用户名: 密码: 验证码:
自行车机器人非线性系统的控制及实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自行车机器人是近年来机器人学术界提出的一种全新的智能运输(或交通)工具的概念,由于自行车机器人本身是一个欠驱动的具有侧向不稳定的非完整系统,其两轮纵向布置,与地面无滑动接触,同时自行车动力学模型具有对称性特征,其动力学特性较为复杂,因此,自行车机器人的自稳定控制相当困难。国内针对自行车机器人的动力学建模、控制算法及系统辨识的研究(相对)很少,而自行车机器人的动力学建模与控制等问题长期以来都是机器人学领域的研究热点。
     本文以自行车机器人的动力学建模、控制和系统辨识问题作为研究对象,利用拉格朗日方法建立了转动车把调节方式下的自行车机器人的动力学模型,并对所建的模型进行滑模控制,同时,利用采集的车体倾角和车把转角数据,进行了基于ARX模型的线性系统辨识和ANFIS自适应模糊神经网络的非线性系统辨识的仿真研究。设计了自行车机器人实物样机,并完成了自行车机器人的控制实验。文中的主要内容和成果如下:
     1、采用拉格朗日方法建立了依靠调节车把保证自行车机器人平衡的SISO非线性动力学模型。使用近似线性化的方法将非线性模型进行了线性化,设计了基于LQR的线性系统控制器,使自行车机器人在小范围内的变化可以得到有效的控制。
     2、分析了SISO非线性动力学模型的特征,并提出了基于串级滑模、分层滑模以及稳定滑模控制器对自行车机器人模型的控制方法,从而能够更加有效的实现自行车机器人的稳定控制。
     3、基于ARX模型的线性系统辨识以及ANFIS模型的非线性系统辨识工作原理,利用采集车体稳定运动时车体倾角与车把转角的数据,进行了自行车机器人的系统辨识。基于T-S模型的ANFIS网络能够很好地逼近实际自行车机器人的非线性系统,并且辨识精度高,优于ARX模型的线型辨识方法。通过辨识得到的输入和输出之间的模糊推理结论,为今后进行自行车机器人系统的有效控制提供了一定的参考价值。
     4、基于ARM9嵌入式系统、单片机、高精度的MTi传感器等硬件平台设计了自行车机器人的实验样机,完成了系统数据采集功能,以自行车机器人单输入单输出非线性系统为例,进行了相应控制算法的实验。
     本文的研究从非线性、欠驱动的角度为自行车机器人提供了新的控制思路,利用系统辨识模型方法对自行车机器人进行建模,丰富了本实验室对自行车机器人的研究成果,为进一步研究奠定了基础。
The bicycle robot that is proposed by academics in the field of robot in recent years is a new conception of intelligent transport (or traffic) tool. Because it is an under-actuated non-integrated system with lateral instability, it's two wheels are longitudinal and has non-sliding contact with the ground, meanwhile it's dynamics modeling possesses a kind of symmetrical feature, and its dynamic characteristics are complicated. Therefore, it is difficult to control the bicycle robot stable. In domestic the researches about bicycle dynamics modeling, control algorithm and system identification on the robot prototype platform are few, therefore the dynamic modeling and control should be the hot topic in robotics for long time.
     In this paper, bicycle robot dynamics modeling, control and system identification problems are taken as the research objects. A dynamic model of adjusting bicycle handlebar control is presented, which is based on Lagrange method, and the algorithms of sliding mode control are designed, meanwhile, By using the test data of tilt angle and handlebar angle, linear and nonlinear identification have been done based on the ARX model and adaptive network-based fuzzy inference systems(ANFIS). A real bicycle robot is designed and experiments on control of bicycle robot are performed. The main contents can be summarized as follows:
     1. A kind of steering control single-input single-output dynamic model for bicycle robot is presented, which is based on Lagrange method. It's nonlinear system is approximately linearized, and the designed controller of LQR is presented, which can effectively control bicycle robot when the tilt angle is in small value.
     2. The characteristics of SISO nonlinear dynamic model are analyzed, and the cascade sliding-mode controller, hierarchical sliding-mode controller and stable sliding -mode controller are applied to the bicycle robot nonlinear system, which enable bicycle robot more stable.
     3. Based on linear ARX model and non linear ANFIS model, The identifications of bicycle robot system are completed through the data of handlebar angle and those of inclination angle which are gathered when bicycle robot is stable. Simulation result by ANFIS based on T-S model could be very similar to the actual test data of nonlinear bicycle robot sysytem, and it's identification precision is higher than that of linear ARX model. The obtained conclusions of fuzzy inference between input and output by above identificaton methods can provide some reference value for effective control on bicycle robot system in future.
