.
    [25] Reid, H. F. The Mechanics of the Earthquake, in the California Earthquake of April 18, 1906[J].Report of the State Earthquake Investigationg Commission,1910,2(87):192.
    [26] Richardson N,Densmore A L,Seward D,et al. Extraordinary denudation in the Sichuan Basin:Insights from low-temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau[J]. Geophys. Res.,2007,113,B04409,doi:10.1029/2006JB004739.
    [27] Schlunegger F,Melzer J,Clark M K,et al. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J].Geology,2000,28:703-706.
    [28] Wallace R E. Earthquake Recurrence Intervals on the San Andreas Fault[J].Geol.Soc.Am.Bull,1970,81(10):2875-2890.
    [29] Wesnousky S G., C. H. Scholz, K. Shimazaki, and T. Matsuda. Earthquake, Quaternary faults, and seismic hazard in California[J].Geolphys. Res.,1986,91:12587-12631.
    [30] Willis B. A fault map of California[J].Seism Soc Am Bull,1923,13:1-12.
    [31] Wood H O. The earthquake problem in the western United State[J].Seism Soc Am Bull,1916,6:181-217.
    [32]陈桂华,徐锡伟,于贵华,等.2008年汶川Ms8.0地震多断裂破裂的近地表同震滑移及滑移分解[J].地球物理学报,2009,52(5):1384-1394.
    [33]陈国达.民国25年4月1日广东灵山地震记略[J].地质论评,1938,3(4):427-447.
    [34]陈国光,计凤桔,周荣军,等.龙门山断裂带晚第四纪活动性分段的初步研究[J].地震地质,2007,29(3):657-673.
    [35]陈浩.龙门山地区活动构造的水系响应研究——以岷江上游为例[D].成都:成都理工大学,2010.
    [36]陈社发,邓起东,赵小麟,等.龙门山中段推覆构造带及相关构造的演化历史和变形机制[J].地震地质,1994(4):413-421.
    [37]陈顒,陈棋福,李娟.活动构造研究的一些进展[J].中国地震,2001,17(2):103-109.
    [38]陈运泰,许力生,张勇,等.2008年5月12日汶川特大地震震源特性分析报告,http://www.csi.ac.cn
    [39]陈运泰,许力生,张勇,等.2008年5月12日汶川特大地震震源特性分析报告[R/OL].http://www.cea-igp.ac.cn/汶川地震专题/地震情况/初步研究及考察结果(一).pdf.
    [40]崔秉荃,龙学明,李元林.川西拗陷的沉降与龙门山的崛起[J].成都理工学院学报,1991,18(1):39-45.
    [41]崔鹏,韦方强等.5·12汶川地震诱发的山地灾害及减灾措施[J].山地学报,2008,6(3):280-282.
    [42]邓宾,刘树根,李智武,等.青藏高原东缘及四川盆地晚中生代以来隆升作用对比研究[J].成都理工大学学报(自然科学版),2008,35(4):477-486.
    [43]邓康龄.龙门山构造带印支期构造递进变形与变形时序[J].石油与天然气地质,2007,28(4):485-490.
    [44]邓起东,冯先岳,张培震,等.天山活动构造[M].北京:地震出版社,2000,1-399.
    [45]邓起东,卢造勋,杨主恩.城市活动断裂探测和断层活动性评价问题[J].地震地质,2007,29(2):189-200.
    [46]邓起东,王克鲁,汪一鹏,等.山西隆起区断陷地震带地震地质条件及地震发展趋势概述[J].地质科学,1973,(1):37-74.
    [47]邓起东,王挺梅,李建国,等.关于海城地震震源模式的讨论[J].地质科学,1976,(3):195-203.
    [48]邓起东,徐锡伟,张先康,等.城市活动断裂探测的方法和技术[J].地学前缘,2003,10(1):93-104.
    [49]邓起东,于贵华,叶文华.地震地表破裂参数与震级关系的研究[A].活动断裂研究(2)[M].北京:地震出版社,1992:247-264.
