用户名: 密码: 验证码:
三江平原稻作灌溉模式及水肥效应试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三江平原是我国著名的商品粮基地,水稻是其重要的粮食作物。该地区水资源总量相对丰富,但区域分布不均。在利用地表水资源灌溉的渠灌区,由于长期淹水灌溉,定额过大,浪费严重;在利用地下水灌溉的井灌区,定额过小,产量不高,且地下水开采严重超标。随着近年来井灌水稻面积不断扩大,地下水资源平衡受到了严重破坏。在长期的农业开发过程中,引发了一系列的生态环境问题,如湿地面积日益减少,农业非点源污染,水质污染严重等,这些已成为其今后发展的制约因素。
     从节水灌溉的角度提出解决三江平原稻作生产中出现的上述水资源问题正是本研究主要目的。
     水和肥是作物高产中两大重要因素,一定程度上,对作物产量起决定性的作用,特别是在节水条件下,作物生长环境发生了变化,水肥之间的交互作用关系更为复杂,探讨水肥与产量之间的关系更为困难。基于三江平原稻作区存在的水资源问题及环境问题,本研究从节水灌溉和环境保护两个角度出发,以水稻的节水灌溉模式和水肥耦合为研究对象,通过探究最优灌水模式、最佳水肥模式,建立水稻水肥生产函数模型,用于指导该地区节水节肥条件下的作物生产;同时通过分析稻田施肥的环境效应,了解不同水肥条件下稻田田面水中氮素动态变化特征,不同水肥条件下的土壤养分变化,建立稻田土壤肥力质量评价标准,综合评价不同水肥条件下稻田土壤肥力质量,从而为三江平原地区稻田环境的改善和提高起到理论指导作用。
     采用田间试验与室内分析相结合的方法。论文第二章首先分析了不同节水灌溉模式对水稻生长状况的影响,研究了不同灌溉模式的耗水规律。第三章针对水稻节水灌溉模式和水肥耦合技术对水稻及其生长环境的影响进行了分析比较;系统研究了水分胁迫与氮素亏缺、不同灌溉方式下氮、磷、钾配比对作物生长发育的影响;分析了不同水肥耦合情况下稻田田面水中铵态氮、硝态氮的变化特征及对各土壤养分指标的影响;采用模糊综合评判法对土壤肥力质量进行了综合评价;第四章建立了分阶段水稻水分生产函数,引入肥料效应函数,提出了适用于该地区的水稻水、氮生产函数——Jensen模型;建立水稻水、氮动态生产函数——修正Morgan模型。并尝试提出了水稻水、肥(氮磷钾)生产函数生育阶段模型——Jensen模型和水稻水、氮磷钾动态生产函数——修正Morgan模型,水稻水、氮生产函数模型前人已有很多研究,但水、氮磷钾生产函数模型,目前还未看到相关文献表述,这正是本文的创新之所在。
     本文主要结论如下:
     1)节水灌溉模式不但节水效果显著,而且深刻地影响着水稻生长发育,并进一步影响着生态环境,为水稻高产和促进生态环境的改善提供了有利条件。研究结果表明,湿润灌溉的水稻在早期生育阶段有最高的分蘖数,且极早达到分蘖高峰,控制灌溉和淹灌分蘖数要低于湿润灌溉,并且淹灌水稻分蘖末期的分蘖数高于控制灌溉的;不同灌溉模式对水稻株高、叶面积指数、地上部分干物质积累和茎粗也有重要影响,这些因素综合作用的结果是:从节水角度看,控制灌溉下水稻田间耗水量最小,湿润灌溉比控制灌溉耗水量增加43.5%,淹灌最大;从水稻平均产量角度看,控制灌溉产量不及湿润灌溉和淹灌,湿润灌溉比控制灌溉的高23.1%,淹灌比控制灌溉的高9.02%。在此基础上,以宝清县八五三农场为例,对该场地下水资源作均衡计算,得出八五三农场地下水处于负均衡状态,并提出了在采用不同灌溉模式时,对应的开采地下水及利用地表水水资源的方式,且这些方式都比较合理,能较大程度的节约水资源,促使地下水处于均衡状态。
     2)通过分析水分胁迫与氮素亏缺对水稻生长状况、水稻产量及水分利用效率的影响,得出如下结论:在相同灌溉方式下,高施氮量可以促进水稻分蘖;相同施氮水平下,W4灌溉条件下的水稻叶面积最大,无氮处理的水分利用效率最小,中氮处理的次之。通过水分和氮素对水稻产量和产量构成因素的影响效应分析可知:氮肥对水稻产量及其构成因子均表现为正效应,且高施氮量的正效应大于中施氮量的;控水效应和水分胁迫与氮素互作效应对产量及其构成因素的影响多数为负效应;水氮互作对水稻产量构成因素中的每平米穗数影响最大,且氮肥对产量的影响要比水分对产量的影响显著,以施氮量330kg/hm~2和W_3灌溉方式效果最好,产量最高,经济效益大,是高产节水的最佳组合。
     3)通过土壤养分分析可知,当施氮量为330kg/hm~2时,土壤中的氮素积累量比插秧前增加了44.5%。施氮量越高,相应的氮素残留越严重,随着氮肥施入量的增加,土壤碱解氮含量也有所增加,但增加的幅度比较小;比较插秧前与收获后土壤有机质,除无氮处理、中氮的个别处理土壤有机质有所降低外,随着氮肥施用量的提高土壤有机质含量呈微弱的增长趋势,说明施用氮肥对土壤有机质影响较小,同时也说明土壤有机质比较稳定;通过对稻田田面水中氮素浓度检验可知,施氮肥量越大,铵态氮和硝态氮浓度越高。施返青肥后田面水铵态氮浓度最高值在施氮后第3天出现,施穗肥后田面水铵态氮浓度最高值在施氮后第2天出现,田面水硝态氮浓度出现最高值的时间要滞后于铵态氮1天;通过模糊综合评判法对土壤肥力质量进行综合评价,得出各小区土壤肥力等级与施氮量密切相关,无氮小区土壤等级较低,高氮小区土壤肥力等级较高。
     4)氮磷钾配施与追施比例条件下,稻田田面水中铵态氮与硝态氮浓度的变化,除峰值出现时间与水分胁迫和氮素亏缺条件下相一致外,还有其自身的特点。N_3P_2K_2处理铵态氮浓度最高,尤其是湿润灌溉条件下的铵态氮浓度高于常规灌溉的,N_1P_3K_2和N_2P_3K_1处理铵态氮浓度值区别不显著;磷肥的施用量对于田面水中的铵态氮浓度有直接影响,钾肥对与田面水中铵态氮浓度的影响有待进一步研究;穗肥比返青肥达到峰值速度快,施肥时期越靠后,田面水中铵态氮浓度越大;按F_2阶段比例施肥的处理铵态氮浓度要比按F1阶段比例施肥的高。从整体上看,返青肥和穗肥施用后硝态氮浓度值范围相近,施分蘖肥后虽遇降雨,但硝态氮的浓度仍较高,且各处理间差异显著。运用模糊综合评判法对土壤肥力质量进行综合评价,确定各小区肥力等级,N_1P_3K_2处理的小区土壤肥力质量属于中等,N_3P_2K_2和N_2P_3K_1处理的小区土壤肥力质量属于高等,且按F2比例施肥的小区土壤肥力质量要高于按F1比例施肥的小区。
     5)水稻水肥生产函数反映田间水分和施肥及其交互作用对作物产量的定量影响。所建立的水稻水、氮生产函数生育阶段模型——Jensen模型和水稻水、氮动态生产函数——修正Morgan模型,都有一定的预测功能,且拟合度都较高,应用中可根据实际条件和需要选择适合的模型。本文基于水稻水肥(氮)生产函数模型基础上,构建了水稻水肥(氮、磷、钾)生产函数模型,即水稻水肥生育阶段模型——Jensen模型和水稻水肥动态生产函数——修正Morgan模型。Jensen模型可以反映生育阶段水、肥亏缺对作物的影响,能根据用水和施肥情况对产量进行预测,模型参数可靠,在生产实践中能起到重要的参考作用。修正Morgan模型是在水分生产函数的动态模型基础上引入肥料效应函数,模拟干物质的积累过程对水、肥的响应,能反映作物生长与水、肥交互作用的关系,并能根据氮、磷、钾的施肥量预测对产量的影响,较详细的模拟作物在不同水肥条件下的生长过程,相关系数较高,为科学节水、合理施肥提供依据。
Sanjiang Plain is famous commodity grain base in China, rice is an important food crop。Total water resources are relatively abundant in the region, but the regional distribution is uneven. In the regions using surface water,serious waste of widespread exists;In the regions using underground water, rice has a lower yield and excessive groundwater are exploited. In recent years, with area of rice using undergroundwater increasing, the balance of undergroundwater is seriously distroyed. In the long process of agricultural development, a series of ecological and environmental problems happened, such as declining area of wetland, agricultural non-point source pollution and serious water pollution.
     How to solve the above problems is the purpose of this article.
