用户名: 密码: 验证码:
开封城市土壤有机碳密度、组成及时空变化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业化在大多数国家的普及,城市化进程在全球范围内迅速展开,长期而持续的城市用地扩张导致土地利用方式发生了显著改变,这种改变会对土壤的性质产生深刻影响。国内外对城市土壤的早期研究主要以土壤肥力为中心进行,初步探讨了城市土壤的性质、化学组成等方面。之后,随着全球环境形势的日益严峻,城市土壤碳储存开始受到关注。当前国内外城市土壤有机碳研究主要侧重于绿地土壤表层与次表层的养分特征分析,对有机碳的垂直分布研究较少;缺乏对有机碳时间变化规律的分析;研究对象集中于植被覆盖下的绿地土壤,对无植被覆盖下土壤有机碳的研究十分薄弱;对有机碳组分的分析力度不够,及缺乏对有机碳组分间相互关系的探讨。因而,开展全面而深入的城市土壤有机碳研究,了解城市化过程对土壤有机碳库的影响是十分必要的。本研究以具有2700多年建城史的开封市为研究对象,在调查采样和实验室分析的基础上,从土壤有机碳组成、储量、空间分布和时间变化几个方面开展较系统的城市土壤有机碳分析,以丰富城市土壤有机碳库基础数据信息和城市土壤有机碳研究案例,为城市土壤的科学管理和城市生态系统的可持续发展提供依据。研究中布设了绿地标准土壤剖面样点(25个)、非绿地土壤剖面样点(8个)和绿地表层样点(112个)3种样点类型,共采集绿地土壤标准剖面样品91个,非绿地土壤剖面土壤样品79个,表层绿地土壤样品112个。对土壤样品分别进行了基本理化性质、有机碳、腐殖质碳、轻组有机碳、颗粒有机碳、易氧化有机碳、水溶性有机碳和黑碳的测定。
     全文共包括九章,分属五大部分:
     第一部分是绪论(第一章),主要包括选题背景和国内外城市土壤有机碳研究综述;当前城市土壤有机碳研究中存在的问题;今后的研究趋势;本研究的主要内容及研究意义。
     第二部分是材料与方法(第二章),主要包括研究区的自然、社会经济和环境污染概况;土壤样点布设及样品采集;有关试验项目的试验方法;数据处理的主要方法和论文的技术路线。
     第三部分是开封城市土壤有机碳组成、储量及空间分布(第三、四、五、六章),主要包括土壤有机碳、活性有机碳、腐殖质碳(胡敏酸碳、富里酸碳、胡敏素碳)和黑碳的含量分析、功能区差异分析、水平和垂直分布特征分析。
     第四部分是开封城市土壤有机碳的时间变化和城—郊梯度变化(第七章和第八章)。主要包括城市土壤表层有机碳和剖面有机碳的纵向时间变化分析;表层有机碳和表层活性有机碳的横向时间变化分析;土壤有机碳和组分有机碳的城郊区域差异与城—郊梯度变化分析。
     第五部分是结论与讨论(第九章),主要包括本研究的基本结论,及研究中存在的不足和今后的研究展望。
     通过研究,得出如下主要结论:
     (1)城市绿地土壤表层有机碳含量与密度均高于郊区土壤和非绿地土壤,剖面有机碳密度是郊区土壤的1.15倍。绿地土壤表层活性有机碳贮存量高于非绿地土壤;土壤活性有机碳中的颗粒有机碳(POC)和轻组有机碳(LFOC)均高于郊区土壤,易氧化有机碳(ROC)和水溶性有机碳(WSOC)则均低于郊区土壤。绿地土壤表层腐殖质碳贮存低于郊区土壤,其在有机碳中的比例比郊区土壤低10.76%。土壤胡敏酸含碳量和胡敏素含碳量均高于郊区土壤,富里酸含碳量则比郊区土壤低31%。城市土壤胡富比(HA/FA)均值比郊区土壤高0.09,而胡敏酸的E4/E6均值比郊区土壤低0.03。城市土壤表层黑碳含量是郊区土壤的1.34倍。
     (2)城市不同功能区内土壤有机碳、活性有机碳、腐殖质碳和黑碳的贮存均呈明显差异。表层有机碳含量与密度均为:工业区>行政区>道路邻近区>居民区>文教区>休闲区。剖面有机碳密度为:文教区>道路临近区>工业区>行政/居民区>休闲区。活性有机碳的功能区差异中,以工业区和行政区土壤POC、ROC、LFOC的贮存最多,文教区和休闲区的贮存最少;休闲区土壤WSOC的贮存最多,工业区和行政区的贮存最少。土壤表层腐殖质碳及其组分的碳贮存均以工业区为最多,休闲区最少。土壤腐殖质的聚合程度(HA/FA)则以休闲区为最好,工业区最差。土壤胡敏酸的芳构化度(E4/E6)为:文教区<工业区<行政区<道路临近区。土壤表层黑碳的功能区差异为:工业区>行政区>文教区>道路临近区>休闲区>居民区。
     (3)非绿地土壤中裸地土壤的有机碳贮存优于建筑物及道路覆盖下土壤。土壤表层POC、ROC、LFOC含量与密度均为裸地土壤>建筑物覆盖土壤>道路覆盖土壤;土壤表层WSOC含量为裸地土壤>建筑物覆盖土壤>道路覆盖土壤,WSOC密度则以道路覆盖土壤的最高,分别是裸地土壤和建筑物覆盖土壤的1.33和1.50倍。
     (4)绿地土壤有机碳、活性有机碳、腐殖质碳呈现出不同的水平分布特征。土壤有机碳由开封市东部区域向西北区域呈环状递减。土壤POC呈带状延伸,且沿东南–西北向逐渐降低;ROC呈由南向北带状递减的水平分布格局;WSOC的空间分布形态为斑块状,分别在城市东南部、西部及其以西的郊区、东南郊区出现三个高值区;LFOC呈由东向西逐渐递减的水平分布格局。腐殖质碳为由东向西和由城市中心向南、向北两方向递减。
     (5)绿地土壤有机碳、腐殖质碳、活性有机碳的垂直分布基本都表现为随深度的增加而降低,具有一定的表聚性。约40%~60%的有机碳贮存在0~30cm的层段内,该层段内LFOC、POC和ROC贮存量分别占剖面总量的46.59%、56.41%和50.31%;土壤WSOC在0~30 cm和30~60 cm两个层段内的贮存量占剖面总量的百分比相近,分别为30.62%和30.08%。腐殖质组分随深度增加而垂向递减的变化规律由强至弱为:胡敏素碳>胡敏酸碳>富里酸碳。土壤HA/FA沿剖面的垂向变化无特定规律。土壤胡敏酸E4/E6值随土壤深度的增加呈幂函数下降(R2=0.448~0.988,p<0.05)。非绿地土壤有机碳、黑碳也呈现出随深度增加而降低的垂向变化。
     (6)在纵向时间对比中,土壤表层有机碳含量、密度和剖面有机碳密度均随时间增长有所增加,增幅分别在0.99~28.19 g kg–1、0.12~3.39 kg m~(-2)和0.39~7.59 kg m–2之间。在横向时间对比中,I时段(20世纪初以前)的土壤表层有机碳含量、密度分别是Ⅱ时段(20世纪初之后)土壤的1.19倍(p>0.05)和1.08倍(p>0.05)。I时段土壤的LFOC、POC、ROC、腐殖质碳含量分别为Ⅱ时段土壤的1.15、1.35、1.44和1.16倍;土壤WSOC的横向差异不大;Ⅰ时段土壤的HA/FA低于Ⅱ时段土壤。
     (7)土壤有机碳的城—郊梯度变化为:表层有机碳与剖面有机碳在各梯度线上均为城区土壤高于郊区土壤,但老城区、新城区、郊区间的差异在4条梯度线上各异;随着离城市中心距离的增加,有机碳贮存减少。土壤腐殖质碳沿城—郊的梯度变化无可循规律,但其在有机碳中所占的比例表现为郊区>老城区>新城区,且随离城市中心距离的增加而增大。土壤HA/FA随离城市中心距离的增加无显著变化。土壤胡敏酸E4/E6总体表现为城区土壤低于郊区土壤。城区土壤LFOC、POC、BC的贮存总体上高于郊区土壤,3种组分有机碳均随离城市中心距离的增加而降低。城区土壤WSOC贮存低于郊区土壤,表现为随离城市中心距离的增加而增多。土壤ROC在城郊区域间无明显差异,沿城—郊梯度线的变化情况也较复杂,在市区北部梯度线上其与距离间呈低度线性负相关;在南部梯度线上受距离因子的影响则很微弱。城区土壤黑碳含量高于郊区土壤,随离城市中心距离的增加土壤黑碳表现出降低的变化趋势。
With the industrialization in most countries, Urbanization carried out in global area. The long–term and continuous land expansion changed the land use and land cover, what had profound influence on soil organic carbon. The early researches of the urban soils focused on the fertility, including the characteristics and chemical components. Afterwards, with the serious situation of global environment, soil organic carbon of urban soils were concerned. The current researches concerned on the topsoil and sub–surface layer of soil, ignoring the vertical distribution of soil organic carbon; concerned on the soil covered by vegetation, ignoring the soil with no vegetation cover; concerned on the total organic carbon, ignoring the components; and the researches on temporal variation of soil organic carbon were not enough. Therefore, to be familiar with the influence of urbanization on soil organic carbon depended on deeper and wider researches. Taking Kaifeng city which had about 2700 yrs city–building history as the research object, the components, storage and temporal–spatial variations of soil organic carbon were studied based on the sampling and experiment. 25 norm soil profiles in greenlands, 8 soil profiles in lands with non–vegetation cover and 112 topsoil samples were set, collecting 91 profile samples in greenlands, 79 profile samples with non–vegetation cover and 112 topsoil samples. The samples were experimented on physical–chemical property, organic carbon, humus, light fraction organic carbon, Particulate organic carbon, Readily oxidizable carbon, water–soluble organic carbon and black carbon. There were nine chapters in the paper, including five sections:
     The first section was introduction(the first chapter), including the background, survey, existing problems, trend of urban soil organic carbon; main contents and significance of this paper.