    [50]邓起东,于贵华,叶文华.地震地表破裂参数与震级关系的研究[A].见:活动断裂研究(2).北京:地震出版社,1992,247-264.
    [51]邓起东,于贵军,叶文华.地震地表破裂参数与震级关系研究[A].活动断裂研究理论与应用(2).北京:地震出版社,1992.30-36.
    [52]邓起东,张培震,冉勇康,等.中国活动构造基本特征[J].中国科学(D辑),2002b,32(12):1021-1030.
    [53]邓起东,张培震.活动断裂分段研究的原则和方法(一)[A].见:现代地壳运动研究(6).北京:地震出版社,1995,196-207.
    [54]邓起东,张裕明,许桂林,等.中国构造应力场特征及其与板块运动的关系[J].地震地质,1979,1(1):11-22.
    [55]邓起东.城市活动探测和地震危险性评价问题[J].地震地质,2002c,24(4):601-605.
    [56]邓起东.活动构造研究的进展[A].见:现今地球动力学研究及其应用.北京:地震出版社,1994,211-221.
    [57]邓起东.中国的活动断裂[A].见:中国活动断裂.北京:地震出版社,1982,19—27.
    [58]邓起东.中国活动构造研究的进展与展望[J].地质论评,2002,48(2):168-177.
    [59]邓起东.中国新生代断块构造的主要特征[A].见:国际交流地质学术论文集:构造地质、地质力学.北京:地质出版社,1980,101-108.
    [60]丁国瑜,卢演俦.对我国现代板内运动状况的初步探讨[J] .科学通报,1986(18):1412-1415.
    [61]丁国瑜,田勤俭,孔凡臣,等.活动断裂分段:原则、方法与应用[M ].北京:地震出版社,1993,1—143.
    [62]丁国瑜.我国地震活动与地壳现代破裂风络[J].地质学报,1979,1:22-34.
    [63]丁国瑜.有关活断层分段的一些问题[J].中国地震,1992,8(2):1-10.
    [64]丁国瑜主编.中国活断层图集(IGCP-206项目)[M].北京:地震出版社、西安:西安地图出版社,1989.
    [65]丁祥焕,王耀东,叶盛基.福建东南沿海活动断裂与地震[M].福州:福建科学出版社,1999.
    [66]董顺利,李勇,陈龙生,等.汶川Ms8.0地震的地表破裂过程—以都江堰八角庙村断层擦痕剖面为例[J].第四纪研究,2009,29(3):439-448.
    [67]杜平山.则木河活动断裂带大震重复间隔[J].四川地震,2000,1-2:102-118.
    [68]郭兵,刘树根,刘顺,等.龙门山中段前山带构造特征及其形成演化[J].成都理工大学学报(自然科学版),2008,20(4):59-64.
    [69]郭正吾,邓康龄,韩永辉,等.四川盆地形成与演化[M].北京:地质出版社,1996.
    [70]国家地震局.鄂尔多斯周缘活动断裂系[M].北京:地震出版社,1988.
    [71]国家地震局.中国活动性构造和强震震中分布图(1∶300万)[Z].北京:地震出版社,1976.
    [72]国家地震局地质研究所.宁夏回族自治区地震局.海原活动断裂带[M].北京:地震出版社,1990.
    [73]国家地震局地质研究所.中华人民共和国地震构造图(1∶400万)[Z].北京:地图出版社.1979.
    [74]国家质量技术监督局,中国地震动参数区划图(GB18306-2001)[M].中国标准出版社,北京,2001,
    [75]国家重大科学工程“中国地壳运动观测网络”项目组. GPS测定的2008年汶川Ms8.0级地震的同震位移场[J].中国科学D辑:地球科学,2008,38(10):1195-1206.
    [76]虢顺民,计凤桔,向宏发,等.红河活动断裂带[M].北京:海洋出版社,2001,1-172.
    [77]虢顺民,李志义,程绍平,等.唐山地震区域构造背景和发震模式的讨论[J].地质科学,1977,(4): 305-321.
    [78]韩同林.西藏活动构造[M].北京:地质出版社.1987,1-428.