     Water and fertilizer, as two important factors of crop product, to some extent, determine yields. Under water-saving condition, crop growth environment changes and the interaction of water and fertilizer becomes more complex, which makes it more difficultly to study the relations between water and fertilizer. former water-fertilizer product functions, analyzing their advantages and disadvantages, the rice water-fertilizer(N,P,K) product function models was established. For the crop production, especially under water-saving condition, it has important significance.
     Both of field test and laboratory analysis were adopted. In ChapterⅡ, it analyzes the effect of different water-saving irrigation models on rice growth status and studies the water consumption regularities of different water-saving irrigation models. In ChapterⅢ, it analyzes and compares the effects on rice growth status and environment between water-saving irrigation model and coupling water-fertilizer techniques. And then, it systematically studies factors of crop growth and development, which refer to water stress、nitrogen deficit and portion of N、P、K under different irrigation models. For different coupling water-fertilizer conditions, it analyzes characters of NH_4~+-N and NO_3~--N in surface water and their influence on index of soil nutrient. In addition, it takes fuzzy comprehensive evaluation method to analyze soil nutrient. In ChapterⅣ, it develops water product function of phrase, adds an fertilizer effect function and proposes Jensen Model referring to water and nitrogen for the rice production in this region; it first develops modified Morgan Model referring to water and N,P,K. The modified Morgan Model referring to referring to water and N,P,K is innovation.
     It has conclusions as following:
     1) Water-saving irrigation model not only have significant effect of water-saving and profoundly influence on the growth and development of rice, but also affect ecology environment and conduce to high yield of rice and improvement of ecology environment. Related research results show that rice adopting wet irrigation has most tillers in the early growth stage and is first to have tillering peak , rice adopting control irrigation and flood irrigation don’t have so many tillers and in the end of tillering stage, rice adopting flood irrigation has more tillers than one of control irrigation. Different irrigation models have different effects on height, LAI, dry matter accumulation above ground. For water consumption , control irrigation has the least water consumption, wet irrigation has 43.5% water consumption more than control irrigation, the flood irrigation has the most water consumption. For rice yield, control irrigation has the less yield than wet irrigation and flood irrigation, wet irrigation has 23.1% more than control irrigation and flood irrigation has 9.02%. For 853 Farm in Baoqing, the underground water balance was calculated. The results showed the underground water is in a state of negative equilibrium. It proposes, for different irrigation models , some appropriate approaches to develop underground water and use ground water, which can save water resource to some extent and promote underground water to a equilibrium state.
     2) It analyzes the effect of water stress and nitrogen deficit on growth status, yield and WUE of rice. The conclusions are as following :In the same irrigation model, high level of nitrogen can promote rice to tillering; In the same nitrogen level, Treatment W4 has the highest LAI. Treatment of no nitrogen has the lowest WUE and Treatment of normal level has the middle WUE. It analyzes the effects of water and nitrogen on yield and component factors. The conclusions are as following: Nitrogen has a positive effect on yield and its component factors and the higher nitrogen level, the greater effect; Water control and interaction of water stress and nitrogen has a negative effect on yield and its component factors; Interaction of water and nitrogen has greatest effect on panicles per square meter, which is part of rice yield component factors. Nitrogen has a greater effect on yield than water does. In field tests, Treatment of nitrogen level of 330kg/hm~2 and W_3 has the highest yield and it is the best combination to save water and get high yield.
