用户名: 密码: 验证码:
十字花科作物根肿病生防放线菌研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
十字花科作物根肿病是由芸薹根肿菌(Plasmodiophora brassicae Woron)侵染引起的严重世界性土传植物病害。1737年在英国地中海西岸和欧洲南部发现该病,近年来,呈蔓延之势,现已广泛分布于欧洲、北美、日本及中国。根肿病菌寄主范围较为广泛,不仅危害十字花科蔬菜、油菜、板蓝根和山葵,还可寄生十字花科杂草。根肿病的发生和危害日趋严重,该病危害植株根部,严重时引起根部腐烂乃至全株枯死,一旦发生,病害逐年加重,直至绝产绝收,造成重大经济损失,平均产量损失达20%-30%,严重田块直接产量损失达60%以上。芸薹根肿菌现归类于原生动物界,专性寄生,可在土壤中长期存活,难以根除。
     目前,国内外对根肿病尚无有效的防治方法。在抗病育种方面,虽已育成白菜高抗品种(如秋利皇、春福皇等),但对众多的十字花科蔬菜和油料作物尚无抗病品种;化学药剂防治虽有一定效果,但同时也带来环境污染、农药残留、破坏土壤微生态环境等诸多不利影响。由于根及根茎病害的病原物存在和危害根部,且土传病害的病原菌在土壤中越冬,故对此类病害进行生物防治有极大的潜力。因而,开展根肿病生物防治的应用基础研究和生防实践,对根肿病的生物防治具重要的理论及实践意义,从而为控制该病提供了一条有希望的途径。生防微生物的研究和开发是生物防治的重要内容,在生防微生物类群中,放线菌资源丰富,而且是微生物代谢产物中具有生物活性物质的主要产生菌,具开发应用前景。为获得能有效防治十字花科作物根肿病且性状优良的生防放线菌,本研究从根际土壤及植株体内分离并筛选放线菌入手,开展了生防放线菌的防效测定、菌株的鉴定、发酵液稳定性、抗菌谱、对防御酶系的影响、定殖状况、发酵条件的优化、活性物质的初步分离纯化及鉴定等方面的研究,取得了以下结果:
     1.生防放线菌菌株的分离、筛选及鉴定试验从茶树、红豆树、银杏树、白菜及油菜的根际土壤和根、茎、叶、枝条等材料中一共分离出放线菌368株。通过测定其对根肿病菌休眠孢子萌发的抑制作用初筛得到16株拮抗放线菌,复筛获得A316和A10两个具生防潜能的菌株。
     采用传统分类、化学分类与分子分类相结合的方法,对根肿病菌生防放线菌A316和A10进行了分类鉴定。菌株A316与链霉菌中灰红链霉菌(Streptomyces griseoruber) NBRC 12873的16S rDNA同源性高达99.9%,形态与培养特征、生理生化特性等也与灰红链霉菌高度相似,因此,将菌株A316初步鉴定为灰红链霉菌(S. griseoruber);而菌株A10在构建发育树和16S rDNA同源性分析时与GenBank数据库中多个相似性序列的亲缘关系都较近,鉴于其形态与培养特征、生理生化特性等,菌株A10仅能归于链霉菌中的灰褐类群(Streptomyces sp.)。菌株A316和A10在GenBank的序列登录号分别为HQ335354和HQ335355。
     2.菌株A316和A10对根肿病的防效及抗菌谱来自白菜根际土壤的A316和来自红豆树根部的A10对根肿病菌休眠孢子萌发的抑制作用最好,其培养液的抑制率分别高达77.58%和72.60%。菌株A316和A10的发酵液及菌悬液对根肿病菌休眠孢子的萌发均具有一定的抑制作用,因此2菌抑制根肿病菌的活性物质同时存在于发酵液和菌丝体中。通过传代实验表明,菌株A316和A10连续传代10次没有明显的活性退化现象,表明2种生防菌菌株的遗传稳定性较好。
     经室内盆栽试验测定有效抑制休眠孢子萌发的16株拮抗菌株对根肿病的防治效果发现,菌株A316和A10的盆栽防效好于其他菌株,2菌株对白菜根肿病的室内盆栽防效分别为73.69%、70.37%,对油菜根肿病的室内盆栽防效分别达75.68%、71.65%。菌株A316和A10在大田对防治根肿病同样有效,2菌株对白菜根肿病的田间小区防效分别为65.91%、60.25%,对油菜根肿病的田间小区防效分别达67.92%、61.32%。生防菌株A316和A10还可在一定程度上提高白菜的产量,其对白菜的亩增产率依次达96.1%、64.9%。
     抗菌谱实验表明,菌株A316和A10对玉米大斑病菌(Exserohilum turcicum)、玉米小斑病菌(Bipolaris maydis)、玉米弯孢病菌(Curvularia lunata)、西瓜枯萎病菌(Fusarium oxysporum)、枯草芽孢杆菌(Bacillus subtilis)等多种植物病原真菌及细菌都有不同程度的抑制作用,菌株A10较A316更具广谱性。但菌体本身与发酵液的抑菌活性之间没有必然联系。
     3.菌株A316和A10的发酵液稳定性菌株A316和A10发酵液产生的活性物质在紫外线、中性或酸性条件下比较稳定,且对蛋白酶K有较强的稳定性。pH值调到11处理后,菌株A316和A10对根肿病菌休眠孢子萌发的抑制率分别下降达28.06%和32.73%。发酵液在100℃处理30 min和60 min时,A316对根肿病菌休眠孢子萌发的抑制率仅分别下降了9.71%和13.31%,而A10的抑制率分别下降了27.69%和32.73%,因此菌株A316的发酵产物对热的稳定性也较好,菌株A10在中低温条件下稳定。菌株A316的发酵液低温储藏稳定性较好,而菌株A10发酵液的储藏稳定性不及A316,在4℃和室温下放置22 d时,菌株A316发酵液的抑制率分别下降了14.08%和28.16%,菌株A10发酵液的抑制率分别下降了25.27%和36.82%。
     4.菌株A316和A10对白菜防御酶系的影响通过测定白菜植株体内防御酶系的变化发现,接种根肿病菌的同时使用A316或A10的发酵液灌根后,白菜叶片的PAL、POD、PPO活性均明显上升,且呈现“先升后降”的趋势。对于菌株A316,PAL、POD、PPO酶活峰值分别出现在第7d (36.87 U/g-h)、第5d (141.5 U/g-min)、第5d(28.97 U/g-min),比仅接种根肿病菌时的酶活峰值依次提高了42.63%、40.45%、53.69%;而对于菌株A10, PAL、POD、PPO酶活峰值分别出现在第9d(33.4U/g-h)、第7d (133.65 U/g-min)、第7d (26.14 U/g-min),比仅接种根肿病菌时的酶活峰值依次提高了29.21%、32.66%、38.67%。
     5.菌株A316和A10的定殖采用传统的抗生素标记法,设置自然土与无菌土2个处理,分别测定了生防放线菌A316和A10的抗利福平突变菌株在土壤中及白菜植株内的定殖能力。2菌株在土壤中及植株体内均具有较强的定殖能力。自然土中,菌株A316在土壤及白菜根、茎、叶内的最大定殖菌量分别出现在14d (6.79×106cfu/g土)、17d(4.33×104cfu/g根)、17 d (2.82×103cfu/g茎)、24 d (3.8×102cfu/g叶),菌株A10在土壤及白菜根、茎、叶内的最大定殖菌量分别出现在21 d (9.23×106 cfu/g土)、17d(9.06x103cfu/g根)、17d (3.23×102cfu/g茎)、24 d (0.981×102cfu/g叶);灭菌土中,菌株A316在土壤及白菜根、茎、叶内的最大定殖菌量分别出现在14 d(2.36×106cfu/g土)、24d(1.77×104cfu/g根)、24d(7.53×102 cfu/g茎)、24d(2.71×102 cfu/g叶),菌株A10在土壤及白菜根、茎、叶内的最大定殖菌量分别出现在21 d(5.4×106cfu/g土)、17d(3.79×103cfu/g根)、24 d(2.23×102 cfu/g茎)、24d(0.851×102 cfu/g叶)。土壤中A10的定殖能力好于A316,而在植株体内A316的定殖能力好于A10。灭菌土中2菌的定殖菌量均小于自然土中的定殖菌量,灭菌土中的菌量变化幅度大于自然土。2生防菌株在植株的根内定殖数量最大,茎中次之,叶中最少。
     6.菌株A316和A10的发酵优化采用正交设计法改良生防放线菌的发酵培养基,并使用单因素分析法优化其培养条件。菌株A316的较佳培养基组成为:1%葡萄糖,1%大豆粉,0.5%酵母膏;其理想的发酵培养条件为:种子液种龄36 h,接种量8%,初始pH 7,装液量40%,温度28℃,摇床转速180r/min,发酵时间5 d。菌株A10的较佳培养基组成为:1.5%葡萄糖,1%大豆粉,0.3%蛋白胨;其理想的发酵培养条件为:种子液种龄60 h,接种量10%,初始pH 7.5,装液量30%,温度28℃,摇床转速180r/min,发酵时间6 d。
     7.菌株A316抗根肿病菌活性物质的初步分离及鉴定灰红链霉菌(Streptomyces griseoruber) A316的发酵产物经溶剂萃取、薄层层析、硅胶柱层析等进行分离纯化,得到了其抑制根肿病菌的活性物质。活性组分经气相色谱-质谱(GC-MS)联用分析后发现主要含有2种物质。化合物Ⅰ与通用型酚类抗氧剂2,2’-亚甲基双-(4-甲基-6-叔丁基苯酚)的匹配度达97.84%;化合物Ⅱ极性较大,应该是含有活泼氢的物质,与邻苯二甲酸单乙基已基酯的匹配度为74.28%。
Clubroot caused by Plasmodiophora brassicae is one of the most serious soil-borne plant diseases all over the world, which was first found in British Mediterranean west bank and southern Europe in 1737. In recent years, clubroot occurs at a spreading trend and now is widely distributed in Europe, North America, Japan and China. The hosts of P. brassicae are broad, including cruciferous vegetables, oilseed rape, radix isatidis, horseradish and cruciferous weeds. The occurrence and damage of clubroot is increasingly serious. Distorted roots with galls or clubs are the main symptoms of the disease. When the disease is severe, roots rot and even the whole plant dead, and clubroot will aggravate year after year until no harvests, leading to substantial yield losses. The average yield losses are 20%-30% and even above 60% in serious plots. Plasmodiophora brassicae is an obligate parasite, which was classified as protozoan and can survive in the soil for a long time, as a result, it is difficult to eradicate or prevent.