     4. The bicycle robot for experiment has been designed on the platform of hardware including ARM9 embedded system, microcontroller, high-precision three-dimensional MTI sensor and so on, which has finished the sampling of systematical data. A series of experiments have been done based on the prototype, taking the bicycle robot SISO nonlinear system as example, on which the corresponding control experiment is carried.
     From the non-linear and underactuated point of view, the research provides a new idea for bicycle robot control. The modeling by methods of system identification enriches our laboratory researches on bicycle robot, and lay the foundation for further study.
引文
[1]刘延斌,王秀全, 张宏敏.一种新型自行车机器人机构设计及其建模[J].机械设计与研究,2008年2月,第24卷第1期:28-31.
    [2]W S Yoon, J Marsden. The Hamiltonian and Lagrangian Approaches to the Dynamics of Non-holonomic Systems[R]. Reports on Mathematical Physics,19 97,40(1):21-62
    [3]刘延斌.自行车机器人研究综述.机械设计与研究[J],2007年10月,第23卷第5期:113-115.
    [4]郭磊.自行车机器人非线性系统中若干问题的研究[D].北京邮电大学博士论文,2007年.
    [5]P.Appell. Traite de M6 Mecanique Rationelle[M]. Gauthier Villars,1953.
    [6]F.Klein, F.Sommerfeld. Uber die Theorie des Kreises[M]. Teubner,1910.
    [7]Grmmel回转仪的理论和应用[M].北京:科学出版社,1959.
    [8]Neil Getz. Control of Balance for a Nonlinear Nonholonomic Non-minimum Phase Model of a Bicycle[C]//American Control Conference, June 1994.pp:148-151.
    [9]Neil.H.Getz, Jerrold.E.Marsden. Control for an Autonomous Bicycle[C]//Intern ational Conference on Robotics and Automation, IEEE, May 1995.pp:1397-140 2.
    [10]W.S.Koon, J.E.Marsden. The Hamiltonian and Lagrangian Appoaches to the D ynamics of Non-holonomie Systems[J]. Reports on Mathematical Physics,1997, 40(1):21-62.
    [11]G6rard Lachiver, SaYd Berriah. Application of Fuzzy Control to a Riderless Bicycle[J]. Journal of Advanced Computational Intelligence and Intelligent Info rmatics,2000,4(3):195-199.
    [12]Himanshu Dutt Sharma, UmaShankar N. A Fuzzy Controller Design for an A utonomous Bicycle System[C]//IEEE International Conference on Engineering of Intelligent Systems,2006,pp:1-6.
    [13]Himanshu Dutt Sharma, UmaShankar N. A Robotic Model (ROBI) of Autom omous Bicycle System[C]//International Conference on Computational Intellige nce for Modelling Control and Automation and International Conference on Int elligent Agents, Web Technologies and Internet Commerce,2006,107-107.
    [14]Yasuhito Tanaka, Toshiyuki Murakami. Self sustaining bicycle robot with steer ing controller. The 8th IEEE International Workshop on Advanced Motion Con trol. Kawasaki, Japan:IEEE,2004,pp:193-197.
    [15]Jingang Yi, Dezhen Song, Anthony Levandowski, Suhada Jayasuriya. Trajector y Tracking and Balance Stabilization Control of Autonomous Motorcycles. Pro ceedings of the 2006 IEEE International Conference on Robotics and Automati on. Orlando, Florida, May 2006,pp:2583-2589.
    [16]Y.Yavin. The Derivation of a Kinematic Model from the Dynamic Model of t he Motion of a Riderless Bicycle[J]. Computers and mathematics with Applicat ions,2006,51:865-878.
    [17]M.Yamakita, A.Utano, K.Sekiguchi. Experimental Study of Automatic Control of Bicycle with Balancer[C]//The 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, October 2006,pp:5606-5611.
    [18]Jette Randlφv. Learning to drive a bicycle using reinforcement learning and s haping. Proceedings of the 15th International Conference on Machine Learning. 1998,pp:463-471.
    [19]Sangduck Lee, Woonchul Ham. Self stabilizing strategy in tracking control of unmanned electric bicycle with mass balance. Proceedings of the 2002 IEEE/ RSJ Conference on Intelligent Robots and Systems. Switzerland:IEEE,2002,pp: 2200-2205.