     3)Known form analyzing soil nutrient, nitrogen accumulation rate in soil increased 44.5% than before transplanting when nitrogen rate is 330kg/hm~2. The higher is nitrogen rate, more serious is nitrogen residue corresponding, with the increasing of nitrogen rate, soil available nitrogen content also increases, but the amplitude is smaller.Compare the soil organic matter before transplanting and after harvest, with the enhance of nitrogen rate, the soil organic matter presents faint increasing trend, beside individual no-nitrogen and middle–nitrogen treatments, it shows the effect nitrogen rate on soil organic matter is small, and soil organic matter more stable. Known form nitrogen concentration test, the bigger is nitrogen rate, the higher is NH_4~+-N and NO_3~--N concentration. The highest value of NH_4~+-N concentration in paddy surface water appeared in the third day after turning green fertilizer. The highest value of NH_4~+-N concentration appeared in the second day after panicle fertilizer, the time of the highest value of NO_3~--N concentration appeared latter than NH_4~+-N one day. Using fuzzy comprehensive evaluate method to assess soil fertilizer quality, draw a conclusion that soil fertilizer grade is related closely with nitrogen rate, the soil grade of no-nitrogen plot is lower, and it is higher in high-nitrogen plot.
     4) Under the condition of N,P,K combined application and topdressing, the change of NH_4~+-N and NO_3~--N concentration in paddy surface water, there is its characters except the time of the peak appear is consist with the water stress and nitrogen deficit condition. The concentration of N_3P_2K_2 treatment, especially the concentration under wetting irrigation is higher than under common irrigation, the difference between the concentration of N_1P_3K_2 and N_2P_3K_1 is not significant.The phosphate application rate has direct effect on the NH_4~+-N concentration in paddy surface water, the effect potassium on the NH_4~+-N concentration in paddy surface water needs to research. The concentration reachs to peak value faster after panicle fertilizer than that of after green fertilizer, and the concentration is bigger, the time of fertilizer is latter, therefore the concentration is higher in the treatment which fertilizer according to F_2 proportion than the F_1 proportion. The range of NO_3~--N concentration value is similar after green fertilizer and spike fertilizer, although it encounters rainfall after tillering fertilizer, the NO_3~--N concentration is higher all the same, and the differences in each treatment are not significant. Soil fertility quality was evaluated with the fuzzy comprehensive evaluation method, and the grade of each plot was made sure, the soil fertility quality of N_1P_3K_2 treatment plot belongs to middle, N_3P_2K_2 and N_2P_3K_1 belongs to high grade, the soil fertility quality of plot fertilizerd as F_2 proportion is higher than as F_1.
     5) Rice water and fertility production function reflects the quantitative effect field water and fertilizer and their interaction on paddy yield. The water and nitrogen production fuction growth stage model,Jensen model, and water and nitrogen dynamic production function ,Correction Morgan model were build, which have certain predict fuction and higher fitting degree, in real application can accord to practical condition and requirement chooses model. Based on rice water and nitrogen production function model, the paper constructed rice water and nitrogen, phosphorus and potassium production function models, they are water and fertility growth grade Jensen model and water and fertility dynamic production function correction Morgan model. Jensen model can reflect the effect water stress and fertility deficit in growth grades on crops, can predict production according to water amount and fertilizer condition, the parameters of models are reliable, the models have reference function in product praction. Correction Morgan model introduces fertility effect function on the basis of water production function dynamic model, it can simulate the response the accumulate procession of dry matter on water and fertilizer, reflect the interaction between crop growth and water and fertilizer, predict the effect on yield according to the rate of nitrogen, phosphorus and potassium, more detailed simulate the growth process in different water and fertilizer, the correlation coefficient is higher, provide evidence for scientific saving-water and rational fertilization.
引文
敖和军. 2004.不同季别施氮对水稻产量生长生理及土壤氮素变化的影响.湖南农业大学硕士学位论文, 3~4.
    白种万,张生武. 2008.水肥耦合规律试验研究.吉林水利, 11(318):62~70.
    边维勇,马力,杨晓波,等. 2007.基于模糊综合评判方法的辽河流域土壤养分分级与特征.岩矿测试, 26(4):336~338.
    柏彦超. 2007.不同水、氮条件对水稻生长及部分生理特征的影响.扬州大学学位论文, 7.23~34
    边维勇,马力,杨晓波,等.2007.基于模糊综合评判方法的辽河流域土壤养分分级与特征.岩矿测试, 26(4):336~337.
    程旺大,赵国平,王岳钧等. 2000.浙江省发展水稻节水高效栽培的探讨.农业现代化研究, 21(3):197~200.
    程旺大,赵国平,张国平,等. 2002.水稻节水栽培的生态和环境效应.农业工程学报, 18(1):191.
    蔡景礼,陈志春. 2008.寒区水稻节水控制灌溉技术应用研究与示范.水利科技与经济, 14(6):504.
    程旺大,程方民,吴伟,等. 2000.合理配施氮磷钾对直播晚粳稻产量与品质的效应.将农业学报, 22(2):174~177.
    崔远来,李远华,余峰,等. 2002.水稻高效利用水肥试验研究.灌溉排水, 20(1):20~24.
    曹翠玲,李生秀.1999.氮素对植物某些生理生化过程的影响.西北农业大学学报, (4):96~101.
    陈新红,刘凯,王志琴,等. 2006.水稻水氮互作效应与产量模型研究.西北农林科技大学学报(自然科学版), 34(9):141.
    陈盈,候守贵,于广星,等. 2008.水肥条件对杂交水稻辽优5218产量形成的影响.北方水稻, (5):36~37
    曹永强,刘琳,姜莉,等. 2010.冬小麦水肥生产函数最小二乘法回归建模及分析.水利水电科技进展, 30(2):45~48.
    程旺大,赵国平,张国平等. 2002,水稻节水栽培的生态和环境效应.农业工程学报, 18(1):191~194.
    蔡守华,张展羽. 2007.节水灌溉发展现状与管理模式研究综述.水利经济, 25(4):38~40,67,82.
    程彩霞. 2007.水稻分蘖消长动态与产量的研究.中国稻米, (l):37~39.
    蔡贵信. 1992.氨挥发.见:朱兆良,文启孝主编.中国土壤氮素.南京:江苏科学技术出版社,
    曹志洪. 2001.解译土壤质量演变规律,确保土壤资源持续利用.世界科技研究与发展,23(3):28~32.
    党廷辉,马海涛,高晓妮. 1991.矿态氮反映旱地土壤供N能力的研究.陕西农业科学, (6):14~15.
    冯跃华,邹应斌,敖和军,等. 2004,不同施氮量对免耕/翻耕移栽稻生长及产量形成的影响.作物研究. (3):145.
    冯尚友. 2000.水资源持续利用与管理导论.北京:科学出版社,11~27.
