用户名: 密码: 验证码:
玉米抗纹枯病相关miRNA鉴定及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,玉米纹枯病等真菌性病害蔓延速度加快,发生面积不断扩大,危害日趋严重,逐渐成为我国玉米产区的主要病害,严重影响玉米产量和品质性状的提高。因此,鉴定和筛选玉米抗纹枯病关键基因,系统探究玉米抗纹枯病分子调控机制,结合传统育种策略和科学前沿分子生物技术认识抗病分子机制并最终转化为抗病分子育种是培育广谱、高效、稳定和安全的抗病玉米品种的有效途径。miRNA是一类内源性的、21-25碱基长度的小分子非编码RNA,它通过指导剪切或者抑制翻译等方式调节植物基因的表达,参与调控植物生长发育和逆境胁迫响应等各个方面。因此,筛选重要抗病相关玉米miRNA及其靶基因并鉴定其功能,深入研究候选miRNA及其靶基因在抗病基因表达调控过程中的作用机制是必须的,更是紧迫的。
     本研究在前期开展玉米miRNA研究的基础上,选取耐纹枯病玉米自交系R15和高感纹枯病玉米骨干自交系掖478为材料,利用Solexa深度测序与生物信息学手段分析,筛选获得大量玉米纹枯病胁迫相关miRNA,结合miRNA原位杂交、miRNA荧光定量和半定量等方法对部分重要抗纹枯病相关miRNA及其靶基因进行表达检测,得到的主要结果如下:
     1.共获得39个新miRNA,分属于33个miRNA家族,其中处理中特有新miRNA为5个,对照中特有新miRNA为15个,处理和对照中共有且发生差异表达的新miRNA共15个,处理和对照中共有但无明显差异表达的新miRNA共4个;获得147个已知miRNA,分属于25个miRNA家族,其中发生显著或极显著差异表达的已知miRNA共41个,发生显著差异表达的成熟miRNA有4个,极显著差异上调表达的miRNA为2个,极显著差异下调表达的miRNA共35个。
     2.新发现的zma-miRNA 36、zma-miRNA 32和zma-miRNA 28分别与已知的zma-miRNA 156家族、zma-miRNA171a/b和zma-miRNA 172家族成员序列保守性较高,可能是这些已知玉米miRNA家族的新成员。
     3.部分新发现的miRNA在不同模式植物中存在不同程度保守性。
     4.靶基囚预测及分类结果表明,39条新发现的miRNAs靶基因预测总数为248个,其靶基因功能主要涉及生长发育代谢、蛋白转运、转录调控、胁迫响应、激素信号传导和电子传递等;受纹枯病诱导差异表达的已知miRNA倾向于靶向作用于转录因子,主要包括MYB、TCP、锌指蛋白、GRAS、ARF等。
     5.部分抗病相关miRNA可以同时参与玉米的生长发育和纹枯病胁迫响应过程并发挥重要作用,这类现象组成了抗病相关miRNA调控功能的重叠网络。
     6.选取的9个重要候选miRNA的荧光定量PCR分析结果表明,除zma-miR168a在两材料中有明显上调表达趋势外,其余miRNA大都呈下调表达趋势,并且在耐病材料R15中下调表达趋势明显,尤其在胁迫后24h表达受明显抑制。
     7.选取的2个重要候选miRNA的组织原位杂交结果表明,随纹枯病病菌入侵时间增加,其侵害部位在玉米叶鞘组织中呈山外向内趋势逐渐深入并诱导这些部位的2个miRNA特异性表达。
     8.10个候选miRNA的靶基因在两材料R15和掖478中的表达检测结果表明,其靶向作用的AGO1蛋白、GRAS转录因子、泛素水解酶、TCP转录因子、丝氨酸/苏氨酸蛋白激酶、漆酶、ARF激素响应因子1/2、谷胱甘肽硫转移酶、MFS药物转运蛋白、转运蛋白和CCAAT转录因子等均能在两材料接菌后处理中被检测,并且表达差异较大。从总体水平来看,受下调表达miRNA调控的靶基因在两个材料接菌后不同时间段中其表达量呈上调趋势,且在胁迫后24h增至最高,而受上调表达miRNA调控的部分靶基因在两个材料接菌后不同时间段中其表达量有下降趋势。结合前面的miRNA原位杂交、miRNA荧光定量PCR结果表明,10个候选miRNA负调控其相应靶基因,最终导致抗病相关基因在两材料中富集并通过各自特有抗病途径抵御纹枯病病原菌胁迫,并且从结果可以推测耐病材料R15较掖478更能高富集大量抗病相关靶基因,这可能是R15和掖478表现出耐/感纹枯病差异特性的重要原因。
     9.受纹枯病诱导玉米体内的代谢途径、细胞学过程、生物调控、生物进程调控以及逆境响应等途径富集大量的受miRNA调控的靶基因,这些miRNA负调控其靶基因参与的防御机制主要包括信号传导途径、抗氧化胁迫机制、自身反馈调节、转录调控途径、抗病相关代谢途径以及有毒物质外排转运等,最终各类miRNA介导的各类抗病途径构建了玉米抗纹枯病胁迫复杂的防御机制。
The maize banded leaf and sheath blight (BLSB) has become the main disease in the producing area of china in recent years, and critically affected the maize yield and the improvement of quality traits, owing to the spread and the expansion of occurrence of this disease. Therefore, it is an effective way of cultivating broad-spectrum, efficient, stable, safe and disease-resistant corn varieties through identifying and selecting disease-resistant key genes for BLSB and then carries on breeding for disease resistance, combining with traditional breeding strategies and frontier molecular biotechnology to know disease-resistant molecular mechanism and systematically explore the molecular modulation mechanism. miRNAs are a class of small single-stranded non-coding RNAs that range in length from roughly 21 to 24 nucleotides,which play a central role in regulating plants growth and development and responsing to adverse environmental and so on, tlirough directing the cleavage or repressing translation by interfering with expression of plant mRNA So, it is pressing to screen and study the role of the candidate miRNA and its target genes in process of regulation which invovled in disease resistance and then identify its function.