     The second section was material and methods(the second chapter), including natural and socioeconomic status , environmental pollution situation; setting and collection of soil samples; experimental methods of items; data processing method; technical route of this paper.
     The third section was the components, storage and temporal–spatial variations of urban soils(the third, fourth, fifth and sixth chapter), including storage, difference among functional districts, horizontal and vertical distribution of soil organic carbon, active organic carbon, carbon in humus(carbon in humic acid, fulvic acid and humin) and black carbon.
     The fourth section was the temporal variations and variations along transaction line from urban areas to suburbs(the seventh and eighth chapter), including the difference of soil organic carbon in topsoil and profile along the time; the difference of soil organic carbon and active organic carbon in topsoil among different–aging greenlands; variations of soil organic carbon and the components between urban areas and suburbs, and along the transaction line from the center of urban area to suburbs.
     The fifth section was conclusion and discussion(the ninth chapter), including the conclusion, deficiency and prospect of this research.
     The main results were as follows:
     (1)The contents and densities of soil organic carbon in topsoil of urban areas were higher than soils with non–vegetation cover and soils in suburbs. Urban soils had 1.15–fold more densities of soil organic carbon(SOCD) in profiles than suburbs. The storage of soil organic carbon in greenlands was higher than lands with non–vegetation cover; the values of POC and LFOC in urban soils were higher than that in suburbs, the situation of ROC and WSOC were the opposite. The storage of humus in urban soils was lower than that in suburbs, and the percentage of carbon in humus in total organic carbon in urban soils was lower than that in suburbs by 10.76%. The contents of carbon in humic acid and humin were higher in urban soils than that in suburbs, the contents of carbon in fulvic acid in urban soils was lower than that in suburbs by 31%. The value of HA/FA in urban soils was 0.09 higher than that in suburbs. The value of E4/E6 in urban soils was 0.03 lower than that in suburbs. The urban soils had 1.34–fold more BC in topsoil than suburbs.
     (2) The storage of soil organic carbon, active organic carbon, carbon in humus and BC were different among functional districts. The order of the contents and densities of topsoil were all industrial district > administrative district> traffic district > residential district > cultural/educational district >recreational district. The SOCD in profile followed the order of cultural/educational district> traffic district >industrial district > residential/administrative district > recreational district. Industrial district and administrative district had the higher storage of POC, ROC and LFOC; cultural/educational district and recreational district had the lower storage of them. However, the storage of WSOC in recreational district was the highest among functional districts, and the storage WSOC in industrial district and administrative district were lower. The storage of carbon in humus and its components were the highest in industrial districts, the lowest in recreational district. The value of HA/FA was the highest in recreational district, the lowest in industrial districts. The order of the value of E4/E6 was cultural/educational district administrative district> cultural/educational district> traffic district> recreational district> residential district.
     (3) The storage of soil organic carbon in bare land was higher than that in land with building and road cover. The contents and densities of POC, ROC and LFOC in topsoil all followed the orders of bare lands> lands covered by buildings> land covered by road. The content of WSOC followed the order of bare lands> lands covered by buildings> land covered by road. However, the soils in land covered by road had 1.33–fold and 1.50–fold more density of WSOC than bare lands and lands covered by buildings, respectively.
     (4) The horizontal distribution of soil organic carbon, active organic carbon and carbon in humus were different. The shape of horizontal distribution of soil organic carbon was annular, and the contents declined from the east area to northwestern area. The distribution of POC took on a string shape, and the contents declined from southeastern area to northwestern area. The content of ROC declined from the southern area to northern area. The shape of WSOC’s distribution was speckle, with three high value centers in southeastern area and western area in urban area, western area and southeastern area in suburbs, respectively. The value of LFOC declined from eastern area to western area. The value of carbon in humus declined from eastern area to western area, and from the center of urban area to northern area, and to southern area, respectively.
     (5) The contents of soil organic carbon, carbon in humus and active organic carbon in greenlands declined with the depth. They were mainly distributed within the scope of 0~30cm, with about 40~60% of soil organic carbon, 46.59% of LFOC, 56.41% of POC, 50.31% of ROC. The storage of WSOC in the scope of 0~30cm and 30~60cm were closed, with the percentages of 30.62% and 30.08%, respectively. The components of humus declined with the depth, and the order of regularity was carbon in humin>carbon in humic acid> fulvic acid. There was no obvious variation of HA/FA in vertical distribution. The vertical distribution of E4/E6 followed the regularity of power function(R~2=0.448~0.988,p<0.05). The soil organic carbon and BC in topsoil of lands covered with no vegetation declined with the depth.
     (6) The contents and densities in topsoil and densities in profile increased with the time, with the increasing range of 0.99~28.19 g kg~(–1), 0.12~3.39 kg m~(–2) and 0.39~7.59 kg m~(–2), respectively. Period I(before the early of 20th century) had 1.19–fold more content of soil organic carbon and 1.08–fold more SOCD in topsoil than period II(after the early of 20th century), respectively. The contents of LFOC, POC, ROC and carbon in humus of period I were 1.15, 1.35, 1.44 and 1.16 times more than periodⅡ, respectively. There was no obvious rise of WSOC. The value of HA/FA of periodⅠwas lower than periodⅡ.
     (7) The storage of soil organic carbon in topsoil and in profile in urban area were higher than that in suburbs along the transaction line. The storage of soil organic carbon declined from the center of urban area to suburbs. There was obvious variation of the contents of carbon in humus along the transaction line. however, the percentage of it in total organic carbon was followed the order suburbs>old urban area> new urban area, and the percentage increased along the transaction line from the center of urban area to suburbs. There was no obvious variation of HA/FA in this line. The value of E4/E6 in urban area was higher than that in suburbs. The storage of LFOC, POC and BC in urban area were higher than that in suburbs, and they all declined from the center of city to suburbs. The storage of WSOC in urban area was lower than that in suburbs, increasing with the distance. The storage of ROC in urban area was similar to that in suburbs, and took on a complicated variation in transaction line. The contents of BC in urban area was higher than that in suburbs, and it declined with the distance.