    樊小林,史正军,吴平. 2002.水肥(氮)对稻根构型参数的影响及其基因型差异.西北农林科技大学学报:自然科学版, 30(2):1-5.
    顾玉芬,范金良,赵瑞龙. 2005.节水灌溉条件水稻水肥耦合技术试验研究.江苏水利, (11):23~26.
    龚洵平. 1998.娄底地区土壤资源和环境的现状与对策.农业环境与发展, 15(3):40~42.
    关丽君. 1985.改进寒冷地区水稻施肥技术的研究.吉林农业科学, (2):55~60.
    高振民,张福珠,熊先哲等. 1986.京津渤地区氮磷污染及其生态防治途径的研究.土壤——植物系统污染生态研究.北京:中国科学技术出版社. 7~15.
    高效江,胡雪峰,王少平等. 2001.淹水稻田中氮素损失及其对水环境影响的试验研究.农业环境保护. 20(4):196~198,205.
    宫锡鸿,宫兆芳,陈淑,等.1996.用模糊综合评判法确定土壤肥力等级.农业系统科学与综合研究, 12(1):8~10.
    顾玉芬,范金良,赵瑞龙.2005.节水灌溉条件下水稻水肥耦合技术试验研究[J].江苏水利,(11):23~26.
    何顺之,刘振林,等. 2004.水稻控水增产技术试验研究成果及其推广应用.节水灌溉, (4):26~28.
    贺新春,邵东国,刘武艺,等. 2006.农田排水资源化利用的研究进展与展望.农业工程学报, 22(3):176~178.
    何军,崔远来,张大鹏,等. 2010.不同水肥耦合条件下水稻干物质积累与分配特征.灌溉排水学报, 29(5):1~5.
    胡泽友,郭朝晖,周作明,等. 2000.湖南省稻田化肥施用与氮磷流失状况的研究.湖南农业大学学报, 26(4):264~266.
    黄满湘,章申,张国梁. 2003.北京地区农田氮素养分随地表径流流失机理.地理学报, 58(1):147~154.
    何青,边延辉,张光辉.三江平原湿地的保护和生态修复[J].黑龙江农业,2001,(6):31~32.
    何文寿,毕红. 1997.应用灰色关联分析对银南灌区土壤肥力的综合评价.宁夏农林科技, (2):7~10.
    黄才洪. 2008.施肥对成都平原稻田土、水层氮磷变化特征的影响及养分管理研究.四川农业大学硕士学位论文. 15~17.
    黄宛平. 2006.自适应粒子群优化算法及其应用研究.浙江大学硕士学位论文, 10~11.
    何佳. 2008.免耕抛秧栽培水稻的氮磷钾配施及其效应研究.广西大学硕士学位论文, 13~15.
    金柯,汪德水,蔡典雄,等. 1995.水肥耦合效应研究Ⅱ:不同N、P、水配合对旱地冬小麦产量的影响.植物营养与肥料学报, 5(1):8~13.
    贾红璐.水土资源匹配、气候条件适宜.黑龙江日报,2006-10-23.
    金相灿,屠清英. 1990.湖泊富营养化(第二版).北京:中国环境科学出版社, 114~134.
    金洁,杨京平,施洪鑫,等.2005.水稻田面水中氮磷素的动态特征研究.农业环境科学学报, 24(2):357~361.
    金洁,杨京平. 2004.高肥力稻田分次施氮对氮素淋失的影响.水土保持学报, 18(3):98~101.
    金轲,汪德水,蔡典雄.1999.旱地农田水肥耦合效应及其模式研究.中国农业科学, 32(5):104~106.
    康绍忠,马孝义.1999.对我国发展节水农业几个问题的思考.中国农业资源与区划, 20(2):30-31.
    康绍忠. 1997.新的农业科技革命与21世纪我国节水农业的发展.中国农村水利水电, (增刊):63~67.
    刘昌明,陈志恺. 2001.中国水资源现状评价和供需发展趋势分析——中国可持续发展水资源战略研究报告集.北京:中国水利水电出版社, 12(2).
    李承明,郜勇,谭世清,等. 2001.水稻浅湿节水灌溉技术.垦殖与稻作,增刊:12.
    林贤青,周伟军,朱德峰,等.2004.稻田水分管理方式对水稻光合速率和水分利用效率的影响.中国水稻科学, 18(4):333~338.
    李远华,张祖莲,赵长友,等. 1998.水稻间歇灌溉的节水增产机理研究.中国农村水利水电, (11):12.
    刘复新. 1998.水稻高产节水灌溉技术的分类研究.中国农村水利水电, (3):10~12.
    刘东,付强,马永胜,等.2008.三江平原井灌区水资源系统分析与可持续利用.中国水利水电出版社, 7.
    刘润堂,许建中,冯绍元,等. 2002.农业面源污染对湖泊水质影响的初步分析.中国水利, (6):54~56.
    李伟业.三江平原沼泽湿地生态承载力与可持续调控模式研究.东北农业大学硕士论文,2007.
    刘广明,杨劲松,姜艳,等. 2005.基于控制灌溉理论的水稻优化灌溉制度研究.农业工程学报, 21(5):29.
    吕国安. 1997.不同灌溉方式水稻植株对氮素的吸收利用研究.中国农村水利水电, (1):18~20.
    吕国安,李远华,沙宗尧,等. 2000.节水灌溉对水稻磷素营养的影响.灌溉排水, 19(4):10~12.
    吕国安,李远华,沙宗尧,等. 2001.节水灌溉对水稻钾素营养的影响.中国农村水利水电, (2):25~26.
    梁云江,依艳丽,许广波,等. 2006.水肥耦合效应的研究进展与展望.湖北农业科学, 45(3):387.
    刘晗,吕国安. 2009.不同水肥处理对水稻产量构成因素及产量的影响.安徽农学通报,15(3):100~101.
    刘协广,龙志伟. 2010.水肥耦合对水稻干物质积累和产量形成的影响.中国农技推广, (2):37~39.
    柳金来,宋继娟,李福林,等. 2000.氮肥利用量对水田土壤肥力和水稻植株养分含量及产量的影响[J].农业与技术, 20(4):8~12.
    刘培斌,张瑜芳.1999.稻田中氮素流失的田间试验与数值模拟研究.农业环境保护, 18(6):241~245.
    刘忠翰,彭江燕. 2000.化肥氮素在水稻田中迁移与淋失的模拟研究.农村生态环境, 16(2):9~13.