    [20]Shashikanth Suryanrayanan, Masayoshi Tomizula and Matt Weaver. System dy namics and control of bicycles at high speeds. Proceedings of the American C ontrolConference. Anchorage, AK:IEEE,2002,pp:845-850.
    [21]Karl J. Astrom, Richard E. Klein, Anders Lennartsson. Bicycle dynamics and control. IEEE Control Systems Magazine,2005,25(4):26-47
    [22]刘延柱.自行车的受控运动[J].力学与实践,1995年,第17卷第4期:39-42.
    [23]林修成,张朝阳.自行车行使稳定性及后进动性的力学分析[J].合肥工业大学学报,2001,24(2):287-291.
    [24]周祥龙,赵景波.欠驱动非线性控制方法综述[J].工业仪表与自动化装置,2004年第5期:10-14.
    [25]Jain A. and Rodriguez G. An Analysis of the Kinematics and Dynamics of U nder-actuated Manipulators. IEEE Transactions on Robotics and Automation,19 93,9(9):411-422.
    [26]De Luca A., Iannitti S., Mattone R., et al. Control Problems in Underactuated Manipulators. In:Proceedings of IEEE/ASME International Conference on Ad vanced Intelligent Mechatronics, Como,Italy,2001,pp:855-861.
    [27]Reyhanoglu M.,Schaft A., Harris McClamroch N., et al. Dynamics and Contro 1 of a Class of Underactuated Mechanical Systems. IEEE Transaction on Auto matic Control,1999,44(9):1663-1669.
    [28]张冬军,丛爽,李泽湘,秦志强.环型二级倒立摆的控制研究与实现[J].信息与控制,2003,2.
    [29]高丙团,陈宏钧,张晓华.一类欠驱动机械系统的非线性控制[J].控制与决策,2006,1
    [30]Kangsik Lee, Sheri Coates and Victoria Coverstone-Carroll, Variable structure control applied to underactuated robots, Robotica,1997,pp:313-318.
    [31]Atul G. Kelkar, Bo Fang,Warren White, Guo Xin, Feedback stabilization of underactuated nonlinear pendulum cart system using matching conditions, Proce edings of the 2002 American control conference,2002,pp:4696-4701.
    [32]方一鸣,刘仙,王生德等.基于积分反步法的轧机速度系统控制器设计[J].自动化与仪器仪表,2004,第3卷:5-7.
    [33]孙旭光,项昌乐.车辆联合制动模糊控制研究[J].新技术新工艺,2006,第4卷:51-54.
    [34]张淑君,方勃,刘峰等.欠驱动非线性系统的控制方法研究[J].机电产品开发与创新.2006年11月,第19卷,第6期,11-12.
    [35]Utkin V.I. Variable structure system with sliding modes. IEEE Transactions on Automation Control,1977,22(2):212-222.
    [36]Utkin V.I. Sliding Modes and their Applications in Variable Structure Systems. Mir Publisher, Moscow,1978.
    [37]王伟。变结构控制理论在一类欠驱动机械系统中的应用研究[D]。北京:中国科学院自动化研究所,2005.5
    [38]郭磊,廖启征,魏世民.用速率陀螺仪实现基于单片机的角度随动系统研究[J].机电产品开发与创新,2005,18(2):1-3.
    [39]Neil H. G. Internal equilibrium control of a bicycle. Proceedings of the 34th Conference on Decision & Control.New Orieans:IEEE,1995,pp:4285-4287.
    [40]胡松涛,王执铨,胡维礼.最优控制理论与系统[J].科学出版社,2005,9.
    [41]Oya M, Su C Y, Katoh R. Robust adaptive motion/force tracking control of uncertain nonholonomic mechanical systems, IEEE Trans. Robotics and Automa tion.2003,19(1):175-181
    [42]宋佐时.移动机械手协调控制研究[D]北京:中国科学院自动化研究所,2005.5
    [43]Lewis F.L. Abdallah C.T. and Dawson D.M. Control of Robot Manipulators. New York:MacMillan Publishing Company,1993.
    [44]刘殿通.一类欠驱动机械系统的智能控制研究.[D]北京:中国科学院自动化研究所,2004.
    [45]Kolmanovsky I. McClamroch N.H. Developments in Nonholonomic Control Pr oblems. Control Systems Magazine,1995,15(6):20-36.
    [46]Oriolo G. and Nakamura Y. Control of Mechanical Systems With Second-Ord er Nonholonomic Constraints:Underactuated Menaipulators.Proceedings of IEEE Conference on Decision and Control,1991,pp:2398-2403.