引文
Adamat R A, Rawajfih Z, Easter M.et al. 2007.Predicted soil organic carbon stocks and changes in Jordan between 2000 and 2030 made using the GEFSOC Modelling System[J]. Agriculture,Ecosystems and Environment,122(1):35~45.
    Angers D A,Giroux M. 1996. Recently deposited organic matter in soil water-stable aggregates[J]. Soil Science Society of America Journal,60:1547~1551.
    Angers D A, Voroney R P, C?téD, et al. 1995. Dynamics of soil organic matter and corn residues affected by tillage practices[J]. American Journal of Soil Science Society, 59(5):1311~1315.
    Batjes N H. 1996. Total carbon and nitrogen in soils of the world[J]. European Journal of Soil Science, 47(2): 151~163.
    Beets P N, Oliver G R, Clinton P W. 2002. Soil carbon protection in podocarp/hardwood forest, and effects of conversion to pasture and exotic pine forest [J]. Environ-Pollut, 116(Suppl 1): 63~73.
    Beyer L, Blume H P, Elsner D C, et al. 1995. Soil organic matter composition and microbial activity in urban soils[J].Science of theTotal Environment, 168(3): 267~278.
    Beyer L, Kahle P, Kretschmer H, et al. 2001. Soil organic matter composition of man~impacted urban sites in North Germany[J]. Journal of Plant Nutrition and Soil Science, 164(4): 359~364.
    Bird M I. 1997. Fire in the earth science[J]. Episodes,20:223~226.
    Bird M I, Grocke D R. 1997. Determination of the abundance and carbon isotope composition of elemental carbon in sediments[J]. Geochim Cosmochim Acta, 61: 3413~3423.
    Blair G J, Lefroyr D B, Lislel. 1995. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems [J].Australian Journal ofAgricultural Research, 46(7):1 459~1466.
    Blume H P. 1975. Zur Gliederung anthropogener Báden [J]. Mitteilungen Deutsche Bodenkundliche Gesellschaft, 22: 597~602.
    Bockheim J G. 1974. Nature and properties od highly-disturbed urban soils[M]. Philadelphia. Pennsylvania. Paper presented before Division S5. Soil Genesis, Morphology and Classification. Annual Meeting of the Soil Society of America. Chicago.
    Broos K, Macdonald L M, Warne M S J, et al. 2007. Limitations of soil microbial biomass carbon as an indicator of soil pollution in the field[J]. Soil Biology&Biochemistry, 39(10): 2693~2695.
    Brown S, Lugo A E. 1984. Biomass of tropical forests:A new estimate based on forest volumes[J]. Science, 223(4642): 1290~1293.
    Brown S.Lugo A E.Iverson L R.1992. Processes and lands for sequestering carbon in the tropical forest landscape[J]. Water Air Soil Pollut.,64(1-2):l39~l55.
    Bucheli T D, Blum F, Desaules A, et al. 2004. Polycyclic aromatic hydrocarbons, black carbon, andmolecular markers in soils of Switzer-land[J]. Chemosphere, 56:1061~1076.
    Bullock P,Gregory P. 1991. Soils in the urban environment Blackwell Scientific Publications[M].Great Britain:Oxford.
    Cairns M A, Brown S, Helmer E H, et al. 1997. Root biomass allocation in the world’s upland forests[J]. Oecologia, 111: 1~11.
    Cambardella C, Elliott E.1992. Particulate soil organic matter changes across a grassland cultivation sequence[J].Soil Science Society of America Journal, 56(3): 777~783.
    Cambardella C A, Moorman T B, Novak J M, et al.1994. Field-scale variability of soil properties in central Iowa soils.Soil Science Society of America Journal,58:1501~1511.
    Cambardella C, Elliott E. 1992. Particulate soil organic matter changes across a grassland cultivation sequence[J].Soil Science Society ofAmerica Journal, 56(3): 777~783.
    Camberdella C A, Elliott E T. 1993. Methods for physical separation and characterization of soil organic fractions[J].Geoderma, 56:449~457.
    Carrera A, Ares J, Labraga J, et al. 2007. Scenarios of Future Climate and Land-Management Effects on Carbon Stocks in Northern Patagonian Shrublands[J]. Environmental Management, 40(6):944~957.
    Caravaca E,Lax A, Albaladeio J. 2004. Aggregate stability and carbon characteristics of particle-sized fractions in cultivated and forested soils of semiarid Spain[J]. Soil&Tillage Reasearch,78:83~90.
    Chang K T著. 2003.陈健飞等译.地理信息系统导论[M].科学出版社.
    Chen T B,Zhou H Y,Wong M H,et al. 1997. Assessment of trace metal distribution and contamination in surface soils of Hong Kong[J].Environ Poll, 96(1): 61~68.
    Chirenje T, Rivero,C, Ma L Q. 2002. Leachability of Cu and Ni in wood ash-amended soil as impacted by humic and fulvic acid[J]. Geoderma, 108(l-2):31~47.
    Craul P J. 1985. A description of urban soil and their desired characteristics[J]. Journal of Arboriculture, 11(11): 330~339.
    Craul P J. 1992. Urban soil in landscape design [M]. New York: John Wiley and Sons Inc , 86: 85~122. Craul P J. 1999. Urban Soil: Application and Practices[M]. Wiley, New York:9 .
    Dalal R C, Chan K Y. 2001. Soil organic matter in rainfed cropping systems of the Australian cereal belt[J]. Aust J Soil Res, 39(33): 435~464.
    David J N, Daniel E C. 2002. Carbon storage and sequestration by urban trees in the UAS[J]. Environmental Pollution, 116(3): 381~389.
    Davidson E A, Trumbore S E, Amundson R. 2000. Soilwarming and organic carbon content[J]. Nature, 408(14): 789~790.
    De Kimpe C R, Morel J L. 2000. Urban soil management: A growing conern[J]. Soil Science, 165 (1): 31~40.
    Druffel E R M. 2004. Comments on the importance of black carbon in the global carbon cycle[J].Marine Chemistry ,92:197~200.
    Fenger S. 1999. Urban air quality[J]. Atmospheric Environment, 33:4877~4 900.
    Fischer T, Einfluβ. 1993. Winterweizen and Winterroggen in fertilizer mineralization function of die micro-Biomass and dynamics Bodes[J].Arch Acker,37:181~189.
    Flessa H,Ludwig B,Heil B,et a1.2000. The origin of soil organic C,dissolved organic Carbon and respiration in a long-term experiment in Halle,Germany,determined by 13C natural abundance[J]. Journal of Plant Nutr.Soil Sci, 163: 157~163.
    Friedlingstein P, Dufresne J L, Cox P M, et al. 2003. How positive is the feedback between climate change and the carbon cycle? [J].Tellus B, 55B: 692~700.
    Fruin S A, Winer A M, Rodes C E. 2004. Black carbon concentrations in California vehicles and estimation of in-vehicle diesel exhaust particulate matter exposures[J]. Atmospheric Environment, 38: 4123~4133.
    Garten C T, Post WM, Hanson P J, et al. 1999. Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains[J].Biogeochemistry, 45(2):115~145.
    Gbadegesinu A, Olabode M A. 2000. Soil properties in the metropolitan region of Ibadan, Nigeria: implications for the management of the urban environment of developing countries[J]. The Environmentalist, 20(3): 205~ 214.
    Ghani A, Dexter M, Perrott K W. 2003. Hot-water extractable carbon in soils:a sensitive measurement for determining impacts of fertilization,grazing and cultivation[J].Soil Biol.and Biochem, 35:1231~1243.
    Giardina C P, Ryan M G. 2000. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature, 404: 858~861.
    Glaser B, Balashov E, Haumaier L et al. 2000. Black Carbon in density fractions of anthropogenic soils of the Brazilian Amazon region[J]. Organic Geochemistry, 31 (7-8): 669~678.
    Glaser B, Haumaier L, Guggenberger G, et al. 1998. Black carbon in soils: the use of benzenecarboxylic acids as specific markers[J].Organic Geochemistry, 29 (4) : 811~819.