    李帆修,梅平. 2008.多元联系数集对分析模型在土壤肥力综合评价中的应用.长江大学学报(自然科学版), 5(2):14~16.
    李凡修. 2010.理想点法在土壤肥力等级评价中的应用.安徽农业科学, 38(11):5523~5524.
    李韵珠,陆锦文,罗远培,等. 1994.土壤水分和养分的有效利用.北京:北京农业大学出版社,
    李寿声,沈菊琴. 1997.水稻水、肥生产函数及优化灌溉模式.水利学报, (10):18~24.
    林葆,林继雄. 1994.长期施肥的作物产量和土壤肥力变化.植物营养与肥料学报, (1):6~18.
    李文兵. 2008.长期不同施肥处理对直播稻田生态系统中氮磷影响研究.浙江大学硕士学位论文, 2~3.
    李庆逵,朱兆良,于天仁. 1998.中国农业持续发展中的肥料问题.南昌:江西科学技术出版社, 3~5.
    吕纯波,赵书田,何权. 2001.我省水田节水灌溉现状、问题及对策.水利天地, 06:26~27.
    李远华,蒋国建,陈崇德,等. 2001.漳河灌区高效用水经验及启示.中国水利, 1.
    林贤青,朱德峰,李春寿等. 2005.水稻不同灌溉方式下的高产生理特性.中国水稻科学, 19(4):328-332.
    刘广明,杨劲松,姜艳等. 2005.节水灌溉条件下水稻需水规律及水分利用效率研究.灌溉排水学报. 12(6):49-50.
    林葆.李家康. 1997.当前我国化肥的若干问题和对策.磷肥与复肥. (2):1~23.
    罗成秀,彭怀泉. 1988.水稻施肥.北京:化学工业出版社, 2~5,19~22.
    刘培斌,程伦国,陈瑞忠等. 1994.排水条件下稻田中氮素运移转化规律的试验研究.农田水利与小水电, 4:15~20.
    刘建新. 2004.不同农田酶活性与土壤养分相关关系研究.土壤通报, 35(4):523~525.
    李效芳. 1989.土地资源评价的基本原理和方法.长沙:湖南科学技术出版社. 112~121.
    刘晗,吕国安. 2009.不同水肥处理对水稻产量构成因素及产量的影响.安徽农学通报, 15(3):100~101.
    梁峰. 1976.怎样知道土壤肥力高低. 29~30.
    Morgan T H, etal. 1980. A dynamic model of corn yield response to water. Water Resources Research. (6):59~64.
    茆智. 2002.水稻节水灌溉及其对环境的影响.中国工程科学, 4(7):8~16.
    马向东,于建国,李宝林.三江平原水利建设中的环境问题分析.黑龙江八一农垦大学学报,2006,18(2):104~107.
    毛达如. 1994.植物营养研究法.北京:中国农业大学出版社, 1-41;48-49.
    彭世彰. 1992.节水灌溉水稻需水新特点.农村水利与小水电, (11):7~11.
    彭世彰. 1991.节水高产水稻控制灌溉技术.河海科技进展, (12):75~77.
    庞桂斌,彭世彰,张杰,等.2009.水肥调控对水稻植株不同部位磷素含量及分配的影响[J].节水灌溉, (12):1~6.
    潘圣刚,黄胜奇,曹凑贵,等.2010.氮肥运筹对稻田田面水氮素动态变化及氮素吸收利用效率影响[J].农业环境科学学报, 29(5):1000~1005.
    彭世彰,边立明,朱成立.2000.作物水分生产函数的研究与进展.水利水电科技进展, 20(1):17~20.
    彭世彰,徐俊增,黄乾等. 2004.水稻控制灌溉模式及其环境多功能性.沈阳农业大学学报, 35(5~6):443~445.
    彭世彰,朱成立. 2003.作物节水灌溉需水规律研究.节水灌溉. (2):5.
    钱正英,张光斗. 2001.中国可持续发展水资源战略研究综合报告及各专题报告.北京:中国水利水电出版社.
    权太勇,金妍姬,韩云哲.2000.水稻不同群体的氮素吸收特性.延边大学农学学报, 22(2):86~90.
    钱晓晴,沈其荣,王娟娟,等.2003.模拟水分胁迫条件下水稻的氮素营养特征.南京农业大学学报, 26(4):9~12.
    邱卫国,唐浩,王超. 2004.水稻田面水氮素动态径流流失特性及控制技术研究.农业环境科学学报, 23(4):740~744.
    邱莉萍,刘军,王益权,等. 2004.土壤酶活性与土壤肥力的关系研究.植物营养与肥料学报, 3(10):277~280.
    石玉林,卢良恕. 2001.中国农业需水与节水农业高效农业建设.北京:中国水利水电出版社.
    孙景生,康绍忠. 2000.中国水资源利用现状与节水灌溉发展对策.农业工程学报, 16(2):1~2.
    沈淮东,柏彦超,茅正芳,等. 2008.不同水氮条件对水稻根系生长的影响.安徽农业科学, 36(8):3166~3168.
    孙永健,孙园园,刘凯,等. 2009.水氮互作对结实期水稻衰老和物质转运及产量的影响.植物营养与肥料学报, 15(6):1339~1349.
    苏珮,山仑. 1995.拔节期复水对玉米苗期受旱胁迫的补偿效应.植物生理学通讯, 31(5):341~344.
    沈阿林,刘春增,张付申,等. 1997.不同水分管理对水稻生长与氮素利用的影响.植物营养与肥料学报, 3(2):111.
    沈细中,朱良宗,崔远来,等. 2001.作物水、肥动态生产函数——修正Morgan模型.灌溉排水, 21(2):17~20.
    孙静. 2002.水稻钾肥用量与产量效应研究.贵州农业科学, 30(4):43~44.
    宋永林,唐华俊,李小平.2007.长期施肥对作物产量及褐潮土有机质变化的影响研究.华北农学报, 22:100~105.
    苏娜,杨丽娟,周崇俊,等.2006.有机肥与氮肥配施对设施土壤中碱解氮含量的影响.安徽农业科学, 34(24):6542~6543.
    宋静,骆永明,乔显亮. 2002.苏南典型丰产方施肥与地表水浓度变化.土壤, 34(4):210~214.
    沈荣开,张瑜芳,黄冠华. 1995.作物水分生产函数与农田非充分灌溉研究述评.水科学进展, 6(3):248~253.
    沈细中,朱良宗,崔远来,等. 2001.作物水、肥动态生产函数——修正Morgan模型.灌溉排水, 20 (2):17~20.