    [79]黄润秋.汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J].岩石力学与工程学报,2009,(6):1239-1249.
    [80]黄学猛,谢富仁.龙门山构造带的演化历史及构造样式综述.地壳构造与地壳应力文集(21)[C].北京:地震出版社,2009:16-29.
    [81]贾东,陈竹新,贾承造,等.龙门山前陆褶皱冲断带构造解析与川西前陆盆地的发育[J],高校地质学报,2003,9(3):402-410.
    [82]贾秋鹏,贾东,朱艾斓,等.青藏高原东缘龙门山冲断带与四川盆地的现今构造表现:数字地形和地震活动证据[J].地质科学,2007,24(1):31-44.
    [83]蒋复初,吴锡浩.青藏高原东南部地貌边界带晚新生代构造运动[J].成都理工学院学报,1998,25(2):16-21.
    [84]蒋海昆,黎明晓,吴琼,等.汶川8.0级地震序列及相关问题讨论[J].地震地质,2008,30(3):746-757.
    [85]江娃利,谢新生,张景发,等.四川龙门山活动断裂带典型地段晚第四纪强震多期活动证据[J].中国科学D辑:地球科学,2009,39(12):1688-1700.
    [86]金文正,汤良杰,杨克明,等.川西龙门山褶皱冲断带分带性变形特征[J].地质学报,2007,81(8):1073-1080.
    [87]李传友,宋方敏,冉勇康.龙门山断裂带北段晚第四纪活动性讨论[J].地震地质,2004,26(2):248-257.
    [88]李海兵,付小方,Woerd J V D,等.汶川地震(Ms8.0)地表破裂及其同震右旋斜向逆冲作用[J].地质学报,2008,82(12):1623-1643.
    [89]李海兵,王宗秀,付小方,等.2008年5月12日汶川地震(Ms8.0)地表破裂带分布特征[J].中国地质,2008,35(5):803-813.
    [90]李四光.地质力学方法[J].北京:科学出版社,1978.
    [91]李涛,陈杰,黄明达,等.逆断层型地震地表破裂带滑动矢量计算方法探讨:以汶川地震为例[J].第四纪研究,2009,29(3):524-534.
    [92]李天祒,杜其方,游泽李,等.鲜水河活动断裂带及强震危险性评估[M].成都:成都地图出版社,1997,1-230.
    [93]李勇,Allen P A,周荣军等.青藏高原东缘中新生代龙门山前陆盆地动力学及其与大陆碰撞作用的耦合关系[J].地质学报,2006,80(8):1101-1109.
    [94]李勇,Densmore A L,周荣军,等.青藏高原东缘龙门山晚新生代剥蚀厚度与弹性挠曲模拟[J].地质学报,2005,79(5):608-615.
    [95]李勇,曹叔尤,周荣军,等.晚新生代岷江下蚀速率及其对青藏高原东缘山脉隆升机制和形成时限的定量约束[J].地质学报,2005,79(1):28-37.
    [96]李勇,侯中健,司光影,等.青藏高原东缘新生代构造层序与构造事件[J].中国地质,2002,29(1):30-35.
    [97]李勇,黄润秋,Densmore A L,等.龙门山小鱼洞断裂在汶川地震中的地表破裂及地质意义[J].第四纪研究,2009,29(3):506-516.
    [98]李勇,黄润秋,周荣军,曹叔尤.汶川Ms8.0级地震的水系响应[J].四川大学学报(工程科学版)2010,42(5):20-32.
    [99]李勇,黄润秋,周荣军,等.龙门山地震带的地质背景与汶川地震的地表破裂[J].工程地质学报,2009,17(1):3-16.
    [100]李勇,孙爱珍.龙门山造山带构造地层学研究[J].地层学杂志,2000,24(3):201-205.
    [101]李勇,徐公达,周荣军,等.龙门山均衡重力异常及其对青藏高原东缘山脉地壳隆升的约束[J].地质通报,2005,24(12):1162-1169.
    [102]李勇,曾允孚,伊海生.龙门山前陆盆地沉积及构造演化[M].成都:成都科技大学出版社,1995.