    Golchin A, Clarke P, Baldock J A, et al. 1997. The effect of vegetation and burning on the chemical composition of soil organic matter in a volcanic ash soil as shown by 13C NMR spectroscopy. I. Whoke soil and humic acid fraction[J]. Geoderma,76: 155~174.
    Golchin A, Oades J M, Kjemstad J O, et al. 1994. Soil structure and carbon cycling[J]. Aust. J. Soil Res,32: 1 043~1 068.
    Goldberg E D. 1985. Black Carbon in the Environment: Properties and Distribution[M]. John Wiley, New York.
    Coleman D C, Reid C P P, Cole C V . 1983. Biological strategies of nutrient cycling in soil systems[J]. Advances in Ecological Research,13: 1~55.
    Golubiewski N E. 2006. Urbanization transforms prairie carbon pools:effects of landscaping in Colorado’s Front Range[J]. Ecol Appl, 16(2): 555~571.
    Griffin J J, Goldberg E D. 1975. The fluxes of element carbon in coastal marine sediments[J]. Limnoldceangr,20:456~463.
    Groffman P M, Carreiro M M, Parmelee R W, et al. 1995a . Carbon and nitrogen dynamics in oak stands along an urban-rural gradient. In:Kelly J M, McFee W W (Eds.). Carbon Forms and Functions in ForestSoils[J]. Soil Science Society of America. Madison. WI, 569~587.
    Groffman P M, Pouyat R V, Cadenasso M L, et al. 2006. Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests[J].Forest Ecology and Management, 236 :177-192
    Groffman P M, Pouyat R V, McDonnell M J, et al. 1995b. Carbon pools and trace gas fluxes in urban forest soils. In: Lal R, Kimble J, Levine E, Stewart, B A (Eds.), Soil Management and Greenhouse Effect[M]. CRC Press,Boca Raton, Florida, 147~157.
    Hagedorn F,Blaser P,Siegwolf R.2002.E1evated atmospheric CO2 and increased N deposition effects on dissolved organic carbon-clues fromδ13C signature[J].Soil.Biol.Biochem, 34(3):355~366.
    Hamilton A, Hartnett H E. 2008. Black Carbon Concentrations in Urban and Rural Arid-Land Soils[A]. American Geophysical Union, Fall Meeting[C].
    Han Y M, Cao J J, Chow J C. 2009. Elemental carbon in urban soils and road dusts in Xi'an, China and its implication for air pollution[J]. Atmospheric Environment, 43(15): 2464~2470.
    Haumaier L, Zech W. 1995. Black carbon - possible source of highly aromatic components of soil humic acids[J]. Org. Geochem, 23: 191~196.
    Houghton R A. 1991. Tropical deforestation and atmospheric carbon dioxide[J].Clim Change, 19(1-2): 99~118.
    Houghton R A. 1995. Changes in the storage of terrestrial carbon since 1850. In: Lai Retal. Soils and Global Change[M]. Boca Raton: CRC Press. Inc, 45~65.
    Houghton R A, Hackler J L. 1999. Carbon flux to the Atmosphere from Land-use Changes:1850 to 1990[J]. Tellus, 51B: 144.
    Houghton R A, Hackler J L. 2003. Sources and sinks of carbon from land-use change in China[J]. Global biogeochemical cycles, 17(2): 1034~1047.
    Haynes R J, Francis G S. 1993. Changes inmicrobial biomass C, soil carbohydrate composition and aggregate stability induced by growth of selected crop and forage species under field conditions[J].Soil Sci, 44: 665~675. IPCC. 2007. http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_cn.pdf[J/OL].
    Jacobsen M Z. 2002. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming[J]. Journal Geophysical Research, 107: 4410~4431.
    Jackson R B, Canadell J, Ehleringer J R, et al. 1996 . A global analysis of root distributions for terrestrial biomes[J]. Oecologia ,108: 389~411.
    Jana B K , Biswas S, Majumder M, et al. 2008. Carbon Sequestration in Urban and Recreational Forest: A Case Study at Banobitan in Kolkata[J/OL]. Anthro. Philica. com. http://philica.com/display_article.php?article_id=132,2009-05-10.
    Jiang Y, Zhang Y G, Liang W J, et al. 2005. Profile distribution and storage of soil organic carbon in an Aquic Brown Soil as affected by land use[J]. Agriculture Science in China, 4(3): 199~206.
    Jim C Y. 1998. Soil characteristics and management in an urban park in Hong Kong[J]. EnvironmentalManagement, 22(5): 683~695.
    Jobbágy E G, Jackson R B. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J]. EcologicalApplications, 10(2):423~436.
    Jo H K, Mcpherson E G. 1995. Carbon storage and flux in urban residential green space[J].Journal of Environmental Management, 45(2): 109~133.
    Jo H K. 2002. Impacts of urban greenspace on offsetting carbon emissions for middle Korea[J]. Journal of Environmental Management, 64(1552):115~126.
    Johns M M, Skogley E O. 1994. Soil organic matter testing and labile carbon identification by carbon aceous resin capsules. Soil Science Society of America Journal, 58(3): 751~758.
    Kalbitz K, Solinger S, Park J H, et al. 2000. Controls on the dynamics of dissolved organic matter in soils: A review[J].Soil Science,165: 277~304.
    Kaupp P E, Ausubel J H, Fang J, et al. 2006. Returning forests analyzed with the forest identity[J]. Proc Natl Acad Sci USA, 136: 17574~17579.
    Kaye J P, McCulley R L, Burke I C. 2005. Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems[J]. Glob Change Biol, 11(4): 575~587.
    Kern J S. 1994. Spatial patterns of organic carbon in the contiguous United States[J]. Soil Sci Am J, 58: 439~455.
    Koerner B, Klopatek J. 2002. Anthropogenic and natural CO_2 emission sources in an arid urban environment [J]. Environmental Pollution,116(Suppl 1):45~51.
    Krull E S, Baldock J A, Skjemstad J O. 2003. Importance of mechanisms and processes of the stabilization of soil organic matter for modelling carbon turnover[J]. Functional Plant Biology, 30:207~222.
    Kuhlbusch T A J. 1998. Black carbon and the carbon cycle? [J]. Science, 280:1903~1904.
    Kuiters A T, Mulder W. 1993. Water-soluber organic matter in forest soils. I. Complexing properties and implications for soil equilibrium[J]. Plant and Soil, 152:215~224.
    Lal R. 1999.World soils and the greenhouse effect[J]. Global Change News Letter,37:4~5.
    Lal R. 2002. Soil C sequestration in China through agricultural intensification and restoration of degraded and desertified soils[J]. Land Degradation &Development, 13(6): 469~478.
    Lee P F, Ding T S, Hsu F H, et al. 2004. Breeding bird species richness in Taiwan: Distribution on gradients of elevation, primary productivity and urbanization [J]. Biogeogr, 31(2): 307~314.
    Lehmann A, Stahr K. 2007. Nature and Significance of Anthropogenic Urban Soils[J]. Soils Sediments, 7(4): 247~260.
    Lewis D B, Kaye J P, Gries C, et al. 2006. Agrarian legacy in soil nutrient pools of urbanizing arid lands[J]. Global ChangeBiology, 12(4): 703~709.
    Li C, Frolking S, Frolking T A. 1992. A model of nitrous oxide evolution from soil driven by rainfallevents: 1. Model structure and sensitivity[J]. Journal of Geographysical Research, 97(D9): 9759~9776.
    Livens F R. 1991. Chemical reactions of metals with humic material[J]. Envirimental pollution,70:183-208.
    Loren B B, Mary A B, Ke C K. 2008. Ecosystem Properties of Urban Land Covers at the Aboveground-Belowground Interface[J].Ecosystems,11(7):1065-1077.
    Lorenz K, Kandeler E. 2005. Biochemical characterization of urban soil profiles from Stuttgart. Germany[J]. Soil Biology.Biochemistry, 37(7): 1373~1385.
    Lorenz K. Lai R.2009. Biogeochemical C And N Cycles In Urban Soils[J]. Environment International, 35(1):1~8.