    随聪慧. 2007.粒子群算法的改进方法研究.西南交通大学硕士学位论文, 9~10.
    苏成国,尹斌,朱兆良.2003.稻田氮肥的氨挥发损失与稻季大气氮的湿沉降.应用生态学报, 14(11):1884~1888.
    宋勇生,范晓晖,林德喜,等.2004.太湖地区稻田氨挥发及影响因素的研究.土壤学报, 41(2):265~269.
    苏成国,尹斌,朱兆良,等.2005.农田氮素的气态损失与大气沉降及其环境效应.土壤, 37(2):113~120.
    覃万国. 1996.“薄、浅、湿、晒”灌溉技术对杂交水稻的增产效果.中国农村水利水电, (11):17.
    屠清英,顾丁锡,尹澄清. 1990.巢湖富营养化研究.北京:中国科学技术出版社, 70~79.
    田玉华,贺发云,尹斌,等. 2006.不同氮磷配合下稻田田面水的氮磷动态变化研究.土壤, 38(6):727.
    通乐嘎,李成芳,杨金花,等. 2010.免耕稻田田面水磷素动态及其淋溶损失.农业环境科学学报, 29(3):527~533.
    唐晓平,陈健飞. 1996. Fuzzy综合评判法在紫色土肥力评价中的应用.福建师范大学学报(自然科学版), 12(2):107~133.
    汤洁,赵凤琴,林年丰,等. 2005.多种模型集成的方法在土壤养分评价中的应用.东北师大学报自然科学版, 37(1):109~112.
    汤广民. 2001.水稻旱作的需水规律与土壤水分调控.中国农村水利水电. (9):18-21.
    田玉华,贺发云,尹斌,等.2007.太湖地区氮磷肥施用对稻田氨挥发的影响.土壤学报, 44(5):893~898.
    田玉华,贺发云,尹斌,等.2006.不同氮磷配合下稻田田面水的氮磷动态变化研究.土壤, 38(6):727~733.
    唐晓平. 1997.四川紫色土肥力的Fuzzy综合评价.土壤通报, 28(3):107~109.
    汪恕诚. 2003.以水资源的可持续利用促进经济社会的可持续发展——在第三届世界水论坛部长级会议上的演讲.中国水利学会通讯, (3):2~6.
    吴普特,冯浩. 2005.中国农业发展战略初探.农业工程学报, 21(6):152.
    王义炳,孙进,王少华. 1996.水稻间歇灌溉技术的探讨.水土保持研究, (3):108.
    王俊农. 1999.苏南太湖地区水稻浅湿灌溉技术浅析.江苏水利, (5):36.
    韦鹤平. 1993.环境系统工程.上海:同济大学出版社, 183.
    王晓波,刘喜德,包和平,等.2000.水稻优质高产配方施肥的研究.吉林农业大学学报, 22(3):14~18.
    王同朝,魏国庆,吴克宁,等.1999.水资源亏缺条件下水肥耦合对作物的影响.河南农业科学, (10):10~11.
    汪德水. 1995.旱地农田肥水关系原理与调控技术.北京:中国农业出版社, 246~254.
    魏征,彭世彰,孔伟丽,等.2010.生育中期水分亏缺复水对水稻根冠及水肥利用效率的补偿影响.河海大学学报(自然科学版), 38(3):322.
    王仁雷,华春,魏锦城. 2002.氮水平对水稻汕优64和金南风光合特性的影响.中国水稻科学, 16(4):331~334.
    王永茂,田秀萍.1996.白浆土种水稻对土壤磷素形态转化及其有效性的影响.黑龙江八一农垦大学学报, 8(3):33~37.
    王绍明.2000.不同施肥方式下紫色水稻土土壤肥力变化规律研究.农村生态环境, 16(3):23~26.
    王林,卢秀萍,肖汉乾,等.2006.浏阳植烟土壤肥力状况的综合评价.河南农业大学学报, 40(6):597~599.
    王康,沈荣开,沈言俐,等.2002.作物水分与氮素生产函数的实验研究.水科学进展, 13(3):308~311.
    王康,沈荣开,王富庆.2002.作物水分-氮素生产函数模型的研究.水科学进展, 13(6):736~739.
    吴江,张海燕,房建.2000.论黑龙江省水田灌溉可持续发展策略.黑龙江水专学报, 27(2):7~9.
    王建林,于贵瑞,房全孝等. 2007.作物水分利用效率的制约因素与调节.作物杂志. 2:9.
    王米. 2008.施氮水平对水稻生育期氮素利用率及稻田氮淋失动态的研究.浙江大学硕士学位论文, 38~39.
    王仰仁,雷志栋,杨诗秀. 1997.冬小麦水分敏感指数累积函数研究.水利学报, 5:29~30.
    王林. 2007.湖南烟区土壤肥力状况评价和土壤养分与烤烟化学成分的关系.河南农业大学硕士学位论文. 30~32.
    许迪,吴普特,梅旭荣,等.2003.我国节水农业科技创新成效与进展.农业工程学报, 19(3):5~6.
    徐宁红,刘勇,彭世彰.1999.水稻控制灌溉技术在宁夏的应用研究与推广.中国农村水利水电, (10):8~10.
    徐世宏,江立庚. 2000.水稻免耕抛秧技术研究与应用.农业现代化与农业工程, 6:811~812.
    徐涌. 2004.水稻水氮耦合生理效应分析.浙江大学硕士学位论文, 6~9.
    谢学俭,陈晶中,汤莉莉,等. 2007.不同磷水平处理下水稻田磷氮径流流失研究.西北农业学报, 16(6):261~266.
    夏辉. 2003.河北平原冬小麦水肥生产函数的研究.河北农业大学硕士学位论文, 2~3.
    邢光熹,颜晓元.2000.中国农田N2O排放的分析估算与减缓对策.农业生态环境, 16(4):1~6.
    徐宁红,刘勇,彭世彰. 1999.水稻控制灌溉技术在宁夏的应用研究与推广,中国农村水利水电, (10):9.
    邢贞相,付强,孙兵.三江平原水土流失现状影响因素和防治措施.农机化研究,2004,(3):64~66.
    肖自添,蒋卫杰,余宏军. 2007.作物水肥耦合效应研究进展.作物杂志, (6):18~22.
    于法稳. 2000.水资源与农业可持续发展.重庆:重庆大学出版社, 37~39.