    [103]李勇,曾允孚.试论龙门山逆冲推覆作用的沉积响应—以成都盆地为例[J].矿物岩石,1994,14(1):58-86.
    [104]李勇,周荣军,Densmore A L,等.龙门山地震带的活动构造与汶川地震地表破裂及其研究进展[J].中国力学文摘,2009,22(4):1-12.
    [105]李勇,周荣军,Densmore A L,等.龙门山断裂带走滑方向的反转及其沉积与地貌标志[J].矿物岩石,2006,26(4):26-34.
    [106]李勇,周荣军,Densmore A L,等.青藏高原东缘大陆动力学过程与地质响应[M].北京:地质出版社,2006.
    [107]李勇,周荣军,Densmore A L,等.青藏高原东缘龙门山晚新生代走滑挤压作用的沉积响应[J].沉积学报,2006,24(2):1-12.
    [108]李勇,周荣军,Densmore A L,等.青藏高原东缘龙门山晚新生代走滑—逆冲作用的地貌标志[J].第四纪研究,2006,26(1):40-51.
    [109]李勇,周荣军,Densmore A L,等.映秀—北川断裂的地表破裂与变形特征[J].地质学报,2008,82(12):1688-1705.
    [110]李勇,周荣军,董顺利,等.汶川特大地震的地表破裂与逆冲—走滑作用[J].成都理工大学学报:自然科学版,2008,35(4):404-413.
    [111]李勇.论龙门山前陆盆地与龙门山造山带的耦合关系[J].矿物岩石地球化学通报,1998,17(2):77-81.
    [112]李元林.四川盆地西缘冲积扇形成的构造背景分析.龙门山造山带的崛起和四川盆地的形成与演化[C].成都:成都科技大学出版社,1994,338-345.
    [113]李智武,刘树根,陈洪德,等.龙门山冲断带分段—分带性构造格局及其差异变形特征[J].成都理工大学学报(自然科学版),2008,35(4):440-454.
    [114]林茂炳,苟宗海,王国芝,邓江洪,李勇,等.四川龙门山造山带造山模式研究[J].成都:成都科技大学出版社,1996.
    [115]林茂炳,苟宗海.四川龙门山造山带造山模式研究[M].成都:成都科技大学出版社,1996:1-185.
    [116]林茂炳,吴山.龙门山推覆构造变形特征[J].成都地质学院学报,1991,18(1):46-55.
    [117]林茂炳.初论龙门山构造带的基本结构样式[J].成都理工学院学报,1994,21(3):1-7.
    [118]刘超,张勇,许力生,等.一种矩张量反演新方法及其对2008年汶川Ms8.0地震序列的应用[J].地震学报,2008,30(4):329-339.
    [119]刘传正.四川汶川地震灾害与地质环境安全[J].地质通报,2008,27(11): 1907-1912.
    [120]刘和甫,梁慧社,蔡立国,等.川西龙门山冲断系构造样式与前陆盆地演化[J].地质学报,1994,68(2):101-118.
    [121]刘进峰,陈杰,尹金辉,等.龙门山映秀—北川断裂带擂鼓探槽剖面古地震事件测年[J].地震地质,2010,32(2):191-199.
    [122]刘静,张智慧,文力,等.汶川8级大地震同震破裂的特殊性及构造意义—多条平行断裂同时活动的反序型逆冲地震事件[J].地质学报,2008,82(12):1707-1722.
    [123]刘树根,罗志立,赵锡奎,等.中国西部盆山系统的耦合关系及其动力学模式[J].地质学报,2003,77(2):177-186.
    [124]刘树根,田小彬,李智武,等.龙门山中段构造特征与汶川地震[J].成都理工大学学报(自然科学版),2008,35(4):388-397.
    [125]刘树根.龙门山冲断带与川西前陆盆地形成演化[M].成都:成都科技大学出版社,1993.
    [126]刘宇平,张清志,唐文清,等.四川汶川Ms 8.0级地震的同震位移量[J].地质通报,2008,27(12):2086-2088.