    Madhun Y A, Young J L, Freed V H. 1986. Binding of herbicides by water-soluble organic materials from soil[J]. J. Environ. Qual, 15:64~68.
    Maechling P, Cook H, Bockheim J G. 1974. Nature and properties of highly disturbed urban soils.161 In:Agronomy Abstracts ASA. Madison,Wisconsin,USA.
    Marland G, Boden T A, Andres R J, et al. 2000. Global, regional and national CO_2 emissions [A].Carbon Dioxide Information Analysis Center,Oak Ridge National Iabrotary, US Department of Energy.Trends: a Compendium of Date on Global Change[C]. Oak Ridge,Tennessee.
    Martin A. 1991. Short and long-term effects of the endogeic earthworm Millsonia anomala(Omodeo) (Megascolescidae, Oligochaeta)[J]. Biology and Fertility of Soils,11: 234~238.
    Masiello C A. 2004. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 92:201~213.
    Masiello C A, Druffel E R M. 1998. Black carbon in deep-sea sediment? [J]. Science , 280:1911~1913.
    Mazhitova G G, Kazakov V G, Lopatin E V, et al. 2003. Geographic information system and Soil carbon estimates for the Usa River Basin, Komi Republic [J]. Eurasian Soil Science, 36(2): 123~135.
    McDonnell M J ,Pickett S T A,Groffman P, et al. 1997. Ecosystem processes along an urban to rural gradient[J].Urban Ecosystems,1:21~36.
    McGill W B, Cannon K R, Robertson J A, Cook F D. 1986. Dynamics of soil microbial biomass and water-soluble organic C in Berton L after 50 years of cropping to two rotations[J]. Can.J.Soil Sci, 66:1~19.
    McKinney M L. 2002. Urbanization, biodiversity, and conservation [J]. BioScience, 52(10): 883~890. Medalia A I, Rivin D. 1982. Particulate carbon and other components of soot and black carbon [J ]. Carbon, 20: 481~492.
    Mestdagh I, Sleutel S, Lootens P, et al. 2005. Soil organic carbon stocks in verges and urban areas of Flanders[J]. Belgium. Grass & Forage Science, 60( 2): 151~156.
    Mφller J,Miller M,Kjoller A. 1999. Fungal-bacterial interaction on beeeh leaves:influence on Decomposition and dissolved organic carbon quality[J]. Soil.Biol.Biochem, 31(3):367~374.
    Moore T R,Souza W D E,Koprivnjak J F. 1992. Controls on the sorption of dissolved organic carbon by soils[J]. Soil.Sci, 154:120~129.
    Needelman B A, Wander M M, Bollero G A, et al. 1999. Interaction of tillage and soil texture: Biologically active soil organic matter in Illinois[J].Soil, Sci. Am. J.,63:1326~1334.
    Nehls T, Brodowski S. 2007. Black Carbon in Paved Urban Soils[R]. Geophysical Research Abstracts, 9. 09717.
    Nelson S D, Farmer W J, Letey J, et a1. 2000. Stability and mobility of napropamide complexed withdissolved organic matter in soil columns[J].Environ Qual, 29:1856~1862.
    Ning Z H, Abdollahi K K. 1998. Assessing carbon sequestration of urban tree species in response to elevated atmospheric CO2: An overview of the past and present research[A]. Meeting in the middle: Proceedings of the 1997 Society of American Foresters National Convention[C]. Society of American Foresters. Bethesda, MD (US), 93~100.
    Norra S, Fjer N, Li F, et al. 2008. The Influence of Different Land Uses on Mineralogical and Chemical Composition and Horizonation of Urban Soil Profiles in Qingdao, China[J]. J Soils Sediments, 8(1): 4~16.
    Oades J M. 1995. Kransnozems-organic matter[J]. Aust. J. Soil Res, 33: 43~57.
    Ogren J A, Charlson R J. 1983. Elemental carbon in the atmosphere: cycle and lifetime[J]. Tellus, 35B: 241~254.
    Oren R, Ellsworth D S, Johnsen K H, et al. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere [J]. Nature, 411(6836): 469~472.
    Pandey D D , Kumar M. 2007. Characteristics of Urban and Suburban soil in different seasons of Rohtas district, Bihar[J]. Environment and Ecology,25S(S1):69-70.
    Paul K I, Polglase P J, Nyakuengama J G, et al. 2002. Change in soil carbon following afforestation [J]. Forest Ecology and Management, 168(1-3): 241~257.
    Post W M, Rmanuel W E, et al. 1982. Soil carbon pools and world life zones[J]. Nature, 298(8): 156~159.
    Potter C S, Randerson J T, Field C B, et al. 1993. Terrestrial ecosystem production, aprocess model based on global satellite and surface data[J]. Global Biogeochemical Cycles, 7(4): 811~841.
    Pouyat R. Groffman P. Yesilonix I. et al. 2002. Soil carbon pools and fluxes in urban ecosystems[J]. Environmental Pollution. 116: 107~118.
    Pouyat R V, McDonnell M J. 1991. Heavy metal accumulation in forest soils along an urban~rural gradient in southeastern New York[J]. Water, Air, and Soil Pollution, 57(58): 797~807.
    Pouyat R V, McDonnell M J, Pickett S T A. 1995. Soil characteristics of oak stands along an urban~rural land use gradient[J]. Journal Environ Quality, 24(3): 516~526.
    Pouyat R V, Yesilonis I D, Nowak D J. 2006. Carbon Storage by Urban Soils in the United States[J]. Environmental Quality, 35(4): 1566~1575.
    Pouyat R V.Yesilonis I D. Golubiewski N E. 2008. A comparison of soil organic carbon stocks between residential turf grass and native soil[J]. Urban Ecosyst, 12(1): 45~62.
    Ridriguez-Murillo J G. 2001. Organic carbon content under different types of land use and soil in peninsular Spain[J]. Biol. Fertil.Soils, 33:53~61.
    Prentice K C, Fung I Y. 1990. The sensitivity of terrestrial carbon storage to climate change[J]. Nature, 346: 48~51.
    Qian Y L, Follett R F. 2002. Assessing Soil Carbon Sequestration in Turfgrass Systems Using Long-Term Soil Testing Data[J]. Agronomy Journal, 94: 930~935.
    Qian Y L,Bandaranayake W, Parton W J, et al. 2003. Long-term effects of clipping and nitrogenmanagement in turfgrass on soil organic carbon and nitrogen dynamics:the CENTURY model simulation[J]. Environ Qual 32:1694~1700.
    Quay P D, Tilbrook B, Wong C S. 1992. Oceanic uptake of fossil fuel CO_2:carbon-13 evidence[J]. Science, 256(5053): 74~79.
    Raich J W, Potter C S, Bhagawati D. 2002. Interannual variability in global soil respiration,1980-94 [J]. Global Change Biology, 8(8): 800~812.
    Rawlins B G , Vane C H , KIM A W, et al. 2008. Methods for estimating types of soil organic carbon and their application to surveys of U K urban areas[J]. Soil Use and Management, 24 (1):47~59.
    Roscoe R and Buurman P. 2003. Tillage Effects On Soil Organic MaRer In Density Fractions Of A Cerrado Oxisol[J]. Soil and Tillage Research, 70(2): 107~119.
    Rubey W W. Geological history of sea water–Bull Geol Soc Am. 1951, 62: 1111~1148. Cited by Bohn H L. Estimate of organic carbon in world soils[A]. Manuscript abstracted in Agron. Abstr. Annual Meetings [C]. Madison, Wisconsin: Am Soc Agron. 1975, 126.
    Scharenbroch B C, Lloyd J E , Johnson-Maynard J L. 2005 .Distinguishing urban soils with physical, chemical, and biological properties[J]. Pedobiologia, 49(4):283-296.
    Schimel D S, House J I, Hibbard K A, et al. 2001. Resent patterns and mechanisms of carbon exchange by terrestrial ecosystem[J]. Nature, 414(6860): 169~172.
    Schmidt N W J,Skjemstad J O, Gehrt E et al. 1999. Charred organic carbon in German chernozernic soil[J]. Euro.J.Soil.Sci,50:351~365.