    [47]WUNCH W S. Reproduction of an Arbitrary Function of Time by Discontin uous Control [D]. Stanford (CA, USA):Stanford University,1953.
    [48]EMEL YANOV S V. Control of First Order Delay Systems by Means of An astatic Controller and Nonlinear Correction [J]. Automati on and Remote Contr ol,1959,20(8):983-991.
    [49]EMEL YANOV S V, FEDOTOVA A I. Design of Astatic Tracking Systems with Variable Structure [J]. Automation and Remote Control,1962,23(10):1223-1235.
    [50]EMEL YANOV S V, et al. Design Princip les for Variable Structure Contr ol Systems [C]//Proceedings of the 3rd IFAC Congress. London,UK:Elsevier Press,1966:40C.1-40C.6.
    [51]UTKN V I. Variable Structure Systems with Sliding Modes[J].IEEE Trans Au to Contr,1977,22(2):212-222.
    [52]UTKN V I. Applicati on of Equivalent Control Method t o the Systemswith Large Feedback Gain[J]. IEEE Trans Auto Contr,1978,23(3):484-486.
    [53]UTKN V I. VSS:Present and Future [J]. Automati on and Remote Contr ol, 1983,44(11):1105-1120.
    [54]UTKN V I, SHIJX. Integral SlidingMode in Systems Operating under Uncer tainty Conditi ons[C]//Proceedings of the 35 th IEEE Conference on Decision and Control. Kobe, Japan:IEEE Press,1996:4591-4596.
    [55]UTKN V I. Sliding Modes in Control Optimization[M]. Berlin, Germany:Sp ringer-Verlag,1992.
    [56]UTKN V I. Sliding Mode Control Design Principles and Applications to Ele ctricDrives[J]. IEEE Trans I nd Electr,1993,40(1):10-22.
    [57]XU J X,LEE T H,WANGM. Selftuning Type Variable Structure Control Meth od for a Class of Nonlinear Systems [C]//IEEE Workshop on Variable Structur e Systems.Tokyo, Japan:IEEE press,1996:432 48.
    [58]张晓宇,苏宏业.滑模变结构控制理论进展综述[J].化工自动化及仪表,2006,33(2):1-8.
    [59]郝银星,易建强,赵冬斌等.一种增量式滑模控制方法[J].烟台大学学报(自然科学与工程版),2006年7月,第19卷:53-58.
    [60]王伟,易建强,赵冬斌等.基于稳定性分析的一类欠驱动系统的滑模控制器设计.信息与控制[J].2005年4月第2期第34卷:232-235.
    [61]张昌凡,何静.滑模变结构的智能控制理论与应用研究[M].北京:科学出版社,2005.
    [62]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [63]穆效江,陈阳舟.滑模变结构控制理论研究综述[J],控制工程,2007年7月第14卷增刊:1-5.
    [64]Man Z H, Palan I. Decentralized three segment nonlinear sliding mode contro l for robotic manipulators [C].Carns Australia:IEEE International Workshop on Emerging Technologies and Factory Automation,1992.
    [65]Wang WJ, Lin H R. Fuzzy control design for the trajectory tracking on
    [66]uncertain nonlinear systems[J]. IEEE Transaction On Fuzzy systems,1999,7 (1):52-62.
    [67]王伟,易建强,赵冬斌等.一类欠驱动系统的稳定滑模控制方法[C].中国自动化与信息技术研讨会暨2004年学术年会.2004:159-164.
    [68]王伟,易建强,赵冬斌等.桥式吊车系统的分级滑模控制方法[J].自动化学报.2004(5)vol.30:784-788.
    [69]韩曾晋.自适应控制[M].北京:清华大学出版社,1995.
    [70]刘福才.非线性系统的模糊模型辨识及其应用[M].北京:国防工业出版社,2006.
    [71]郭磊,廖启征,魏世民.自行车机器人动力学建模与MIMO反馈线性化[J].北京邮电大学学报.2007年2月第30卷第1期:80-84.
    [72]徐丽娜.神经网络控制[M].北京:电子工业出版社,2003.
    [73]孙增圻.智能控制理论与技术[M].北京:清华大学出版社,1997.
    [74]胡玉玲.一种递归型模糊神经网络用于动态系统辨识的研究[J].北京建筑工程学院学报[J],2006,22(3):44-47.
    [75]Takagi T, Sugeno M. Fuzzy identification of systems and its application to m odeling and control [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985,51(1):116-132.