     In this study, the maize inbred lines R15 (resistance to BLSB) and 478 (susceptible to BLSB) were used as materials, many candidate miRNA were screened under BLSB stress based on the initial research combing with Solexa depth sequencing and bioinformatics method analysis, and expressions of the candidate miRNA and its target genes of BLSB were detected combing with miRNA in situ hybridization, fluorescence quantitative and semi-quantitative and so on. The main results are as follows:
     1.39 new miRNAs are obtained which belong to 33 miRNA families, of which, there were five new special miRNAs in BLSB treat and 15 new miRNAs in control, moreover, 15 miRNAs were both exhibited differential expression in the above conditions However, 4 new miRNAs of their expression showed no obvious difference.and 147 known miRNAs were obtained which belong to 25 miRNA family,41 miRNAs were expressed different or significantly different, of which,4 miRNAs were differentially expressed,2 miRNAs were differentially up-regulated and 35 miRNAs were differentially down-regulated.
     2. The new discovered zma-miRNA36, zma-miRNA32 and zma-miRNA28 kept higher conservative in their sequeces compared with the known zma-miRNA156 family, miRNA171a/b family and zma-miRNA 172 family, respectively; So they could be new members of the three known maize miRNA family respectively.
     3. Some new miRNA kept different conservation in the different mode plant.
     4. Target genes of new 39 miRNAs were predicted and classified respectively, which contained 248 target genes which mainly involved in the growth and metabolism, protein transportion, transcription regulation, response to stress, hormone signaling and electronic transfer and so on. Moreover, target genes of the known miRNAs expressed differentially and tended to target to the transcription factors (MYB, TCP, zinc finger protein, GRAS, ARF et al) in BLSB treat condition
     5. Some miRNAs associated with disease resistion could meanwhile participate in maize growth and development and play important roles in responsing to sheath blight, and, this type of phcnomenons compose overlay network of miRNA regulation associated with disease resistion.
     6. The 9 important candidated miRNAs were selected and verifed by Q-PCR It is indicated that these miRNAs were almost down-expressed especially significantly expressed in R15 and-treated after 24 hours. Howeever, mill 168a showed apparently up-expressed in the two materials.
     7. The two important candidated miRNAs is selected and analysised by ISH (in situ hybridization), It is suggested that the infection sites of BLSB in tissue spreaded from outside to inward with the prolong of time and showed their specific expressions in these sites.
     8. The target genes of the 10 miRNAs were all detected in R15 and 478, and showed great differences in their expression levels under BLSB treated respectively which included AGO1, GRAS transcription factor, ubiquitin hydrolase, TCP transcription factor, serine/thrconine protein kinase, laccase, ARF hormone response factor 1/2, glutathione suifur transferase, MFS drug transport protein, CCAAT transcription factor and so on. In general, the condidated miRNAs up-expressed in different periods after infected BLSB in R15 and 478 and reached to peak in 24 hours while the target genes down-expressed, On the contrary, the condidated miRNAs down-expressed while the target genes up-expressed. Combine with ISH and Q-PCR of miRNAs, the 10 candidate miRNAs negatively regulated their corresponse target genes which associated with disease resistance through their own peculiar disease-resistant ways in R15 and 478, under BLSB treated. It is donstratcd that R15 and 478 possessed different BLSB resistance characteristics becauce the maize inbred lines R15 enriched more target genes of candidated miRNAs than 478.