    Scholes B. 1999. Will the terrestrial carbon sink saturate soon? [J]. IGBP Global Change Newsletter, 37: 2~3.
    Scott N A, Tate K R, Ford-Robertson J, et al. 1999. Soil carbon storage in plantation forests and pastures:landuse change implications [J]. Tellus, 51B: 326~335.
    Shi G T, Chen Z L, Xu S Y, et al. 2008. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China[J]. Environ Pollut, 2(27): 1~10.
    Short J R, Fanning D S, Mcintosh M S, et al. 1986. Soils of Mall in Washington, DC:I.statistical summary of properties[J]. Soils Sci Soc Am J, 50: 699~705.
    Six J, Conant R T, Paul E A, et al. 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils[J].Plant and Soil, 241:155~176.
    Six J, Paustain K, Elliot E T, et al. 2000. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Sci. Soc. Am. J, 64: 681~689.
    Skjemstad J O, Donald A, Reicoskyb C,et al. 2002. Charcoal in U.S. agricultural soils[J].Soil Sci.Soc.Am.J., 66:1249~1255.
    Smith S V, Sleezer R O, Renwick W H, et al. 2005. Fates of Eroded Soil Organic Carbon:Mississippi Basin Case Study[J]. Ecological Applications,15(6): 1929~1940.
    Smith T M, Leemans R, Shugart H H. 1992. Sensitivity of terrestrial carbon storage to CO_2-induced climate change:comparison of four scenarios based on general circulation models[J]. Climatical Change, 21(4): 367~384.
    Sombroek W G, Nachtergaele F O, Hebel A. 1993. Amounts, dynamics and sequestering of carbon in tropical and subtropical soils[J]. AMBIO, 22(7): 417~425.
    Song G H, Li L Q, Pan G X, et al. 2005. Topsoil organic carbon storage of China and its loss by cultivation[J]. Biogeochemistry,74(1): 47~62.
    Sparling G P. 1992. Ratio of Microbial Biomass Carbon to Soil Organic Carbon as a Sensitive Indicator of Changes in Soil Organic Matter[J]. Aust J Soil Res, 30(2): 195~207.
    Spycher G, Sollins P, Rose S. 1983. Carbon and nitrogen in the light fraction of a forest soil:vertical distribution and seasonal patterns[J]. Soil Sci,135:79~86.
    Steinberg D A, Pouyat R V, Parmelee R W, et al. 1997. Earthworm abundance and nitrogen mineralization rates along an urban~rural land use gradient[J]. Soil Biology and Biochemistry, 29(3-4): 427~430.
    Stemmer M, Haberhauer G, Blochberger K, et al. 2003. Impact of heavy metal contamination in combination with acid rain on the C-dynamics in a model ecosystem. In: Knabner I K ed. Mechanisms and Regulation of OrganicMatter Stabilization in Soils. Muenhen: Hohenkammer.
    Stroganova M N, Myagkova A D, Prikofieva T V, et al. 1998. Soils of Moscow and Urban Environment [M]. Moscow: Russian Federation.
    Su Z Y, Xiong Y M, Zhu J Y, et al. 2006. Soil Organic Carbon Content and Distribution in a Small Landscape of Dongguan,South China[J].Pedosphere,16(1): 10~17.
    Tabatabai M, Weaver R W, Angle J S, et al. 1994. Methods of soil analysis:Microbiological and biochemical properties. Madison, WI:Part 2 SSSA Book Ser. 5.SSSA:775~833.
    Titlyanova A A, Bulavko G I, Kudryashova S Y, et al. 1998. The reserves and losses of organic carbon in the soils of Siberia[J]. Pochrovedenie, 31(1): 45~53.
    Valentini R. Matteucci G, Dolman A J, et al. 2000. Respiration as the main determination of carbon balance in European forsts[J].Nature, 404(6780): 861~864.
    Varadachari C, Ghosh K,李晓齐. 1993.腐殖质的形成[J].腐植酸, (04) :58~62.
    Wander M M, Traina S J, Stinner B R, et al. 1994. The effects of organic and conventional management on biologically active soil organic matter fractions[J]. Soil Sci Soc Am J, 58(4): 1130~1139.
    Webb W P. 1931. The Great Plains[M]. Boston: Ginn.
    Whitbread AM, Lefroy R D B, Blair G J. 1998 . A survey of the impact of cropping on soil physical and chemical properties in north western New South Wales[J].Aust. J. Soil. Res.,36 (4):669~681.
    Williams A, Veneman P. 2005. Effect of cultivation on soil organic matter and aggregate stability[J]. Pedosphere, 15(2): 255~262.
    Wojda T, Tracz H. 2003. Dynamics of soil respiration in urban environment of Warsaw[J]. Sylwan nr, 5: 21~27.
    World Resources Institute. 1996. World Resources: A Guide to the Global Environment. New York: Oxford University Press.
    Wu Q L, Blume H P, Beyer L, et al. 1999. Method for Characterization of Inert Organic Carbon in Ubric Anthrosols.Commum[J]. Soil Sci Plant Anal, 30(9,10): 1497~1506.
    Yu X Y, Ying G G, Kookana R. 2006. Sorp tion and desorp tion behaviors of diuron in soils amended with charcoal[J].Agricultural Food Chem istry, 54: 8545~8550.
    Zemlyanitskiy L T. 1963. Characteristics of the soils in the cities[J]. Soviet Soil Science, 5: 468~475(English translation).
    Zhang H B, Luo Y M, Wang M H, et al. 2007. Soil organic carbon storage and changes with reduction in agricultural activities in Hong Kong[J].Geoderma, 139:412~419.
    Zuberer D, Hons F, Provin T, et al. 2006. Monitoring Dissolved Organic Carbon and Nutrients in Soil Solution from an Urban Landscape[A]. The ASA~CSSA~SSSA International Annual Meetings [C], 283~286.
    北京林业大学. 2002.土壤理化分析实验指导书[S].北京:林业大学出版社.
    边振兴,王秋兵. 2003.沈阳市公园绿地土壤养分特征的研究[J].土壤通报,34(4):284~290.
    陈怀满. 2005.环境土壤学[M].北京:科学出版社.
    陈泮勤. 1996.全球增暖对自然灾害的可能影响[J].自然灾害学报, 5(2):95~101.
    陈泮勤,黄耀,于贵瑞. 2004.地球系统碳循环[M].北京:科学出版社.
    陈清硕. 1999.城市土壤的概念及其研究意义[J].南京农专学报,15(2):44~49.
    崔晓阳,方怀龙. 2001.城市绿地土壤及其管理[M].北京:中国林业出版社.
    陈嵘. 1982.中国森林史料[M].北京:中国林业出版社.
    代静玉,周江敏,秦淑平. 2004.几种有机物料分解过程中溶解性有机物质化学成分的变化[J].土壤通报, 35(6): 724~727.
    董艳,仝川,杨红玉,等. 2007.福州市自然和人工管理绿地土壤有机碳含量分析[J].杭州师范学院学报(自然科学版),6(6):440~444.
    窦森.2010.土壤有机质[M].北京:科学出版社.
    窦森,陈恩凤,须湘成,等. 1992.土壤有机培肥后胡敏酸结构特征变化规律的探讨-Ⅰ.胡敏酸的化学性质和热性质[J].土壤学报,29(2):199~207.
    窦森,张晋京,刘伟. 1995.土壤有机培肥对富里酸光学性质的影响[C].沈阳:东北大学出版社.
    段迎秋,魏忠义,韩春兰,等. 2008.东北地区城市不同土地利用类型土壤有机碳含量特征[J].沈阳农业大学学报,39(3);324~326.
    方精云,刘国华,徐嵩龄. 1996.中国陆地生态系统的碳库.见:王庚臣,温玉璞主编.温室气体浓度和排放监测及相关过程[M].北京:中国环境科学出版社, 109~139.
    方精云,唐艳鸿,林俊达,等. 2000.全球生态学气候变化与生态响应[M].北京:高等教育出版社.