    俞双恩,彭世彰,王士恒,等. 1997.控制灌溉条件下水稻的群体特征.灌溉排水, 16(2):22.
    杨建昌,朱庆森,王志琴,等. 1995.土壤水分对水稻产量与生理特性的影响.作物学报, 21(1):110~114.
    郁文辉,支凤高,柏友权,等.2000.直播水稻穗肥运筹对穗部形状的影响.上海农业学报, 16(2):45~49.
    尤小涛,荆奇,姜东,等.2006.节水灌溉条件下氮肥对粳稻稻米产量和品质及氮素利用的影响.中国水稻科学, 20(2):199~204.
    晏维金,尹澄清.1999.磷氮在水田湿地中的迁移转化及径流流失过程.应用生态学报, 10(3):312~316.
    严雄,张杨珠,刘晶,等. 2008.洞庭湖区5个茶叶基地土壤的养分状况与肥力质量评价.湖南农业大学学报(自然科学版), 34(5):596~600.
    闫德智,王德建,林静慧. 2005.太湖地区氮肥用量对土壤供氮、水稻吸氮和地下水的影响.土壤学报, 42(3):440~445.
    叶文虎,栾胜基. 1994.环境质量评价学.北京:高等教育出版社. 107~114.
    颜雄. 2007.洞庭湖主要茶叶基地土壤养分状况与肥力质量评价.湖南农业大学硕士学位论文, 5~9,42~45.
    张岳. 2001. 21世纪我国水利面临的十大挑战.水利部农村水利司编,农业节水探索.北京:中国水利水电出版社, 90~94.
    中华人民共和国水利部. 2000.全国灌溉发展“十五”计划及2010年规划.北京.
    翟宁. 2009.区域节水灌溉发展水平评价研究.河北农业大学硕士学位论文, 9~10.
    翟晶,曹凑贵,潘圣刚,等.2008.水肥耦合对水稻生长性状及产量的影响[J].36(29):12632~12635,12662.
    朱庭芸. 1985.北方水稻浅湿灌溉的省水增产作用及其理论探讨.水利学报, (11):44.
    张祖莲,薛继亮. 2001.水稻间歇灌溉试验研究.节水灌溉, (6):23~46.
    张清文. 1991.水稻间歇灌溉的推广.农田水利与小水电, (11):19.
    赵全志,丁艳锋,黄丕生,等.1999.水稻植株含氮量与穗粒重的关系.南京农业大学学报, 22(4):13~18.
    周明耀,赵瑞龙,顾玉芬,等.2006.水肥耦合对水稻地上部分生长于生理性状的影响.农业工程学报, 22(8),38.
    赵瑞龙,周明耀,顾玉芬,等.2005.水稻水肥耦合技术的生态环境效应和最佳模式研究.水利与建筑工程学报, 3(4):18~35.
    张凤翔,周明耀,周春林,等.2006.水肥耦合对水稻根系形态与活力的影响.农业工程学报, 22(5):197.
    周毅,郭世伟,沈其荣.2005.局部根系干旱条件下分蘖期水稻对供氮形态的生物学响应[J].19(6):169~173.
    朱庆森,邱泽森,姜长鉴,等.1994.水稻各生育期不同土壤水势对产量的影响.中国农业科学, 27(6):15~22.
    张志剑,董亮,朱荫湄. 2001.水稻田面水氮素的动态特征、模式表征及排水流失研究.环境科学学报, 21(4):475~479.
    周卫军,王凯荣,张光远,等.2002.有机与无机肥配合对红壤稻田系统生产力及其土壤肥力的影响.中国农业科学, 35(9):1109~1113.
    朱利群,田一丹,李慧,等.2009.不同农艺措施条件下稻田田面水总氮动态变化特征研究.水土保持学报, 23 (6):85.
    张继宗,雷秋良,左强,等.2009.模拟降雨条件下太湖地区稻田氮素径流流失特征.湖北农业科学, 48(11):2688~2692.
    张刚,王德建,陈效民.2008.稻田化肥减量施用的环境效应.中国生态农业学报, 16(2):327~330.
    周勇,李雪垣,贺纪正,等. 1998. ARC/INFO信息系统在农地分等定级中的应用.土壤学报, 35(4):450~460.
    郑立臣,宇万太,马强,等.2004.农田土壤肥力综合评价研究进展.生态学杂志, 23(5):156~161.
    赵艳波,刘正茂,吴凤梅.挠力河流域湿地水文特征变化研究.水文,2005,(1):59~61.
    周勇,张海涛,汪善勤,等.2001.江汉平原后湖地区土壤肥力综合评价方法及其应用.水土保持学报, 15(4):70~74.
    周智伟,尚松浩,雷志栋.2003.冬小麦水肥生产函数的Jensen模型和人工神经网络模型及其应用.水科学进展, 14(3):280~284.
    张士贤.1994.中国土地资源保护与平衡施肥技术对策.施肥与环境学术讨论会论文集.北京:中国农业科技出版社, 1~10.
    郑建初,高旺盛. 2006.现代农业与农作制度建设.南京:东南大学出版社, 375~382.
    朱兆良. 2000.农田中氮肥的损失与对策.土壤与环境, 9(1):1~6.
    张树清. 2006.中国农业肥料利用现状、问题及对策.专家视点, 07:11~14.
    朱庭芸. 1998.水稻灌溉的理论与技术.北京:中国水利水电出版社.
    张荣萍,马均,王贺正等.2005.不同灌水方式对水稻生育特性及水分利用率的影响.中国农学通报, 9(9):144-145.
    朱士江,孙爱华,张忠学.2009.三江平原不同灌溉模式水稻耗水规律及水分利用效率试验研究,节水灌溉, 11:12~14.
    赵立新,荆家海,王绍唐.1994.水分胁迫条件下施肥对盆栽冬小麦根系和苗系生长的影响.现代土壤科学研究.第五届全国青年土壤科学工作者学术讨论会论文集.北京:中国农业科技出版社.
    志贺一一.1984.稻作における施肥土づくりを含む技术の现状と见通し,农业および园艺, 59(1): 34~37.
    张瑜芳,张蔚榛,沈荣开.1996.排水农田氮素运移、转化及流失规律的研究.水动力学研究与进展, 11(3):251~260.
    周智伟,尚松浩,雷志栋.2003.冬小麦水肥生产函数的Jensen模型和人工神经网络模型及其应用.水科学进展, 14(3):280~283.