     9. These candidated miRNAs invovled in the complicated defence mechanism of maize to resist BLSB stress, which mostly included signal conduct pathway, antioxidatant stress mechanism, self-feedback regulation, transcription regulation pathway, metabolic pathway and related to disease resistance, efflux of toxic substance, and so on.
引文
陈兵,王坤元,董国强等.水稻纹枯病菌致病性与酶活力的关系.浙江农业学报,1992,23(1):19-22.
    陈洁.重金属铅胁迫下玉米根系miRNA的鉴定及相关miRNA的表达分析.四川农业大学博士学位论文,2010.
    陈捷,唐朝荣,邹庆道等.玉米纹枯病致病因子的研究[J].沈阳农业大学学报,1999,30(3):189-194.
    初英娜,张珍珍,潘秋红.紫外照射对葡萄果实莽草酸途径相关基因表达的影响.植物生理学通讯,2010,46(9):902-909.
    陈洁.重金属铅胁迫下玉米根系苗期miRNA的鉴定及相关miRNA的表达分析.四川农业大学博士学位论文,2010.
    崔福浩.玉米纹枯病菌(Rhizoctonia Solani AG-1-IA) β-1,4-内切纤维素酶的分离纯化、基因的克隆与表达及功能研究.山东农业大学硕士学位论文,2009.
    杜丽萍,沈昕,陈少良等.细胞壁重构关键酶木葡聚糖内转糖苷酶/水解酶(XTH)的研究进展.2010,18(3):604-609.
    杜欣可.玉米纹枯病菌内切多聚半乳糖醛酸酶的基因克隆、表达及致病性研究,山东农业大学硕士学位论文.2009.
    冯俊丽.黄瓜花叶病毒基因组表达与寄主microRNA的相关性研究.浙江大学生命科学院博士学位论文,2009.
    高卫东.华北区玉米、高梁、谷子纹枯病病原学初步研究,植物病理学报,1987,17(4):247-251.
    辜运富,张云飞,张小平.一株抗玉米纹枯病内生细菌的分离鉴定及其抗病促生作用.微生物学通报,2008(08).
    郭华军,焦远年,邸超等.拟南芥转录因子GRAS家族基因群响应渗透和干旱胁迫的初步探索.植物学报,2009,44(3):290-299.
    郭启芳.改善泛素系统提高植物逆境适应性研究.博士学位论文.山东农业大学,2007.
    韩友生,栾福磊,朱洪亮等.生物信息学方法挖掘小麦中的microRNAs及其靶基因.中国科学C辑:生命科学,2009,39(6):585-595.
    黄飞飞,李贺,张志宏.苹果microRNA的茎环RT-PCR检测及离体试管苗与田间苗 表达差异,华北农学报,2010,25(1):104-109.
    黄京华,曾任森,骆世明.AM菌根真菌诱导对提高玉米纹枯病抗性的初步研究[J].中国生态农业学报,2006,14(3):167-169.
    黄明波,谭君,杨俊品等.玉米纹枯病研究进展.西南农业学报.2007,20(2):209-213.
    金伟波,李楠楠,吴方丽等.水稻MicroRNA的预测及实验验证.中国生物化学与分子生物学报,2007,23(9):743-750.
    郎秋蕾.番茄黄瓜花叶病毒互作分子机制研究.博士学位论文,2007.
    李春贺,阴祖军,刘玉栋等.盐胁迫条件下不同耐盐棉花miRNA差异表达研究.山东农业科学,2009,7:12-17.
    李华荣,兰景华.玉蜀黍丝核菌的鉴定特征[J].菌物系统,1997,16(2):134-138.
    李荣华等.玉米纹枯病抗性机制的研究.沈阳农业大学硕士学文论文,2003.
    李芸.立枯丝核菌AG1-IA诱导玉米差异蛋白的分析.四川农业大学硕士学位论文,2008.
    梁明祥,刘赵普,David等.HAP3b基因负调控植物冷害反应.中国植物学会植物细胞生物学2010年学术年会论文摘要汇编,2010.
    林海健.玉米根系低磷胁迫响应分子机理的初步研究.四川农业大学博士毕业论文,2010.
    刘冬梅,杨凤玺,余迪求.高表达miR396小分子导致拟南芥花柱头弯曲.云南植物研究,2009,31(4):353-356.
    刘涵华,田鑫,吴长艾等.拟南芥胁迫诱导microRNA的分离和功能研究及microRNA启动子分析.硕士学位论文,山东农业大学,2009.
    刘丽,马永毅,冷鹏飞等.玉米不同防卫酶系对纹枯病作用的研究.玉米科学,2009,17(3):99-102.
    刘丽,马永毅,张志明等.利用cDNA-AFLP分析纹枯病菌诱导的玉米差异表达基因,植物病理学报,2009(4):385-391.