    冯光,张昌全,史学正,等编. 1998.土地资源持续利用与技术[M].北京:中国大地出版社.
    冯万忠,段文标,许皞. 2008.不同土地利用方式对城市土壤理化性质及其肥力的影响—以保定市为例[J].河北农业大学学报,31(2):61~64.
    冯中梅,王贵领. 2005.殡仪馆环境污染物分析[J].环境科学与管理,30(4):95~96.
    葛全胜,戴君虎,何凡能. 2003.近300年以来中国部分地区耕地资源数量变化及驱动因素分析[J].自然科学进展,13(8):825~832.
    葛全胜,戴君虎,何凡能,等. 2008.过去300年中国土地利用、土地覆被变化与碳循环研究[J].中国科学D辑:地球科学,38(2):197~210.
    宫进忠,李广平. 2009.中国七大古都的地球化学环境特征[J].中国地质,36(5):1155~1161.
    龚伟,颜晓元,王景燕. 2009.长期施肥对小麦-玉米作物系统土壤腐殖质组分碳和氮的影响.植物营养与肥料学报, 15(6):1245~1252.
    管东生,陈玉娟,黄芬芳. 1998.广州城市绿地系统碳的贮存、分布及其在碳氧平衡中的作用[J].中国环境科学, 18(5):437~441.
    关松,窦森. 2006.土壤有机质分解与转化的驱动因素[J]安徽农业科学, 34(10):2203~2206.
    郝瑞军,方海兰,沈烈英,等. 2009.城市不同功能区绿地土壤有机碳矿化和酶活性变化[J].中国农学通报,25(2):229~235.
    河南统计局.河南统计年鉴1995-2009[M].北京:中国统计出版社.
    何跃,张甘霖. 2006.城市土壤有机碳和黑碳的含量特征与来源分析[J].土壤学报,43(2):177~182.
    何跃,张甘霖,杨金玲,等. 2007.城市化过程中黑碳的土壤记录及其环境指示意义[J].环境科学,28(10):2369~2375.
    黄昌勇. 2000.土壤学[M].北京:中国农业出版社.
    黄黎,杨俊峰,吴明作. 2008.城市土壤及植被的碳储量分析-以郑州为例[A].第十届中国科协年会论文集(二)[C].河南郑州.
    黄雪夏,倪九派,高明,等. 2005.重庆市土壤有机碳库的估算及其空间分布特征[J].水土保持学报,19(1):54~58.
    黄元仿,周志宇,张红艳,等. 2004.干旱荒漠区土壤有机质空间变异特征[J].生态学报,24(12):2776~2781.
    姜培坤,徐秋芳,杨芳. 2003.雷竹土壤水溶性有机碳及其与重金属的关系[J].浙江林学院学报, 20(1): 8~11.
    李灿.开封城市土壤性质、重金属污染及重金属含量变化分析[D].河南大学.2006.
    李海波,韩晓增,王风等. 2008.不同土地利用下黑土密度分组中碳、氮的分配变化[J].土壤学报,45(1):112~119.
    李惠敏,陆帆,唐仕敏,等. 2004.城市化过程中余杭市森林碳汇动态[J].复旦学报(自然科学版), 43(6):1044~1050.
    李家熙,葛晓立. 2005.城市土壤环境地球化学研究—以苏州市为例[J].地质通报,24(8):710~713.
    李克让,王绍强,曹明奎.2003.中国植被和土壤碳贮量[J].中国科学(D辑),33(1):72~80.
    李娟,赵秉强,李秀英. 2008.长期有机无机肥料配施对土壤微生物学特性及土壤肥力的影响[J].中国农业科学, 41(1):144~152.
    李俊生,高吉喜,张晓岚,等. 2005.城市化对生物多样性的影响研究综述[J].生态学杂志, 24(8):953~957.
    李楠,吴景贵,夏海丰. 2007.傅立叶变换红外光谱法表征玉米秆茬培肥土壤胡敏酸的变化[J].植物营养与肥料学报,13(5):974~978.
    李润田,丁圣彦,李志恒. 2006.黄河影响下开封城市的历史演变[J].地域研究与开发, 25(6):1~7.
    李淑芬,俞元春,何晟. 2002.土壤溶解有机碳的研究进展[J].土壤与环境, 11(4): 422~429.
    李天杰,赵烨,张科利,等. 2005.土壤地理学(第三版)[M].高等教育出版社.
    李卫东,张明亮,逄焕成.1996.中国暖温带黑粘土的腐殖质特性及其与土壤发生的关系[J].土壤学报, 33(4):433~438.
    李玉和. 1997.城市土壤形成特点肥力评价及利用与管理[J].中国园林,13(3):20~23.
    李正才. 2006.土地利用变化对土壤有机碳的影响[D].中国林业科学院.
    林伟宏,张福锁,1999.白克智.大气CO2浓度升高对植物根际微生物系统的影响[J].科学通报,44(16):1690~1696.
    林文鹏,赵敏,柳云龙,等. 2008.城市森林土壤表面CO2通量[J].城市环境与城市生态,21(1):1~4.
    刘春迎. 2009.揭秘开封城下城[M].北京:科学出版社.
    柳敏,宇万太,姜子绍,等. 2006.土壤活性有机碳[J].生态学杂志,25(11):1412~1417.
    刘纪远,王绍强,陈镜明,等.2004. 1990–2000年中国土壤碳氮蓄积量与土地利用变化[J].地理学报,59(4):483~496.
    刘纪远,于贵瑞,王绍强,等. 2003.陆地生态系统碳循环及其机理研究的地球信息科学方法初探[J]. 地理研究,22(4):397~405.
    刘卫国. 2007.新疆陆地生态系统净初级生产力和碳时空变化研究[D].新疆大学.
    刘兆云,章明奎. 2010.城市绿地年龄对土壤有机碳积累的影响[J].生态学杂志,29 (1) : 142~145.
    鲁如坤. 1999.土壤农业化学分析方法[M].北京:中国农业科技出版社.
    卢瑛,龚子同. 1999.城市土壤分类概述[J].土壤通报,30(1):60~64.
    卢瑛,龚子同,张甘霖. 2003.南京城市土壤的特性及其分类的初步研究[J].环境化学,22(2): 131~136.
    马建华,张丽,李亚丽. 1999.开封市城区土壤性质与污染的初步研究[J].土壤通报, 30(2):64 ~67.
    孟昭虹,周嘉. 2005.哈尔滨城市土壤理化性质研究[J].哈尔滨师范大学自然科学学报,21(4):102~105.
    潘根兴,李恋卿,张旭辉. 2002.土壤有机碳库与全球变化研究的若干前沿问题-兼开展中国水稻土有机碳固定研究的建议[J].南京农业大学学报,25(3):100~109.
    秦世广,汤洁,温玉噗. 2001.黑碳气溶胶及其在气候变化研究中的意义[J].气象, 27 (11):3~7.
    卜凯. 1941.中国土地利用[M].成都:成城出版社.
    钱杰. 2004 .大都市碳源碳汇研究—以上海市为例[D].华东师范大学.
    邱敬. 2009.福州市不同功能区土壤有机碳和黑碳对比研究[D].福建师范大学.
    全国农业分析标准化技术委员会. 1989. GB 9834-88土壤有机质测定法[S].北京:中国标准出版社.
    沈宏,曹志洪. 1998.长期施肥对不同农田生态系统土壤.有效碳库及碳素有效率的影响[J].热带亚热带土壤科学,7(1):1~5.
    沈宏,曹志洪,胡正义. 1999.土壤活性碳的表征及其生态意义[J].生态学杂志,18(3):32~38.
    史吉平,张夫道,林葆. 1998.长期施肥对土壤有机质及生物学特性的影响[J].土壤肥料,(3):7~11.
    史吉平,张夫道,林葆. 2002.长期定位施肥对土壤腐殖质理化性质的影响.中国农业科学, 35(2):174~180.
    史培军. 1997.人地系统动力学研究的现状与展望.地学前缘[J],4(1-2):201~211.
    史正军,卢瑛,钟晓. 2004.城市公园街道绿地不同剖面土壤肥力特征比较研究[J].西南农业学报,17增刊:272~275.