    [127]龙学明,罗志立.龙门山冲断带的分区及其演化.龙门山造山带的崛起和四川盆地的形成与演化[C].成都:成都科技大学出版社,1994:317-329.
    [128]罗志立,龙学明.龙门山造山带的崛起和川西前陆盆地沉降[J].四川地质学报,1992,12(1):1-17.
    [129]罗志立,赵锡奎,刘树根,等.龙门山造山带的崛起和四川盆地的形成与演化[M].成都:成都科技大学出版社,1994.
    [130]罗志立.龙门山造山带岩石圈演化的动力学模式[J].成都地质学院学报,1994,18(1):1-7.
    [131]罗志立.试论中国型(C-型)冲断带及其油气勘探问题[J].石油与天然气地质,1994,4(5):315-324.
    [132]骆耀南,俞如龙,侯立伟,等.龙门山—锦屏山陆内造山带[M].成都:四川科学技术出版社,1998.
    [133]马保起,苏刚,侯治华,等.利用岷江阶地的变形估算龙门山断裂带中段晚第四纪滑动速率[J].地震地质,2005,27(2):234-242.
    [134]毛凤英,张培震.古地震研究的逐次限定方法与新疆北部主要断裂带古地震研究[A].见:国家地震局地质研究所编.活动断裂研究(4).北京:地震出版社,1995,153-164.
    [135]潘桂堂,王培生,等.青藏高原新生代构造演化[M].北京:地质出版社,1990,98-106.
    [136]祁生文,许强,刘春玲,等.汶川地震极重灾区地质背景及次生斜坡灾害空间发育规律[J].地质通报,2008,27(11):1907-1912.
    [137]冉勇康,陈立春,陈桂华,等.汶川Ms8.0地震发震断裂大地震原地重复现象初析[J].地震地质,2008,30(3):630-634.
    [138]冉勇康,陈立春,徐锡伟.北京西北活动构造定量资料与未来强震地点的讨论[J].地震学报,2001,23(5):502-5l3.
    [139]冉勇康,陈立春.中国长线工程场地地震安全性评价工作中的活动构造问题[J].地震地质,2004,26 (4):733-741.
    [140]冉勇康,邓起东.古地震学研究的历史、现状和发展趋势[ J ].科学通报,1999,44(1):12-20.
    [141]冉勇康,汪一鹏.对活动断层分段性的初浅认识和建议[A].见:国家地震局地质研究所编.现代地壳运动研究(6).北京:地震出版社.1995,216-224.
    [142]石峰,何宏林,魏占玉.基于高分辨率卫星影像估算汶川地震同震水平缩短量:以白沙河段为例[J].地学前缘,2010,17(5):67-74.
    [143]石峰,何宏林,魏占玉.汶川地震破裂带白沙河段同震水平缩短量的估算[J].第四纪研究,2009,29(3):546-553.
    [144]时振梁,环文林,姚国干,等.1932年昌马地震破裂带及其形成原因的初步探讨[J].地球物理学报,1974,17(4):272-287.
    [145]宋方敏,汪一鹏,俞维贤,等.小江活动断裂带[M].北京:地震出版社,1998,1-237.
    [146]宋鸿彪,刘树根.龙门山中北段重磁场特征与深部构造的关系[J].成都理工大学(自然科学版),1991,18(1):74-82.
    [147]唐方头,邓志辉,梁小华,等.龙门山中段后山断裂带晚第四纪运动特征[J].地球物理学进展,2008(3):710-716.
    [148]唐荣昌,韩渭宾.四川活动断裂与地震[M].北京:地震出版社,1993.
    [149]唐荣昌,文德华,邓天岗,等.1973年炉霍7.9级地震的地裂缝特征及地震成因的初步探讨[J].地球物理学报, 1976,19(1):18-27.
    [150]唐荣昌,文德华,黄祖智,等.松潘—龙门山地区主要活动断裂带第四纪活动特征[J].中国地震,1991, 7(3):64-71.
    [151]陶晓风.龙门山南段推覆构造与前陆盆地演化[J].成都理工学院学报,1999,26(1):73-77.