     At present, there are still no effective management strategies for controlling clubroot at home and abroad. In disease-resisted breeding, although few high resistant varieties were bred on Chinese cabbage such as Qiu-Lihuang, Chun-Fuhuang, there are no resistant materials for numerous cruciferous vegetables and oilseed crops. Chemical control has some effects, but also brings environmental pollution, pesticide residues, destroying the soil ecology environment, and many other adverse impacts. Due to the pathogens of roots diseases existence and harm roots of plants, and the pathogens of soil-borne diseases overwinter in the soil, so biological control have great potential for those plant diseases. Thus, conducting basic application research and bio-control practice has important theoretical and practical significance for biological control of clubroot, which provides a promising approach against P. brassicae. Study and development of antagonistic microbes is the important content of biological control. In bio-control microbial groups, actinomycetes are rich in resources, but also are the main producer of many secondary metabolites and biologically active substances. As a result, actinomycetes are important potential bio-control agents with bright development prospects. In order to search antagonistic actinomycetes with superior traits against P. brassicae, we isolated and screened actinomycetes from rhizosphere soil, root, stem and twigs of plants species. And then systematic studies of potential antagonistic actinomycetes were made, including identification, fermentation stability, antimicrobial spectrum, effects of enzyme on defense, colonization, optimization of fermentation conditions, preliminary separation and purification of active substances. The results are listed as follows:
     1. Isolation, screening and identification of antagonistic actinomycetes A total of 368 actinomycetes were isolated from rhizosphere soil, root, stem and twigs of plants species for clubroot control. The plant species included tea tree, Ormosia yaanensis, ginkgo tree, Chinese cabbage, and also oilseed rape. Results from germination rate investigation of P. brassicae resting spore after inoculation of isolated strains, there were 16 actinomycetes founded which could decrease the germination rates of P. brassicae. The control efficiencies of 16 antagonistic strains against clubroot in pot experiment were also studied. From these strains, antagonistic strains A316 and A10 were the most potential agents for biological control of clubroot.
     Adopting traditional classification, chemical classification and molecular classification, antagonistic strains A316 and A10 were identified. Based on the 16S rDNA sequence analysis, strain A316 was most closely related to Streptomyces griseoruber NBRC 12873 (99.9% similarity of 16S rDNA). Together with morphological, cultural and physio-biochemical characteristics, strain A316 was preliminary identified as S. griseoruber. While the genetic relationships between strain A10 and many sequences from GenBank database were closely related. According to morphological and cultural traits, physio-biochemical characteristics, A10 was affiliated to Griseofuscus of Streptomyces. The nucleotide sequences of A316 and A10 have been deposited in the GenBank database under accession numbers HQ335354 and HQ335355.
     2. Bio-control efficiency and antimicrobial spectrum of strains A316 and A10
     A316 was isolated from rhizosphere soil of Chinese cabbage, while A10 was from roots of Ormosia yaanensis in yaan city, Sichuan province. The resting spore germination inhibition rate of growth broths for strains A316 and A10 reached 77.58% and 72.60% respectively. The protection for clubroot conferred by the supernatant or by the mycelia was studied. Both the filtered supernatant and washed mycelia of strains A316 and A10 could decrease the germination rates of P. brassicae, so the active substances existed in supernatant and mycelia at the same time. The two strains had higher genetic stability, no obvious active degeneration phenomenon for ten generations.
     The control efficiencies of A316 and A10 against clubroot in pot experiment were 73.69%,70.37% on Chinese cabbage and 75.68%,71.65% on oilseed rape. The two antagonistic strains were also effective in field experiment, control efficiencies of A316 and A10 against clubroot in field plot experiment were 65.91%,60.25% on Chinese cabbage and 67.92%,61.32% on oilseed rape. Strains A316 and A10 could still increase production of Chinese cabbage to some extent, yield increase rate per mu were 96.1% and 64.9%.
     Inhibitory activity test in vitro showed that the two antagonistic strains had inhibition on many pathogenic fungi and bacteria to some extent, such as Exserohilum turcicum, Bipolaris maydis, Curvularia lunata, Fusarium oxysporum, Bacillus subtilis and so on. And the antimicrobial spectrum of A10 was wider than A316. There were no positive connection between filtered fermentation broth and strains itself for antimicrobial activity.
     3. Fermentation stability of strains A316 and A10 The active substances fermented by A316 and A10 were stable in ultraviolet, neutral or acidic conditions, which were also stable to proteinase K. When pH value was 11, the inhibition rate of P. brassicae treated with fermentation broths of strains A316 and A10 slumped 28.06% and 32.73%. Fermentation broths were processed for 30 min and 60 min respectively in 100℃, the inhibition rate fell only 9.71% and 13.31% for strain A316, while 27.69% and 32.73% for strain A10. So the fermentation products of A316 had thermal stability, and A10 only stabilized in low and medium temperature. The fermentation broths of A316 were stable when storing in low temperature, but the storage stability for fermentation broths of A10 was worse than A316. After placed at 4℃and root temperature respectively for 22 d, the inhibition rate fell 14.08% and 28.16% for strain A316, while 25.27% and 36.82% for strain A10.