    宋博,马建华,李剑,等. 2007.开封市土壤动物及其对土壤污染的响应[J].土壤学报,44(3):529~535.
    仝川,董艳. 2007.城市生态系统土壤碳库特征[J].生态学杂志, 26(10): 1616~1621.
    仝川,董艳,杨红玉. 2009.福州市绿地景观土壤溶解性有机碳、微生物量碳及酶活性.生态学杂志[J], 28(6):1093~1101.
    王焕华,李恋卿,潘根兴,等. 2005 .南京市不同功能城区表土微生物碳氮与酶活性分析[J].生态学杂志.,24(3):273~277.
    王晶,何忠俊,王立东,等. 2010.“三江并流区”暗棕壤腐殖质特性及其与土壤结构的关系[J].水土保持通报, (1) :53~58.
    王俊霞. 2008.高速公路沿线土壤有机碳和黑碳含量特征分析[D] .南京林业大学.
    王其兵,李凌浩,刘先华,等. 1998.内蒙古锡林河流域草原土壤有机碳及氮素的空间异质性分析[J]. 植物生态学报,22(5):409~414.
    王秋兵,段迎秋,魏忠义,等. 2009.沈阳市城市土壤有机碳空间变异特征研究[J].土壤通报,40(2):252~257.
    王绍强,刘纪远. 2002.土壤碳蓄积量变化的影响因素研究现状[J].地球科学进展,17(4):528~534.
    王绍强,周成虎,李克让,等. 2000.中国土壤有机碳库及空间分布特征分析[J].地理学报,55(5):533~544.
    王晓蓉,章慧珠,周爱和,等. 1983.金沙江颗粒物对重金属的吸附[J].环境化学, 2(1):23~32.
    王玉玲. 2006.河南开封地区的蚂蚁资源[J].四川动物,25(3):546~548.
    王政权. 1999.地统计学及其在生态学中的应用[M].北京:科学出版社.
    韦玉春,陈锁忠等. 2005.地理建模原理与方法[M].北京:科学出版社.
    文启孝. 1984.土壤有机质研究法[M].北京:农业出版社.
    武华. 2008.土壤黑碳的初步研究[D].吉林农业大学.
    吴建国,张小全,徐德应. 2004.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报, 15 (4):593~599.
    吴新民,李恋卿,潘根兴,等. 2003.南京市不同功能城区土壤中重金属Cu、Zn、Pb和Cd的污染特征[J].环境科学, 24(3):105~111.
    奚小环,张建新,廖启林,等. 2008.多目标区域地球化学调查与土壤碳储量问题—以江苏、湖南、四川、吉林、内蒙古为例[J].第四纪研究, 28(1):58~67.
    熊雄,李艳霞,韩杰,等. 2008.堆肥腐殖质的形成和变化及其对重金属有效性的影响[J]农业环境科学学报, 27(6):2137~2142.
    熊毅,李庆奎. 1978.中国土壤[M].北京:科学出版社.
    熊毅,李庆逵. 1990.中国土壤:第二版[M].北京:科学出版社.
    熊咏梅. 2008.城市生态系统土壤碳储量的研究进展[J].广东园林, 30(2) :79~80.
    徐华清,郭元,郑爽. 2004.全球气候变化—中国面临的挑战、机遇及对策[J].经济研究参考, (84):21~26.
    许惠民,黄淳. 1988.北宋时期开封的燃料问题[J].云南社会科学, (6): 79~89.
    许学强,周一星, 2003.城市地理学[M].北京:高等教育出版社.
    薛薇. 2005. SPSS统计分析方法及应用[M].北京:电子工业出版社.
    薛正平,杨星卫,段项锁. 2002.土壤养分空间变异及合理取样数研究[J].农业工程学报, 18(4):6~9.
    杨长明,欧阳竹,董玉红. 2005.不同施肥模式对潮土有机碳组分及团聚体稳定性的影响[J].农业生态学杂志, 24(8):887~892.
    杨冬青,高峻. 2002.城市生态系统中土壤动物研究及应用进展[J].生态学杂志,21(5): 54~57.
    杨渺,李贤伟. 2006.草本与木本植被类型土壤有机碳库特征及形成机制[J/OL]. http://www.paper.edu.cn
    杨玉盛,邱仁辉,俞新妥. 1999.不同栽植代数29年生杉木林土壤腐殖质及结合形态的研究[J].林业科学, 35(3):116~119.
    叶红,黎慧娟. 2009.城市土壤碳循环特征研究进展[J].生态环境学报,18(3):1134~1138.
    于法展,尤海梅,李保杰,等. 2007.徐州市不同功能城区绿地土壤的理化性质分析[J].水土保持研究, 14(3): 85~88.
    于水强,窦森,张晋京等. 2005.不同氧气浓度多玉米秸秆分解期间腐殖质形成的影响[J].吉林农业大学学报, 27(5): 528~533.
    张甘霖,龚子同. 2000.城市土壤与环境保护[J].科学新闻周刊, 37:7.
    张甘霖,何跃,龚子同. 2004.人为土壤有机碳的分布特征及其固定意义[J].第四纪研究,24(2):149~159.
    张甘霖,骆国保,龚子同. 1998.城市土壤特性与城市土壤研究的兴起和进展[A].北京:中国大地出版社.
    张国盛. 2004.耕种方式对农田表层土壤结构及有机碳影响的研究[D].甘肃农业大学.
    章家恩,徐琪. 1997.城市土壤的形成特征及其保护[J].土壤, 29(4): 189~193.
    张甲珅,陶澍,曹军. 2000.土壤中水溶性有机碳测定中的样品保存与前处方法[J].土壤通报, 31(4): 174~176.
    章明奎,王美青,符娟林著. 2006.杭州城市土壤研究[M].北京:中国农业科学技术出版社.
    张金波,宋长春. 2003.土地利用方式对土壤碳库影响的敏感性评价指标[J].生态环境, 12(4):500~504.
    张金波,宋长春,杨文燕. 2006.沼泽湿地垦殖对土壤碳动态的影响[J].地理科学, 26(3):340~344.
    张金屯. 1998.全球气候变化对自然土壤碳、氮循环的影响[J].地理科学, 18(5): 463~471.
    张璐,张文菊,徐明岗等. 2009.长期施肥对中国3种典型农田土壤活性有机碳库变化的影响[J].中国农业科学, 42(5):1646~1655.
    张奇春,王光火. 2006.施用化肥对土壤腐殖质结构特征的影响[J].土壤学报, 43(4): 617~623..
    张小磊,何宽,安春华,等. 2006.不同土地利用方式对城市土壤活性有机碳的影响-以开封市为例[J].生态环境, 15(6): 1220~1223.
    张旭东,梁超,诸葛玉平,等. 2003.黑碳在土壤有机碳生物地球化学循环中的作用[J].土壤通报, 34 (4) : 349~355.
    赵成义. 2004.陆地不同生态系统土壤呼吸及土壤碳循环研究[D].中国农业科学院农业气象研究所博士后出站报告.
    赵劲松. 2002.污染对土壤溶解性有机质及特征化合物影响的研究[D].东北师范大学.
    中华人民共和国国家统计局. 2006.行业分类标准[S].http://www.stats.gov.cn/tjbz/hyflbz/.
    中华人民共和国国家统计局. 2008.中国统计年鉴[EB/OL]. http://www.stats.gov.cn/tjsj/ndsj/2008/indexch.htm.
    中华人民共和国建设部. 1990. GBJ137-90城市用地分类与规划建设用地标准[S].
    周光龙,尹艳,余大廷. 1992.漆酶与土壤腐殖质的形成[J].中国生漆, 11(04):20~24.
    周涛,史培军.2006.土地利用变化对中国土壤碳储量变化的间接影响[J].地球科学进展, 21(2):138~143.
    周涛,史培军,罗巾英,等. 2007.基于遥感与碳循环过程模型估算土壤有机碳储量[J].遥感学报, 11(1):127~136.
    朱祖祥主编. 1983.土壤学[M].农业出版社: 36~46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700