    ARNON I. 1975.Physiological principles of Dry and Crop Production. In: Cupta US. Physiological Aspects of Dry-land Farming. New York: Universal Press,3~124.
    Arth I, Frenzel P, Conrad R. 1998.Denitrification coupled to nitrification in the rhizo sphere of rice. Soil Biology and Biochemistry, 509~515.
    Aftab Ahmsd, Sakil Ahmad. 2003,Study of phosphorus accunmulation in plant foliage due to coal smoke pollution.Geobios,30(4):284~285.
    Arnon L. 1975, Physiological principles of dryland crop production. In: Cupta U.S.(ed)Physiological aspects of dryland farming. 3~124.
    Belder P, Bouman B. A.M, Cabangon R, etc. 2004. Effect of water-saving irrigation on rice yield and water use in typical low land conditions in Asia. Agricultural water Management, 65(3):193~211.
    Bouman B A M, T uong T P. 2001.Field water management to save water increase its productivity in irrigated lowland rice. Agricultural Water Management, 49:11~30.
    Bernhardt H, Clasen J. 1985.Recent development and perspective of restoration for artificial basins used for water supply.Lake Pollution and Recovery International Congress, Proceedings, Rome, 15~18.
    Carpenter S R, Caraco N F, Correll D L, et al. 1998.Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Application, 8(3):559~568.
    CE Milson Jr. PK Bollich and RJ Norman. 1998.Nitrogen application timing effects on nitrogen efficiency of dry-seeded rice. Soil Science Society of American Journal. 62(4):959~964.
    Damanski J. 1975.Concept, objectives and structure of the Canada soil information system Canadian.J. Soil .Sci., 55:181~187.
    De Datta S k, Buresh R J, Samson M I et al. 1988. Nitrogen use efficiency and nitrogen-15 balances in broadcast-seeded flooded and transplanted rice. Soil Science Society of America Journal, 52:849~855.
    De Datta S. K.. 1986. Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia. In.S. K. De Datta and W. H. Patrick, Jr., (eds.) Nitrogen economy of flooded rice soils. Martinis Nijhoff/ Dr. W. Junk Pub, Dordrecht. 171~186.
    David M B, Centry L E, Kovacic D A, etal. 1997. Nitrogen balance in and export fromagricultural watershed. J- Environ- Qual-,26:1038~1048.
    Epherd M A, Lord E I. 1996. Nitrate leaching from a sandy soil: The Effect of Previous Crop and Post Harvest Soil Management in an Arable Rotation.Journal of Agric. Sci., 121:223~231.
    F.E. Broadbent, S.K. Datta and EV Laureles.1987. Measurement of nitrogen utilization efficiency in rice genotypes. Agron. J, 79:786~791.
    Feddes R A, et al. 1978.Simulation of field water use and crop yield. Centre for Agric, publishing and documentation. Wageningen, 183.
    Goulding K W T, Matchett L S, Heckrath G, et al. 1998. Nitrogen and phosphorus flows from agricultural hill-slopes. Advance in Hill-slope Processes,Volume 1, Edited by Anderson M G and Brooks S M, 213~227.
    Hanks R J. 1974. Model for predicting yield as influenced by water use. Agron J. (66):660~665.
    Hongbin TAO, Holger Brueck, Klaus Dittert, etc. 2006. Growth and yield formation of ricez (Oryza sativa L.) in the water-saving ground cover rice production system(GCRPS).Field Crops Research, 1:5-7.
    Hong Lin, Li Minggang, Li Yuanhua. Profitablity and Water Productivity of Groundwater Use in the Agricultural Production of Irrigation Districts-A case Study of the Yellow River Diversion Districts in Kaifeng,Henan,China.530~537.
    Kronzucker H J, Kirk G J D, Siddiqi M Y, et al. 1998.Effects of hypoxia on 13NH4+ flux in rice roots: Kinetics and compartmental analysis. Plant Physiol, 116:581~587.
    Lohk D, Edward J, Rykiel JR. 1992. Integrated resource management systems: coupling expert systems with date-base management and geographic information system. Environ. Man., 16(2):167~177.
    Morgan T H. Biere A W and kanemasu E T. 1980. A dynamic model of corn yield response to water.Water Resource, 16(1):59~64.
    NourM. A, A. E. A bd Ei-W ahah, A. A. Ei-Kady, etc. 1997. Productivity of some rice varieties under different irrigation intervats and Potassium level in Egypt. J A ppl scil 2(6):137~154.
    Novotny V. 1981. Handbook of Nonpoint Pollution: Sources and Management. Van Nostrand Reinhold Company,
    Novoa R, Loomis R S. 1981. Nitrogen and plant production. Plant Soil. 58:177~204.
    Peter E B, Lawrence U Lewnn.1990. Rice growth under intent stubble and nitrogen-fertilization management techniques.Field Urohs Rresearch, 24:51~65.
    Paolo D Odorico, Amilcare Porproato, Francesco Laio, et al. 2004. Probabilistic modeling of nitrogen and carbon dynamics in water-limited ecosystems.Ecological Modeling, 179:205~219.
    Rahn C R, Johnson P A. 2000. Previous cropping and soil mineral nitrogen as predictions of yield response of winter wheat to nitrogen on silt soils in United Kingdom. Soil use and management, 17:203~207.
    Smith S J, Sharpley A N, Berg W A, et al. 1998. Nutrient losses from agricultural land runoffin Oklahoma//Proc.22th. O k-la. Agric. Chem. Con. Stillwater O K: Oklahoma State Vniv.pub.Proc., 13:23~26.
    Sharpley A N, Smith S J, Naney J W. 1987. Environmental impact of agricultural nitrogen and phosphorus use. J. Agric- Food Chem-,35:812~817.
    Tuong T P, Bhuiyan S I. 1999. Increasing water-use efficiency in rice production: farm-level perspectives.Agricultural Water Management, 40:117~122.
    Tripathi R. P., Kushwaha H.S., Mishra R. K.. 1986. Irrigation requirements of rice under shallow water table conditions. Agricultural Water Management, 12(1~2):127~136.
    Tabbal D. F., Lampayan R. M., Bhuiyan S. I. 1992. Water efficient irrigation technique for rice. Soil and Water Engineering for Paddy Field Management. Asian Institute of Technology, Bangkok, Thailand, 146~159.
    Wallsgrove R M, Keys A J, Lea P, et al.1983. Photorespiration and nitrogen metabolism. Plant Cell Environ, (6):301~309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700