     4. Effects of strains A316 and A10 on activities of defense enzymes in Chinese cabbage The changes of defense enzymes activities in Chinese cabbage were detected. Treated with P. brassicae and fermentation broths of bio-control actinomycetes in the meanwhile, enzyme activities of PAL, POD and PPO in the leaves of Chinese cabbage increased rapidly with trend of "earlier raised and later decreased". For strain A316, the maximum activities of PAL, POD and PPO reached in 7 d (36.87 U/g·h),5 d (141.5 U/g·min) and 5 d (28.97 U/g·min) after treatment, which increased by 42.63%,40.45%, 53.69% respectively compared to only inoculation with P. brassicae. While for strain A10, the maximum activities of PAL, POD and PPO reached in 9 d (33.4 U/g·h),7 d (133.65 U/g·min) and 7 d (26.14 U/g·min) after treatment, which increased by 29.21%,32.66%, 38.67% respectively compared to only inoculation with P. brassicae.
     5. Colonization of strains A316 and A10 Using conventional antibiotics notation, the colonization for rifampicin-resistant mutants of A316 and A10 in soil and Chinese cabbage were determined, both using natural soil and sterilized soil. Two strains had strong colonization ability in soil and plant body. In natural soil, the largest colonization quantity of strain A316 in soil and roots, stems, leaves of Chinese cabbage appeared in 14 d (6.79×106 cfu/g soil),17 d (4.33×104cfu/g root),17 d (2.82×103cfu/g stem),24 d (3.8×102 cfu/g leaf) respectively, while the largest colonization quantity of strain A10 appeared in 21 d (9.23×106 cfu/g soil),17 d (9.06×103 cfu/g root),17 d (3.23×102 cfu/g stem) and 24 d (0.981×102 cfu/g leaf); In sterilized soil, the largest colonization quantity of strain A316 in soil and roots, stems, leaves of Chinese cabbage appeared in 14 d (2.36×106 cfu/g soil),24 d (1.77×104cfu/g root),24 d (7.53×102cfu/g stem),24 d (2.71×102cfu/g leaf) respectively, while the largest colonization quantity of strain A10 appeared in 21 d (5.4×106 cfu/g soil), 17 d (3.79×103 cfu/g root),24 d (2.23×102cfu/g stem) and 24 d (0.851×102cfu/g leaf). The colonization ability of A10 was better than A316 in soil, but worse in plant body. The detectable populations of two strains in sterilized soil were lower than natural soil, and the vary range of populations in sterilized soil were larger than natural soil. Numbers of populations for A316 and A10 in roots were the most, stems and leaves followed.
     6. Optimization of fermentation for strains A316 and A10 The fermentation media and culture conditions of actinomycetes A316 and A10 were optimized by orthogonal experiment and single factor analysis, respectively. The optimal combination for strain A316 were 1% glucose,1% soybean meal,0.5% yeast extract, culture time of seed liquid 36 hours, inoculation volume 8%, initial pH 7, liquid medium volume 40%, temperature 28℃, rotated speed of shaker 180 r/min, fermentation time 5 days. While optimal combination for strain A10 were 1.5% glucose,1% soybean meal,0.3% peptone, culture time of seed liquid 60 hours, inoculation volume 10%, initial pH 7.5, liquid medium volume 30%, temperature 28℃, rotated speed of shaker 180 r/min, fermentation time 6 days.
     7. Preliminary separation and purification of active substances from strain A316 against Plasmodiophora brassicae With the help of solvent extract, thin layer chromatography, and silica gel chromatography, purified compounds with antimicrobial activities against P. brassicae were isolated from the fermentation products of Streptomyces griseoruber strain A316. According to gas chromatograph-mass spectrometer extrapolating, there were mainly two substances in the active component. The matching degree between compoundⅠand 2,2'-Methylenebis (6-tert-butyl-4-methylphenol) could reach 97.84%. CompoundⅡhad larger polarity, contained lively hydrogen, and had matching degree of 74.28% with Phthalic acid, mono-(2-ethylhexyl) ester.
引文
1. 柏建玲,王平.利用发光酶基因标记技术跟踪棉花根圈中的绿针假单胞菌PL9L[J].微生物学报,1999,39(1):43-48.
    2. 陈坚,堵国成,李寅.发酵工程实验技术[M].北京:化学工业出版社,2003.
    3. 陈力力.放线菌HNS2-2的分离、鉴定及抗烟草花叶病毒活性产物的研究.[博士论文].湖南:湖南农业大学,2007.
    4. 陈万义.新农药研究与开发[M].北京:化工出版社,1995.
    5. 陈晓斌,张炳欣,楼兵干,等.运用生色基因标记黄瓜根围促生菌(PGPR)筛选菌株[J].微生物学报,2001,41(3):287-292.
    6. 陈志谊,苗东华.拮抗细菌的定殖、浓度和喷施期与水稻纹枯病的关系[J].江苏农业学报,1998,14(1):31-35.
    7. 戴玉华,杨莲,李顺德,等.调节土壤pH防治白菜根肿病技术探索[J].中国植保导刊,2004,24(8):20-22.
    8. 邓光兵,万波,胡厚芝,等.宁南霉素防治烟草花叶病毒的生物活性[J].应用与环境生物学报,2004,10(6):695-698.
    9. 邓洁.油菜根肿孢子(Plasmodiophora brassicae)免疫检测方法的初步构建.[硕士论文].四川大学.2006.
    10.邓洁,程龙,刘谊,等.根肿(Plasmodiophora brassicae)休眠孢子的纯化和超声波破碎方法研究[J].应用与环境生物学报,2006,12(2):269-272.
    11. 杜连祥.工业微生物学实验技术[M].天津:天津科学技术出版社,1992.
    12. 方中达.植病研究方法(第三版)[M].北京:中国农业出版社,1998.
    13.高小宁,陈金艳,黄丽丽,等.油菜菌核病内生拮抗细菌的筛选及防病作用研究[J].农药学学报,2010,12(2):161-167.
    14. 顾觉奋,王鲁燕,倪盂祥.抗生素[M].上海:上海科学技术出版社,2001.
    15. 郭坚华,王玉菊,李瑾,等.抑菌圈——定殖力双重测定法筛选青枯病生防细菌[J].植物病理学报,1996,26(1):49-54.
    16. 郭龙涛.内生解淀粉芽孢杆菌TB2液体发酵的研究.[硕士论文].福建:福建农林大学,2010.
    17. 郭向华.甘蓝根肿病菌的生物学特性及致病研究.[硕士论文].重庆:西南农业大学,2001.
    18. 郭小芳,宗兆锋,杨洪俊.6种放线菌抗药性标记及其在植株体内定殖能力测定[J].西北农业学报,2005,14(2):69-73.
    19. 韩立荣.6株放线菌的基本特性及菌株153的防病促生作用研究.[硕士论文].杨 凌:西北农林科技大学,2006.
    20. 何建清,吴云锋,袁耀锋.西藏色季拉山土壤拮抗放线菌的筛选[J].西北农林科技大学学报(自然科学版),2005,33(1):187-189.
    21. 何其瑞.淡紫灰链霉菌Xjy发酵过程的优化及对大棚番茄叶霉病的防治.[硕士论文].杨凌:西北农林科技大学,201 0.
    22. 何月秋,熊国如,范成明.防治十字花科根肿病的生物制剂及其应用[P].中国,200810058919.0.2008-9-12.
    23. 贺忠群,贺超形,任志雨,等.不同丛枝菌真菌对番茄酶活性及光合作用的影响[J].北方园艺,2008,6:21-24.
    24.侯慧,徐汉虹,林壁润,等.防治植物病害的农用抗生素的研究及应用[J].河南农业科学,2003,11:28-31.
    25. 胡厚芝,向固西,陈家任,等.宁南霉素防治烟草花叶病的研究[J].应用与环境生物学报,1998,4(4):39 1-395.
    26. 胡靖锋,吴丽艳,林良斌,等.用菌土接种法鉴定云南省主要十字花科作物对根肿病的抗性[J].中国蔬菜,2010,14:71-74.