    [76]李少远,王群仙,陈增强Sugeno模糊模型的辨识[J].南开大学学报(自然科学版),1999,32(1):58-63.
    [77]李秀英,韩志刚.非线性系统辨识方法的新进展[J],自动化技术与应用.2004年第23卷第10期:5-7.
    [78]段丽玮,吴志华,徐志伟.基于ARX模型的飞机尾翼压电结构系统辨识研究[J].压电与声光.2008年12月第30卷第6期:760-762.
    [79]吴怀宇.时间序列分析与综合[M].武汉:武汉大学出版社,2004:61-81,89-91.
    [80]姚巍.自行车机器人系统辨识及MATLAB仿真[D],2008.
    [81]齐晓慧,田庆民,董海瑞.基于Matlab系统辨识工具箱的系统建模[J].兵工自动化,2006年第25卷,第10期:88-90.
    [82]侯志祥,申群太,李河清.基于自适应神经模糊推理系统的非线性系统辨识[J],系统工程与电子技术.2005年1月,第27卷第1期:108-110.
    [83]于希宁,程锋章,朱丽玲,王毅佳.基于T-S模型的自适应神经模糊推理系统及其在热工过程建模中的应用[J],中国电机工程学报.第26卷第15期2006年8月:78-82.
    [84]李顺林,肖健梅.基于T-S模糊模型的非线性系统辨识[J],兰州交通大学学报(自然科学版).第23卷第4期,2004年8月:58-60.
    [85]刘叔军,盖晓华,樊京等MATLAB7.0控制系统应用与实例[M]。机械工业出版社,2006.1
    [86]杜太亮,钟坚敏,张永兴.基于ANFIS模型的边坡变形预测方法[J],重庆建筑大学学报.第27卷第4期2005年8月:55-58.
    [87]李目,刘祖润,年晓红,谭文.基于T-S模型的非线性系统模糊聚类辨识方法[J]. 计算机工程与应用,2007,43(29):239-241.
    [88]孙增圻,徐红兵.基于T-S模型的模糊神经网络[J].清华大学学报(自然科学版),1997,37(3):76-80.
    [89]侯志祥,申群太,李河清.基于ANFIS的非线性系统辨识研究[J],计算机仿真.2004年第21卷,第7期:119-121.
    [90]郝昕玉,姬长英.非线性系统的神经一模糊建模方法的研究[J].江西农业学报2008,20(9):112—114.
    [91]程峰章,于希宁.非线性系统的模糊建模及仿真[J],仪器仪表用户.2005,114-115.
    [92]刘爱国,胡宏宇.基于减法聚类的自适应模糊神经网络的短期负荷预测[J],南昌大学学报工科版.2005年9月第27卷第3期:90-92.
    [93]陈修桥,胡以华,蔡晓春,张军.基于ANFIS和减法聚类的遥感红外目标分选[J],计算机工程与科学.2006年第28卷,第8期:50-55.
    [94]张阿卜.基于减法聚类和自适应神经2模糊推理系统的递阶模糊系统的设计[J],控制理论与应用,第21卷第3期,2004年6月:415-418.
    [95]朱燕飞,蔡永放,毛宗源.基于T-S模型的锌钡白干燥媛烧过程自适应神经模糊推理系统建模[J],信息与控制.第33卷第4期2004年8月:472-475.
    [96]王辉.基于聚类与自适应神经模糊推理的车速预测[J],计算机工程与应用.2008,44(6):240-242.
    [97]刘桂英.基于两种不同算法的ANFIS在非线性系统中的建模[J],上海电机技术高等专科学校学报.第6卷第4期2003年12月:5-8.
    [98]王晓里,曲强.基于模糊自适应推理系统的非线性信道参数辨识[J],辽宁科技大学学报.第31卷第1期2008年2月:11-14.
    [99]胡玉玲,曹建国.基于模糊神经网络的动态非线性系统辨识研究[J],系统仿真学报.第19卷第3期2007年2月:560-562.
    [100]刘应吉,张天侠,闻邦椿,曹万科.基于自适应模糊推理系统的柴油机故障诊断[J],系统仿真学报.第20卷第21期2008年11月:5836-5839.
    [101]赵静,刘琦,基于自适应神经模糊推理系统的非线性系统辨识与仿真[J],中州大学学报.2006年10月第23卷第4期:113-117.
    [102]倪春木,张阿卜,赵晓锋,蔡志峰.模糊神经网络在小车摆系统辨识中的应用[J],厦门大学学报(自然科学版).2001年8月第40卷增刊1:101-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700