    [152]田小彬.龙门山北段构造特征及油气前景探讨[D].成都:成都理工大学,2009.
    [153]王二七,孟庆任,陈智良,等.龙门山断裂带印支期左旋走滑运动及其大地构造成因[J].地学前缘,2001,8(2):375-384.
    [154]王虎,冉勇康,陈立春,等.地表破裂型逆断层地表缩短量计算方法探讨—以汶川Ms8.0地震地表变形为例[J].地震地质,2008,30(4):1032-1045.
    [155]王卫民,赵连锋,李娟,等.四川汶川8.0级地震震源过程[J].地球物理学报,2008,51(5):1403-1410.
    [156]王宗秀,许志琴,杨天南.松潘一甘孜滑脱型山链变形构造演化模式[J].地质科学,1997,32(3):327-336.
    [157]闻学泽.活动断裂地震潜势的定量评估[M].北京:地震出版社,1995,1-150.
    [158]闻学泽,张培震.地震的原地复发模式理论及其有关问题[A].活动断裂研究(7)[M].北京:地震出版社, 1996:1-11.
    [159]闻学泽.时间相依的活动断裂分段地震危险性评估及其问题[J].科学通报,1998,43 (14) :1457-1466.
    [160]闻学泽.中国大陆活动断裂的段破裂地震复发间隔经验分布[J].地震学报,1999,21(6):616-622.
    [161]闻学泽.活动断裂的分段地震震级评估[A].活动断裂研究(8)[M].北京:地震出版社, 2001:32-40.
    [162]闻学泽,徐锡伟,龙锋,等.中国大陆东部中-弱活动断层潜在地震最大震级评估的震级-频度关系模型[J].地震地质,2007,29(2):236-253.
    [163]
    [164]翁文灏.民国九年十二月六日甘肃的地震科[J].科学,1922,7(2):105-114.
    [165]吴树仁,石菊松,姚鑫,等.四川汶川地震地质灾害活动强度分析评价[J].地质通报,2008,27(11):1900-1906.
    [166]谢富仁,张永庆,张效亮,等.汶川8.0级地震发震构造大震复发间隔估算[J].震灾防御技术,2008,3(4):337-344.
    [167]谢家荣.民国9年12月16日甘肃及其它各省之地震情形[J].地学杂志,1922,13(8-9):见:陈尚平等编.中国近代地震文献编要.274—282.
    [168]新疆维吾尔自治区地震局.富蕴地震断裂带[M].北京:地震出版社,1985.
    [169]徐锡伟,闻学泽,叶建青,等.汶川Ms8.0地震地表破裂带及其发震构造[J].地震地质,2008,30(3): 597-629.
    [170]徐锡伟,闻学泽,郑荣章,等.川滇地区活动块体最新构造变动样式及其动力来源[J].中国科学(D), 2003,33(增刊):151-162.
    [171]徐锡伟,吴卫民,张先康,等.首都圈地区地壳最新构造变动与地震[M].北京:科学出版社,2002,1-376.
    [172]许冲,戴福初,陈剑,等.汶川Ms8.0地震重灾区次生地质灾害遥感精细解译[J].遥感学报,2009,13(4):1-9.
    [173]许强,黄润秋.“5.12”汶川大地震诱发大型崩滑灾害动力学特征初探[J].工程地质学报,2008,6(6):721-729.
    [174]许强.汶川大地震诱发地质灾害主要类型与特征研究[J].地质灾害与环境保护,2009,20(2):86-93.
    [175]许志琴,侯立玮,王宗秀,等.中国松潘—甘孜造山带的造山过程[M].北京:地质出版社,1992.
    [176]许志琴,李海兵,吴忠良.汶川地震与科学钻探[J].地质学报,2008,82(12):1613-1621.
    [177]许志琴,杨经绥,姜枚,李海兵.大陆俯冲作用及青藏高原周缘造山带的崛起[J].地学前缘,1999,6(3):139-151.
    [178]闫亮,李勇, A. L. Densmore,等.北川地区擂鼓断裂在汶川地震中的地表破裂及其意义[J].第四纪研究,2009,29(3):535-545.