    27. 胡军华,张伏军,蓝希钳,等.烟草根际细菌铜绿假单胞菌swu31-2的定殖能力及其对烟草青枯病的防治作用[J].植物保护,2009,35(5):89-94.
    28. 胡小加,江木兰,刘胜毅,等.枯草芽胞杆菌在油菜根茎叶的定殖动态和生防作用研究[J].中国油料作物学报,2009,31(1):61-64.
    29.黄世文,高成伟,王玲,等.土壤中有益放线菌的高效分离、筛选和生物测定技术[J].植物保护,2008,34(1):138-141.
    30.黄晓辉,李珊,谭周进,等.植物内生放线菌的研究进展[J].生物技术通报,2008.01:42-46.
    31.黄有凯,罗曼,蒋立科,等.哈茨木霉对水稻过氧化物酶及多酚氧化酶活性的影响[J].微生物学通报,2003,30(5):15-18.
    32. 黄宇,孙宝盛,孙井梅,等.枯草芽孢杆菌发酵条件的研究[J].河南科学,2007,25(1):70-72.
    33.黄云.植物病害生物防治学[M].北京:科学出版社,2010.
    34. 黄云,马淑青,李晓琴,等.油菜根肿病菌的形态和休眠孢子的生物学特性[J].中国农业科学,2007,40(7):1388-1394.
    35. 吉川宏昭.日本十字花科作物的抗根肿病育种[J].王素译.中国蔬菜,1989,3:55-56.
    36. 江木兰,赵瑞,胡小加,等.油菜内生生防菌BY-2在油菜体内的定殖与对油菜菌核病的防治作用[J].植物病理学报,2007,37(2):192-197.
    37.姜淑梅,张龙,戴世鲲,等.一种简单、有效的适于PCR操作的放线菌DNA提取方法[J].生物技术,2007,17(1):39-41.
    38. 蒋细良,谢德龄,倪楚芳,等.中生菌素的抗生作用[J].植物病理学报,1997,27(2):133-138.
    39. 姜怡,唐蜀昆,张玉琴,等.放线菌产生的生物活性物质[J].微生物学通报,2007,34(1):188-190.
    40. 姜钰,董怀玉,徐秀德,等.放线菌在植病生防中的研究进展[J].杂粮作物,2005,25(5):329-331.
    41. 李红刚,马林,刘慧平,等.两株植物内生放线菌在植株体内定殖能力的测定[J].山西农业大学学报(自然科学版),2008,28(3):287-289.
    42. 李金萍,朱玉芹,李宝聚.十字花科蔬菜根肿病的传播途径[J].中国蔬菜,2010,5:21-22.
    43.李靖,利容千,袁文静.黄瓜感染霜霉病菌叶片中一些酶活性的变化[J].植物病理学报,1991,21(4):277-283.
    44. 李启云,汪旭,徐文静,等.对水稻稻瘟病有拮抗作用的链霉菌及其制备方法[P].中国,200710055933.0.2007-8-7.
    45. 李术娜,王全,郭慧娟,等.棉花黄萎病拮抗细菌2-70(Bacillus subtilis)菌株定殖能力的研究[J].中国农学通报,2009,25(15):26-30.
    46.李湘民,许志刚,MEW T W.稻株上拮抗细菌的定殖及其对土著细菌的影响[J].生态学报,2008,28(8):3868-3874.
    47. 李妍,谢学文,石延霞,等.防治白菜根肿病的药剂筛选[J].农药学学报,2010,12(1):93-96.
    48.黎志坤,朱红惠.一株番茄青枯病生防菌的鉴定与防病、定殖能力[J].微生物学报,2010,50(3):342-349.
    49. 梁军锋,薛泉宏,牛小磊,等.7株放线菌在辣椒根部定殖及对辣椒叶片PAL与PPO活性的影响[J].西北植物学报,2005,25(10):2118-2123.
    50. 梁容芳,袁德军,夏涛,等.放线菌细胞壁化学组分分析方法的研究[J].微生物学通报,1990,4:247-249.
    51. 梁志怀,魏林,陈玉荣,等.哈茨木霉在水稻体内的定殖及其对水稻纹枯病抗性的影响[J].中国生物防治,2009,25(2):143-147.
    52.刘翠娟,段琦梅,安德荣.抗真菌拮抗放线菌的筛选及摇床发酵条件的优化[J].微生物学杂志,2004,24(4):12-14.
    53. 刘燕娟,李婵,周倩.放线菌分类研究进展[J].湖南农业大学学报(自然科学版),2009,35(1):83-85.
    54. 刘云霞,张青文,周明.电镜免疫胶体金定位水稻内生细菌的研究[J].农业生物技术学报,1996,4(4):354-358.
    55. 刘勇,黄小琴,柯绍英,等.四川主栽油菜品种根肿病抗性研究[J].中国油料作物学报,2009,31(12):90-93.
    56. 刘志恒.放线菌——微生物药物的重要资源[J].微生物学通报,2005,32(6):143-145.
    57. 刘志恒,姜成林.放线菌现代生物学与生物技术[M].北京:科学出版社,2004.
    58.龙良鲲,肖崇刚.内生细菌01-144在番茄根茎内定殖的初步研究[J].微生物学通报,2003,30(5):53-56.
    59. 马俊才,赵玉峰,王大耜,等.中国微生物资源数据库(MRDC)[J].微生物学通报,1992,19(4):193-196.
    60. 马林,陈红兵,韩巨才,等.植物内生放线菌Lj20的鉴定及其抗真菌物质的合成[J].微生物学报,2008,48(7):900-904.
    61.齐飞飞,夏觅真,唐欣昀,等.luxAB基因标记的K2116L菌株在棉花根际中的定殖[J].生态学杂志,2008,27(2):192-192.
    62. 屈良鹊,陈月琴.生物分子分类检索表——原理与方法[J].中山大学学报(自然科学版),1999,38(1):1-6.
    63. 荣小萦,詹刚明,张荣,等.拮抗内生放线菌在番茄体内的定殖研究[J].西北农林科技大学学报(自然科学版),2005,33(1):266.
    64. 阮继生.放线菌分类基础[M].北京:科学出版社,1977.
    65. 阮继生.放线菌研究及应用[M].北京:科学出版社,1990.
    66. 沈向群,聂凯,吴琼,等.大白菜根肿病主要生理小种种群分化鉴定初报[J].中国蔬菜,2009,8:59-62.
    67.沈寅初.井冈霉素研究开发25年[J].植物保护,1996,22(4):44-45.
    68. 司军,李成琼,宋洪元,等.结球甘蓝对根肿病的抗性鉴定与评价[J].西南大学学报,2009,31(6):26-30.
    69. 司军,李成琼,肖崇刚,等.甘蓝根肿病接种方法的研究[J].西南农业大学学报,2003,25(3):216-219.
    70. 宋道清,陈栋良,吴刚.浅谈油菜根肿病及其防治方法[J].四川农业科技,2007,2:47-48.
    71.宋光桃,周国英.油茶炭疽病拮抗放线菌的筛选及其抑菌谱研究[J].中南林业科技大学学报,2010,30(2):75-78.
    72. 隋勤,刘伟成,裘季燕,等.利迪链霉菌A02的抑菌谱及其抑菌活性的稳定性[J].植物保护,2007,33(5):67-71.
    73.孙保亚,沈向群,郭海风,等.大白菜抗根肿病遗传规律初探[J].中国蔬菜,2005,6:15-17.
    74. 孙道旺,杨家莺,杨明英,等.75%达克宁防治白菜根肿病产量损失测定及残留分析[J].西南农业学报,2002,17(2):189-191.
    75. 孙红炜,路兴波,杨崇良,等.不同抗性玉米品种接种甘蔗花叶病毒(SCMV)后4种防御酶活性变化研究[J].植物病理学报,2006,36(2):181-184.
    76. 孙彦.生物分离工程[M].北京:化学工业出版社(第二版),2005.