    [179]杨长清,刘树根,曹波,等.龙门山造山带与川西前陆盆地耦合关系及其对油气成藏的控制[J].成都理工大学学报(自然科学版),2008,35(4):471-475.
    [180]杨景春,闻学泽.史前地震及其鉴别标志的几个问题[A].见:史前地震与第四纪地质文集.西安:陕西科学技术出版社,1982,8-15.
    [181]杨景春.中国大陆活动构造地貌及其新构造应力场的关系[A].见:中国地理学会地貌与第四纪专业委员会编.地貌与第四纪研究进展.北京:测绘出版社,1991,18-26.
    [182]杨晓平,冯希杰,戈天勇,等.龙门山断裂带北段第四纪活动的地质地貌证据[J].地震地质,2008,30(3):644-657.
    [183]殷跃平.汶川八级地震地质灾害研究[J].工程地质学报,2008,16(4): 433-444.
    [184]殷跃平.汶川八级地震滑坡高速远程特征分析[J].工程地质学报,2009,17(2):153-166.
    [185]张国伟,郭安林,姚安平.中国大陆构造中的西秦岭—松潘大陆构造结[J].地学前缘,2004,11(3):23-32.
    [186]张会平.青藏高原东缘、东北缘典型地区晚新生代地貌过程研究[D].北京:中国地质大学(北京),2006.
    [187]张培震,邓起东,张国民,等.中国大陆的强震活动与活动地块[J].中国科学(D),2003,33(增刊):12-20.
    [188]张培震,邓起东.活动断裂分段研究的原则和方法(二)[A].见:国家地震局地质研究所编.现代地壳运动研究(6).北京:地震出版社,1995,208-215.
    [189]张培震,毛凤英.活动断裂定量研究与中长期地震危险性概率评价[A].见:中国地震局地质研究所编.活动断裂研究(5).北京:地震出版社,1996,12-31.
    [190]张培震,徐锡伟,闻学泽,等. 2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J].地球物理学报,2008,51(4):1066-1073.
    [191]张世民,谢富仁,黄忠贤,等.龙门山地区上地壳的拱曲冲断作用及其深部动力学机制探讨[J].第四纪研究,2009,29(3):449-563.
    [192]张文佑.断块构造导论[M].北京:石油工业出版社,1984,1-385.
    [193]张勇,冯万鹏,许力生,等.2008年汶川大地震的时空破裂过程[J].中国科学D辑,2008,38(10):1186-1194.
    [194]赵小麟,邓起东,陈社发.龙门山逆断裂带中段的构造地貌学研究[J].地震地质,1994,16(4):422-428.
    [195]赵小麟,邓起东,陈社发.岷江隆起的构造地貌学研究[J].地震地质,1994,16(4):429-439.
    [196]赵友年,赖祥符,俞如龙.龙门山推覆构造之初步研究[J].四川地质学报,1985,1:12-27.
    [197]中国地震局监测预报司.汶川8.0级科学研究报告[M].地震出版社,北京,2009,
    [198]中国地震学会地震地质专业委员会编.中国活动断裂[M].北京:地震出版社,1982.
    [199]周荣军,黄润秋,雷建成,等.四川汶川8.0级地震地表破裂与震害特[J].岩石力学与工程学报,2008, 27(11):2173-2183.
    [200]周荣军,李勇,Densmore A L,等.青藏高原东缘活动构造[J].矿物岩石,2006,26(2):40-51.
    [201]周荣军,李勇,等.晚第四纪以来青藏高原东缘构造变形的新证据.全国地震会议论文集[C].北京:地震出版社,2000.
    [202]朱艾斓,徐锡伟,刁桂苓,等.汶川Ms 8.0地震部分余震重新定位及地震构造初步分析[J].地震地质,2008,30(3):759-767.
    [203]朱艾斓,徐锡伟,周永胜,尹京苑,甘卫军,陈桂华.川西地区小震重新定位及其活动构造意义[J].地球物理学报,2005,48(3):629-636.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700