    77. 孙延忠,曾洪梅,李国庆.抗生素对微生物作用的研究[J].微生物学杂志,2003,23(3):44-47.
    78.涂璇,黄丽丽,高小宁,等.黄瓜内生放线菌的分离、筛选及其活性菌株鉴定[J].植物病理学报,2008,38(3):244-251.
    79. 瓦克斯曼S A.放线菌属和种的分类、鉴定和描述(第二卷)[M].闫逊初译.北京:科学出版社,1974.
    80. 王斌.对番茄灰霉病菌具有拮抗作用的土壤放线菌的分离和筛选研究.[硕士论文].杨凌:西北农林科技大学,2010.
    81.王靖,黄云,马淑青,等.油菜根肿病症状、病原形态及产量损失研究[J].中国油料作物学报,2008,30(1):112-115.
    82. 王敬文,薛应龙.植物苯丙氨酸解氨酶的研究——Ⅱ苯丙氨酸解氨酶在抗马铃薯晚疫病中的作用[J].植物生理学报,1982,8(1):35-43.
    83. 王平.测定放线菌菌体中氨基酸和单糖的快速方法——薄层层析法[J].微生物学通报,1986,13(5):228-231.
    84. 王群利,师宝君,卞小莹,等.土壤拮抗放线菌的分离及其抗菌活性筛选[J].植物保护,2008,34(3):41-46.
    85. 王学士,任清水,仝赞华.农用抗生素120有效组分的研究[J].生物防治通报,1994,10(3):131-134.
    86. 王燕,宗兆峰,程联社.放线菌在植物病害生物防治中的应用[J].杨凌职业技术学院学报,2005,4(5):21-23.
    87. 王忆,海云.在凉山州油菜及蔬菜产区警惕十字花科作物根肿病爆发流行危害[J].四川农业科技,2010,5:44-45.
    88. 王忠和,杨鲁光.果树上常用的杀菌农用抗生素[J].西北园艺,2009,10:33-34.
    89. 魏海燕,蔡磊明,赵玉艳,等.我国微生物农药的应用现状[J].干旱环境检测,2008,22(4):236-242.
    90.魏艳敏,刘大群,田世明,等.链霉菌(Streptomyces spp.)对几种蔬菜病原菌的拮抗作用[J].河北农业大学学报,2000,23(3):65-68.
    91. 吴石金,周晓云,陈凰,等.链霉菌S1-5菌株鉴定及抗菌性能研究[J].浙江工业大学学报,2009,37(3):279-294.
    92. 向固西,胡厚芝,陈家任,等.一种新的抗生素——宁南霉素[J].微生物学报,1995,35(5):368-374.
    93. 肖崇刚,郭向华.甘蓝根肿病菌的生物学特性研究[J].菌物系统,2002,21(4):597-603.
    94.徐浩.微生物数值分类法简介[J].微生物学通报,1974,1(3):32-35.
    95. 徐丽华,李文均,刘志恒,等.放线菌系统学——原理、方法及实践[M].北京: 科学出版社,2007.
    96. 许英俊,薛泉宏,邢胜利,等.3株放线菌对草莓的促生作用及对PPO活性的影响[J].西北农业学报,2008,17(1):129-136.
    97. 阎旭光,吴剑波.16S rRNA在放线菌分子鉴别和分类中的作用及RFLP和RAPD的应用[J].国外医药(抗生素分册),1997,18(6):409-417.
    98. 阎逊初.放线菌的分类和鉴定[M].北京:科学出版社,1992.
    99.杨佩文,李家瑞,杨勤忠,等.十字花科蔬菜根肿病菌休眠孢子的分离与检测[J].云南农业大学学报,2002,17(3):301-306.
    100.杨佩文,李家瑞,杨勤忠,等.根肿病菌核糖体基因ITS区段的克隆测序及其在检测中的应用[J].云南农业大学学报,2003,18(3):228-233.
    101.杨佩文,尚慧,董丽英,等.大白菜根肿病发病因素分析与防治技术[J].西南农业学报,2009,22(3):663-666.
    102.杨文强.小白菜根肿病发生规律、发病条件及病菌生物学特性研究.[硕士论文].雅安:四川农业大学,2009.
    103.杨秀娟,何玉仙,陈福如,等.抗香蕉枯萎病菌拮抗菌的鉴定及其定殖[J].中国生物防治,2007,23(1):73-77.
    104.姚佳.放线菌发酵液对油菜菌核病的生物防治研究.[硕士论文].雅安:四川农业大学,2010.
    105.叶华智,伍光庆.小麦与禾谷镰刀菌相互作用下病穗过氧化物酶和酯酶的变化[J].植物病理学报,1988,18(3):169-174.
    106.叶勤.发酵过程原理[M].北京:化学工业出版社,2005.
    107.易龙,肖崇刚,马冠华,等.拮抗放线菌TA21对烟草根黑腐病菌的抑制及其控病作用[J].中国生物防治,2010,26(2):186-192.
    108.尹全,宋君,刘勇,等.土壤根肿病菌休眠孢子PCR快速检测方法的建立[J].西南农业学报,2010,23(2):390-392.
    109.余凤玉,李振华,曾会才.抗真菌农用抗生素的研究进展[J].热带农业科学,2005,25(1):60-65.
    110.余贤美,郑服丛.嗜铁素在促进植物生长及病害防治等方面的应用[J].中国农学通报,2007,23(8):507-510.
    111.俞文和.新编抗生素工艺学[M].北京:中国建材工业出版社,1996.
    112.俞晓平,陈列忠,申屠旭萍.植物内生菌及其代谢物在生物农药创制中的应用[J].浙江农业学报,2006,18(5):289-293.
    113.张炳火,方亮,李汉全,等.微生物资源研究开发进展[J].国外医药(抗生素分册),2006,27(5):233-235.
    114.张纪忠.微生物分类学[M].上海:复旦大学出版社,1990.
    115.张利平,陈冠平.放线菌化学分类学的现状及发展趋势[J].微生物学报,1997, 24(5):30-31.
    116.张丽萍,张贵云.微生物农药研究进展[J].北京农业科学,2000,18(4):22-25.
    117.张宁波.农用抗生素研究进展[J].湖北农业科学,2006,45(6):830-833.
    118.张日波.成都市十字花科根肿病调查及防治药剂筛选.[硕士论文].雅安:四川农业大学,2010.
    119.张少英,王俊斌,王海凤,等.甜菜几丁质酶和β-1,3-葡聚糖酶活性与其对丛根病抗性的关系[J].植物生理与分子生物学学报,2005,31(3):281-286.
    120.张淑梅,王玉霞,李晶,等.基因标记枯草芽孢杆菌BS-68A在黄瓜上的定殖[J].生物技术,2006,16(4):73-74.
    121.张淑霞,杨晓云,司朝光,等.大白菜根肿病人工接种鉴定方法比较[J].山东农业科学,2010,1:78-79.
    122.张武岗.放线菌19G-317菌株及其代谢产物抑菌活性研究.[博士论文].杨凌:西北农林科技大学,2009.
    123.张晓鹿,薛泉宏,郭志英,等.混合接种对辣椒疫病生防菌定殖、辣椒生长及诱导抗性的影响[J].西北农林科技大学学报,2008,36(4):151-158.
    124.张一宾.2004年世界农药品种市场概况及2009年各类农药市场趋向[J].中国农药,2006,4:13-17.
    125.赵红杰.3株放线菌组合菌剂对西瓜枯萎病的防治.[硕士论文].杨凌:西北农林科技大学,2010.
    126.中国科学院上海植物生理研究所.现代植物生理学实验指南[M].北京:科学出版社,1999.
    127.中国科学院微生物研究所放线菌分类组.链霉素鉴定手册[M].北京:科学出版社,1975.
    128.周启,王道本.农用抗生素和微生物杀虫剂[M].北京:中国农业出版社,1995.
    129.朱昌雄,白新盛,张木.生物农药的发展现状及前景展望[J].上海环境科学,2002,21(11):654-661.
    130.朱昌雄,谢德龄,倪楚芳.农抗120防治西瓜枯萎病菌的室内药效试验[J].生物防治通报,1990,6(3):124-127.
    131. Abbasi P A, Al-Dahmani J, Sahin F, et al. Effect of compost amendments on disease severity and yield of tomato in conventional and organic production systems [J]. Plant Dis,2002,86(2):156-161.
    132. Adams P B. The potential of mycoparasites for biological control of plant diseases[J]. Ann Rev Phytopathol,1990,28:59-72.
    133. Ahlholm J U, Helander M, Henriksson J, et al. Environmental conditions and host genotype direct diversity of Venturia ditricha, a fungal endophyte of birch tress [J]. Evolution,2002,56(8):1566-1573.
    134. Ainsworth G C. Ainsworth and Bisby's dictionary of the fungi 8thEd[M]. London: Commonwealth Mycological Institute,1995.
    135. Araujo J M, Silva A C, Azevedo J L. Isolation of endophytic actinomycetes from roots and leaves of maize (Zea mays L.)[J]. Braz Arch Biol Techn,2000,43(4):447-451.
    136. Arie T, Kobayashi Y, Okada G, et al. Control of soilborne clubroot disease of cruciferous plants by epoxydon from Phoma glomerata[J]. Plant Pathol 1998,47(6): 743-748.
    137. Backman C H, Elgerma D M, Machardy W E. The localization of fusarial infection in the vascular tissue of single-dominant-gene resistant tomatoes[J]. Phytopathology, 1972,62:1256-1260.
    138. Backman P A, Sikora R A. Endophytes:an emerging tool for biological control[J]. Biol Control,2008,46(1):1-3.
    139. Baniasadi F, Bonjar G H S, Baghizadeh A, et al. Biological control of Sclerotinia sclerotiorum, causal agent of sunflower head and stem rot disease, by use of soil borne actinomycetes isolates[J]. American Journal of Agricultural and Biological Sciences,2009,4(2):146-151.
    140. Benson D R, Silvester W B. Biology of Frankia strains, actinomycete symbionts of actinorhizal plants[J]. Microbiol Mol Biol Rev,1993,57(2):293-319.
    141. Bentley S D, Chater K F, Cerdeno-Tarraga A M, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)[J]. Nature,2002,417: 141-147.
    142. Berdy J. Bioactive microbial metabolites[J]. J Antibiot,2005,58(1):1-26.
    143. Bieber B, Nuske J, Ritzau M, et al. Alnumycin a new naphthoquinone antibiotic produced by an endophytic Streptomyces sp.[J]. J Antibiot,1998,51(3):381-382.
    144. Bonjar S, Fooladi M H, Mahdavi M J, et al. Broadspectrim, a novel antibacterial from Streptomyces sp.[J]. Biotechnol,2004,3(2):126-130.
    145. Brabshaw J E, Gemmell D J, Wilson R N. Transfer of resistance to clubroot (Plasmodiophora brassicae) to swedes(Brassica napus L. var. napobrassica Peterm) from B. rapa[J].Ann Appl Biol,1997,130(2):337-348.
    146. Breidt F, Crowley K A, Fleming H P. Controlling cabbage fermentations with nisin and nisin-resestant Leuconostoc mesenteroides[J]. Food Microbiol,1995,12: 109-116.
    147. Buczacki S T, Ockendon J B, Freeman G H. An analysis of some effects of light and soil temperature on clubroot disease[J]. Ann Appl Biol,1978,88(2):229-238.
    148. Buczacki S T, Toxopeus H, Mattusch P, et al. Study of physiologic specialization in Plasmodiophora brassicae:Proposals for attempted rationalization through an international approach[J]. Trans Br Mycol Soc,1975,65(2):295-303.
    149. Cao L, Qiu Z, Dai X, et al. Isolation of endophytic actinomycetes from roots and leaves of banana(Musa acuminata) plants and their activities against Fusarium oxysporum f. sp. cubense[J]. World J Microb Biot,2004,20:501-504.
    150. Cao L, Qiu Z, You J, et al. Isolation and characterization of endophytic Streptomyces strains from surface-sterilized tomato (Lycopersicon esculentum) roots [J]. Lett Appl Microbiol,2004,39(5):425-430.
    151. Cao L, Qiu Z, You J, et al. Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots[J]. FEMS Microbiol Lett,2005,247(2):147-152.
    152. Cao T, Tewari J, Strelkov S E. Molecular detection of Plasmodiophora brassicae, causal agent of clubroot of crucifers, in plant and soil[J]. Plant Dis,2007,91(1): 80-87.
    153. Carrillo L, Gomez Molina S E. Chitinase production by a strain of Streptomyces griseoruber isolated from the rhizosphere of sugar cane[J]. Rev Argenti Microbiol, 1998,30(2):73-78.
    154. Caruso M, Colombo A L, Crespi-Perellino N, et al. Studies on a strain of Kitasatospozra sp. paclitaxel producer[J]. Ann Microbiol,2000,50(2):89-102.
    155. Castlebury L A, Glawe D A. A comparision of three techniques for inoculating Chinese cabbage with Plasmodiophora brassicae[J]. Mycologia,1993,85(5): 866-867.
    156. Castlebury L A, Maddox J V, Glawe D A. A technique for the extraction and purification of viable Plasmodiophora brassicae resting spores from host root tissue[J]. Mycologia,1994,86(3):458-460.
    157. Cheah L H, Veerakone S, Kent G. Biological control of clubroot on cauliflower with Trichoderma and Streptomyces spp.[J]. New Zealand Plant Protection,2000,53: 18-21.
    158. Chen Y, Krol J, Sterkin V, et al. New process control strategy used in a rapamycin fermentation[J]. Porcess Biochemistry,1999,34(4):383-389.
    159. Cindy L, Jaco V, Fiona P, et al. Endophytic Bacteria and their potential applications [J]. Crit Rev Plant Sci,2002,21(6):5832-6061.
    160. Cook R J, Baker K F. The nature and practice of biological control of plant pathogens[M]. St. Paul, M N:American Phytopathological,1983:258-369.
    161. Colwell R R. Polyphsic taxonomy of the genus Vibrio:numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species[J]. J Bacteriol,1970, 104(1):410-433.
    162. De Ley J, Cattoir H, Reynaerts A. The quantitative measurements of DNA hybridization from renaturation rates[J]. Eur J Biochem,1970,12(1):133-142.
    163. De Nobili M, Contin M, Mondini C, et al. Soil microbial biomass is triggered into activity by trace amounts of substrate[J]. Soil Biol Biochem,2001,33(9):1163-1170.
    164. Devos S, Vissenberg K, Verbelen J P, et al. Infection of Chinese cabbage by Plasmodiophora Brassicae leads to a stimulation of plant growth:impacts on cell wall metabolism and hormone balance[J]. New Phytologist,2005,166(1):241-250.
    165. Donald C, Porter I. Integrated control of clubroot[J]. J Plant Growth Regul,2009, 28(3):289-303.
    166. Dong Y M, Iniguez A L, Ahmer B M M, et al. Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and medicago truncatula[J].Appl Environ Microb,2003,69(3):1783-1790.
    167. Doumbou C L, Hamby Salove M K, Crawford D L, et al. Actinomycetes, promising tools to control plant diseases and to promote plant growth[J]. Phytoprotection,2001, 82(3):85-102.
    168. Elad Y, Kohl J. Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic bacteria and fungi[J]. Eur J Plant Pathol,1994,100(5): 315-336.
    169. Elibol M. Response surface methodological approach for inclusion of perfluorocarbon in actinorhodin fermentation medium[J]. Process Biochem,2002,38(5):667-673.
    170. Elibol M, Mavituna F. A remedy to oxygen limitation problem in antibiotic production: addition of perfluorocarbon[J]. Biochem Eng J,1999,3(1):1-7.
    171. Faggian R, Bulman S R, Lawrie A C, et al. Specific polymerase chain reaction primers for the detection of Plasmodiophora brassicae in soil and water [J]. Phytopathology,1999,89(5):392-397.
    172. Faggian R, Sttrelkov S E. Detection and measurement of Plasmodiophora brassicae[J]. J Plant Growth Regul,2009,28(3):282-288.
    173. Friberg H, Lagerlof J, Ramert B. Usefulness of nonhost plants in managing Plasmodiophora brassicae[J]. Plant Pathol,2006,55(5):690-695.
    174. Fridlender M, Inbar J, Chet I. Biological control of soilborne plant pathogens by a β-1,3 glucanase-producing Pseudomonas cepacia[J]. Soil Biol Biochem,1993,25(9): 1211-1221.
    175. Frykman S A, Tsuruta H, Lau J, et al. Modulation of epothilone analog production through media design[J]. J Ind Microbiol Biotechonol,2002,28(1):17-20.
    176. Frykman S A, Tsuruta H, Starks C M, et al. Control of secondary metabolite congener distributions via modulation of the dissolved oxygen tension[J]. Biotechnol Prog, 2002,18(5):913-920.
    177. Gilaradi E, Hill L R, Turn M, et al. Quantitative methods in the systematics of Actinomycetales I[J]. Glornale microbiol,1960,8:203-218.
    178. Glandorf D C M, Brand I, Bakker P A H M, et al. Stability of rifampicin resistance as a marker for root colonization studies of pseudomonas putida in the field[J]. Plant Soil,1992,147(1):135-142.
    179. Gunter K, Toupet C, Schupp T. Characterization of an iron-regulated promoter involved in desferrioxamine B synthesis in Streptomyces pilosus:repressor-binding site and homology to the diphtheria toxin gene promoter[J]. J Bacteriol,1993,175(11): 3295-3302.
    180. Haggag W M. Role of entophytic microorganisms in biocontrol of plant diseases[J]. Life Sci J,2010,7:57-62.
    181. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes[J]. J Gen Appl Microbiol,1983,29:319-322.
    182. Helaly S, Schneider K, Nachtiqall J, et al. Gombapyrones, new alpha-pyrone metabolites produced by Streptomyces griseoruber Acta 3662[J]. J Antibiot,2009, 62(8):445-452.
    183. Howard R J, Strelkov S E, Harding M W. Clubroot of cruciferous crops-new perspectives on an old disease[J]. Can J Plant Pathol,2010,32(1):43-57.
    184. Humpherson-Jones F M. Effect of surfactants and fungicides on clubroot (Plasmodiophora brassicae) of brassicas[J]. Annals Appl Biol,1993,122(3): 457-465.
    185. Ilic S B, Konstantinovic S S, Todorovic Z B, et al. Characterization and antimicrobial activity of the bioactive metabolites in streptomycete isolates[J]. Microbiology,2007, 76(4):421-428.
    186. Inglis G D, Kawchuk L M. Comparative degradation of oomycete, ascomycete and basidiomycete cell walls by mycoparasitic and biocontrol fungi [J]. Can J Microbiol, 2002,48(1):60-70.
    187. Ito S, Mathara T, Maruno E, et al. Development of a PCR-based assay for the detection of Plasmodiophora brassicae in soil[J]. J Phytopathol,1999,147(2):83-88.
    188. Johnston T D. Clubroot in Brassica a standard inoculation technique and the specification of races[J]. Plant Pathol.,1968,17(4):184-187.
    189. Jones D R, Ingram D S, Dixon G R. Factors affecting tests for differential pathogenicity in populations of Plasmodiophora brassicae[J]. Plant Pathol,1982, 31(3):229-238.
    190. Joo G J, Kim Y M, Kim J W, et al. Biocontrol of cabbage clubroot by the organic fertilizer using Streptomyces sp. AC-3[J]. Korean Journal of Microbiology and Biotechnology,2004,32(2):172-178.
    191. Kageyama K, Asano T. Life cycle of Plasmodiophora brassicae[J]. J Plant Growth Regul 2009,28(3):203-211.
    192. Kiers J L, Van laeken A E A, Rombouts F M, et al. In vitro digestibility of Bacillus fermented soya bean[J]. Int J Food Microbiol,2000,60(2-3):163-169.
    193. Kim P I, Chung K C. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908[J]. FEMS Microbiol Lett,2004,234(1):177-183.
    194. Kole A P. Some observations on the zoospores from the zoosporangia of Plasmo-diophora brassicae Woron[J]. T PI Ziekten,1955,61(1):159-162.
    195. Kloepper J W, Beauchamp C J. A review of issues related to measuring colonization of plant roots by bacteria[J]. Can J Microbiol,1992,38(12):1219-1232.
    196. Kortemaa H, Pennanen T, Smolander A, et al. Distribution of antagonistic Streptomyces griseoviridis in rhtzosphere and nonrhizosphere Sand[J]. J Phytopathol, 1997,145(4):137-143.
    197. Kunoh H. Endophytic actinomycetes:attractive biocontrol agents[J]. Journal of General Plant pathology,2002,68(3):249-252.
    198. Larkin R P, Fravel D R. Effect of varying environmental conditions on biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp.[J]. Phytopathology,2002,92(11):1160-1166.
    199. Lechevalier M P, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes [J]. Int J Syst Bacteriol,1970,20:435-443.
    200. Lee J Y, Hwang B K. Diversity of antifungal actinomycetes in various vegetative soils of Korea[J]. Can J Microbiol,2002,48(5):407-417.
    201. Lee S O, Choi G J, Choi Y H, et al. Isolation and characterization of endophytic actinomycetes from Chinese cabbage roots as antagonists to Plasmodiophora brassicae[J]. J Microbiol Biotechnol,2008,18(11):1741-1746.
    202. Ligon J M, Hill D S, Hammer P E, et al. Natural products with antifungal activity from Pseudomonas biocontrol bacteria[J]. Pest Man Sci,2000,56(8):688-695.
    203. Linderman RG, Moore LW, Baker KF, et al. Strategies for detecting and characterising systems for biological control of soil-borne plant pathogens[J]. Plant Dis,1983,67: 1058-1064.
    204. Liu Z H, Shi Y L, Zhang Y M, et al. Classification of Streptomyces griseus (Krainsky 1914) Waksman and Henrici 1948 and related species and the transfer of 'Microstreptospora cinered'to the genus Streptomyces as Streptomyces yanii sp. nov.[J]. Int J Syst Evol Microbiol,2005,55(10):1605-1610.
    205. Ludwig-Muller J, Bennett R N, Kiddle G, et al. The host range of Plasmodiophora brassicae and its relationship to endogenous glucosinolate content[J]. New Phytologist,1999,141(3):443-458.
    206. Ludwig-Muller J, Schuller A. What can we learn from clubroots:alterations in host roots and hormone homeostasis caused by Plasmodiophora brassicae[J]. Eur J Plant Pathol,2008,121:291-302.
    207. Lynch J M, Wilson K L, Ousley M A. Response of lettuce to Trichoderma treatment[J]. Lett Appl Microbiol,1991,12 (2):59-61.
    208. Macfarlane I. A solution culture technique for obtaining root-hair or primary infection by Plasmodiophora brassicae[J]. J Gen Microbiol,1958,18(3):720-732.
    209. Macfarlane I. Germination of resting spores of Plasmodiophora brassicae[J]. Trans BrMycol Soc,1970,55(1):97-112.
    210. Manulis S, Zutra D, Kleitman F, et al. Distribution of streptomycin-resistant strains of Erwinia amylovora in Israel and occurrence of blossom blight in the autumn[J]. Phytoparasitica,1998,26(3):223-230.
    211. Manzanares-Dauleux M J, Delourme R, Baron F, et al. Mapping of one major gene and of QTLs involved in resistance to clubroot in Brassica napus[J]. Theor Appl Genet,2000,101(5):885-891.
    212. Manzanares-Dauleux M J, Divaret I, et al. Assessment of biological and molecular variability between and within field isolates of Plasmodiophora brassicae[J]. Plant Pathol,2001,50(2):165-173.
    213. Mclnroy J A, Kloepper J W. Survey of indigenous bacterial endophytes from cotton and sweet corn[J]. Plant Soil,1995,173(2):337-342.
    214. Murakami H, Tsushima S, Akimoto T, et al. Effects of growing leafy daikon (Raphanus sativus) on populations of Plasmodiophora brassicae (clubroot)[J]. Plant Pathol,2000,49(5),584-589.
    215. Murakami H, Tsushima S, Kuroyanagi Y, et al. Reduction of resting spore density of Plasmodiophora brassicae and clubroot disease severity by liming[J]. Soil Sci Plant Nutr,2002,48(5):685-691.
    216. Naiki T, Dixon G R, Ikegami H. Quantitative estimation of spore germination of Plasmodiophora brassicae[J]. Trans Br mycol Soc,1987,89(4):569-572.
    217. Narisawa K, Ohki K T, Hashiba T. Suppression of clubroot and Verticillium yellows in Chinese cabbage in the field by the root endophytic fungus, Heteroconium chaetospira[J]. Plant Pathol,2000,49(1):141-146.
    218. Narisawa K, Shimura M, Usuki F, et al. Effects of pathogen density, soil moisture, and soil pH on biological control of clubroot in Chinese cabbage by Heteroconium chaetospira[J]. Plant Dis,2005,89(3):285-290.
    219. Narisawa K, Tokumasu S, Hashiba T. Suppression of clubroot formation in Chinese cabbage by the root endophytic fungus, Heteroconium chaetospira[J]. Plant Pathol, 1998,47(2):206-210.
    220. Niwa R, Kumei T, Nomura Y, et al. Increase in soil pH due to Ca-rich organic matter application causes suppression of the clubroot disease of crucifers[J]. Soil Biol Biochem,2007,39(3):778-785.
    221. Okami Y. Marine microorganisms as a source of bioactive agents[J]. Microbial Ecol, 1986,12(1):65-78.
    222. Orihara S, Yamamoto T. Detection of resting spores of Plasmodiophora brassicae from soil and plant tissues by enzyme immunoassay[J]. Ann Phytopathol Soc Jpn, 1998,64(6):569-573.
    223. Oskay M. Antifungal and antibacterial compounds from Streptomyces strains[J]. Afr J Biotechnol,2009,8(13):3007-3017.
    224. Palmqvist E, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition[J]. Bioresource Technol,2000,74(1):25-33.
    225. Park J O, Tarabily-EL K A, Ghisalberti E L, et al. Pathogenesis of Streptoverticillium albireticuli on Caenorhabditis elegans and its antagonism to soil-borne fungal pathogens[J]. Lett Appl Microbiol,2002,35(5):361-365.
    226. Praveen V, Tripathi C K. Studies on the production of actinomycin-D by Streptomyces griseoruber--a. novel source[J]. Lett Appl Microbiol,2009,49(4):450-455.
    227. Press C M, Loper J E, Kloepper J W. Role of iron in rhizobacteria-mediated induced systemic resistance of cucumber [J]. Phytopathology,2001,91(6):593-598.
    228. Quecine M C, Araujo W L, Marcon J, et al. Chitinolytic activity of endophytic Streptomyces and potential for biocontrol[J]. Lett Appl Microbiol,2008,47(6): 486-491.
    229. Saadoun I, Gharaibeh R. The Streptomyces flora of Jordan and its potential as a source of antibiotics active against antibiotic-resistant Gram-negative bacteria[J]. World J Microbiol Biotechnol,2002,18(5):465-470.
    230. Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees[J]. Mol Biol Evol,1987,4(4):406-425.
    231. Schroth M N, Hancock J G. Disease-suppressive soil and root-colonizing bacteria[J]. Science,1982,216(25):1376-1381.
    232. Schulz B, Wanke U, Draeger S, et al. Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods[J]. Mycol Res,1993,97(12): 1447-1450.
    233. Sessitsch A, Reiter B, Pfeifer U, et al. Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and actinomycetes-specific PCR of 16S rRNA genes [J]. FEMS Microbiol Ecol,2002, 39(1):23-32.
    234. Shimizu M, Yazawa S, Ushigima Y. A promising strain of endophytic Streptomyces sp. for biological control of cucumber anthracnose[J]. J Gen Plant Pathol,2009,75(1): 27-36.
    235. Shirling E B, Gottlieb D. Methods for characterization of Streptomyces species[J]. Int J Syst Bacteriol,1966,16:313-340.
    236. Siciliano S D, Fortin N, Mihoc A, et al. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination[J]. Appl Environ Microbiol, 2001,67(6):2469-2475.
    237. Spyropoulou K E, Chorianopoulous N G, Skandamis P N, et al. Survival of Escherichia coli 0157:H7 during the fermentation of Spanish-style green table olives (conservolea variety) supplemented with different carbon sources [J]. Int J Food Microbiol,2001,66(1-2):3-11.
    238. Stackbrandt E, Woese C R. Towards a phylogeny of the actinomycetes and related organisms[J]. Curr Microbiol,1981,5(4):197-202.
    239. Stal L J, Moezelaar R. Fermentiaon in cyanobacteria[J]. FEMS Microbiol Rev,1997, 21(2):179-211.
    240. Strelkov S E, Tewari J P, Smith-Degenhardt E. Characterization of Plasmodiophora brassicae populations from Alberta, Canada[J]. Can J Plant Pathol,2006,28(3): 467-474.
    241. Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products[J]. Microbiol Mol Biol Rev,2003,67(4):491-502.
    242. Sugiyama M, Mochizuki H, Nimi O, et al. Mechanism of protection of protein synthesis against streptomycin inhibition in a producing strain[J]. J Antibiot,1981, 34(9):1183-1188.
    243. Suzuki K, Matsumiya E, Ueno Y, et al. Some properties of germination-stimulating factor from plants for resting spores of Plasmodiophora brassicae[J]. Ann Phytopathol Soc Jpn,1992,58:699-705.
    244. Taechowisan T, Peberdy J F, Lumyoung S. Isolation of endophytic actinomycetes from selected plants and their antifungal activity [J]. World J Microbiol Biotechnol, 2003,19(4):381-385.
    245. Takahashi K, Yamaguehi T. An improved method for estimating the number of resting spores of Plasmodiophora brassicae in soil[J]. Ann Phytopathol Soc Jpn,1987,53(4): 507-515.
    246. Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Mol Biol Evol,2007,24(8):1596-1599.
    247. Tarabily-EL K A, Soliman M H, Nassar A H, et al. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes[J]. Plant Pathol,2000,49(5): 573-583.
    248. Thompson J D, Higgins D G, Gibson T J. CLUSTAL W:Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Res,1994, 22:4673-4680.
    249. Toxopeu H, Jamsen A M P. Clubroot resistence in turnip.Ⅱ. The slurry screening method and clubroot races in the Netherlands [J]. Euphytica,1975,24(3):751-755.
    250. Wagner W C. Sustainable agriculture:how to sustain a production system in a changing environment [J]. Int J Parasitol,1999,29(1):1-5.
    251. Weller D M. Biological control of soilborne plant pathogens in the rhizophere with bacteria[J]. Annu Rev Phytopathol,1988,26:379-407.
    252. White J G, Wakeham A J. Serological detection of resting spores of Plasmodiophora brassicae in soil[J]. EPPO Bulletin,1995,25(1):75-80.
    253. Williams P H. A system for the determination of races of Plasmodiophora brassicae that infect cabbage and rutabaga[J]. Phytopathology,1966,56 (5):624-626.
    254. Valiuskaite A, Surviliene E, Raudonis L. Effect of Mycostop on Fusarium root-rot agents of raspberry [J]. Sodininkyste Ir Darzininkyste,2008,27(1):47-51.
    255. Urech P. Sustainable agriculture and chemical control:opponents or components of the same strategy[J]. Crop Prot,2000,19(8):831-836.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700