    刘运华,刘灶长,罗利军.植物miRNA及其在植物发育进程和环境胁迫响应中的潜在功能.植物生理与分子生物学,2007,43(5):987-993.
    马卓娅,李欣,汤华等.生物芯片检测细胞中microRNA的表达.生物技术通讯,2007,18(6):955-957.
    秘彩莉,刘旭,张学勇等F-box蛋白质在植物生长发育中的功能.遗传,2006,28(10): 1337-1342.
    庞明利.番茄中miR397靶基因LeLAC的克隆与表达分析.山东农业大学硕士毕业论文,2009.
    彭华.纹枯病胁迫下玉米miRNA的克隆、鉴定及功能分析.四川农业大学硕士毕业论文,2009.
    彭金英,黄勇平.植物防御反应的两种信号转导途径及其相互作用.植物生理与分子生物学学报,2005,31(4):347-353
    秦一雨,全志伟,李济宇miRNA检测方法学的研究进展,医学研究生学报,2007,20(11):1198-1202.
    秦芸.雅安山区立枯丝核菌融合群的种群组成[C].中国植物保护学会第八届全国会员代表大会暨21世纪植物保护发展战略学术研讨会,2001:702-704.
    沈亚欧,林海建,张志明等.植物逆境miRNA研究进展,遗传,2009,31(3):227-235.
    沈亚欧.玉米C型细胞质雄性不育系及保持系microRNA克隆与功能分析,博士学位论文,四川农业大学,2008.
    宋锐.基于生物信息学方法预测玉米抗纹枯病相关miRNA及功能分析,硕士学位论文,四川农业大学,2009.
    唐丽.玉米纹枯病田间发生动态、阶段抗性的生化因素及种质资源抗性评价的研究[D].雅安:四川农业大学硕士学位论文,2001.
    陶家凤,谭方河.立枯丝核菌侵染玉米的研究[J].植物病理学报,1992,10(3):471-477.
    田鑫.拟南芥胁迫诱导microRNA的分离和功能研究及microRNA启动子分析.山东农业大学,2009.
    童蕴慧,徐敬友,潘学彪等,水稻植株对纹枯病菌侵染反应及其机理的初步研究.江苏农业研究,2000,21(4):45-47.
    汪华,崔志峰.莽草酸生物合成途径的调控.生物技术通报,2009,3:50-53.
    王迪,傅彬英,张力军.半定量RT-PCR方法研究microRNA393在旱处理后的孕穗期水稻叶片和穗部的表达情况,分子植物育种,2008,2(6):355-357.
    王文雅,刘卿,傅晓蕾等.木聚糖降解酶系基因代谢调控研究进展,2009,29(6):143-150.
    王莹,龙亮华.豌豆中抗寒相关性miRNAs功能特异性验证及其克隆的研究.辽宁师范大学学报(自然科学版),2010,32(2):231-236
    王振海,孙野青.Clp蛋白酶研究进展.药物生物技术,2005(6).
    卫波,张荣志,李爱丽等.利用高通量测序技术发现植物小分子RNA研究进展,中国农业科学,2009,42(11):3755-3764.
    吴大椿,方守国,余知和.玉米纹枯病病原及生物学特性研究[J].湖北农学院学报,1997(01).
    项安玲,黄思齐,杨志敏.芸苔属(Brassica)植物中MicroRNA的生物信息学预测与分析.中国生物化学与分子生物学报,2008,24(3):244-256.
    肖炎农,李建生,郑用琏等.湖北省玉米纹枯病病原丝核菌的种类和致病性.菌物系统,2002,21(03).
    谢甲涛.水稻纹枯病菌遗传多样性及侵染水稻早期上调表达基因的分析.华中农业大学博士学位论文,2008.
    熊国胜,李家洋,王永红.植物激素调控研究进展.科学通报,2009,54(18):2718-2733.
    许振华,谢传晓.植物microRNA与逆境响应研究进展.遗传,2010,32(10):1018-1030.
    颜思齐,吴帮承,唐显富等.禾谷类作物纹枯病研究:水稻、玉米、小麦纹枯病和棉花立枯病四者之间的关系[J].植物病理学报,1984,14(1):25-32.
    杨俊品.玉米病虫害田鉴定手册[M].北京:中国农业大学出版社,2000,76.
    杨娜,侯巧明,南洁等.泛素连接酶的结构与功能进展.生物化学与生物物理进展.2008,35(1):14-20.
    杨世文,刘永发,陈淑琼等.玉米纹枯病发生规律及测报技术的探讨[J].病虫测报,1992,12(4):35.
    杨致荣,毛雪,杨致芬等.细胞色素P450基因及其在植物改良中的应用.遗传,2003,25(2):237-240.
    叶华智等.玉米生育阶段和叶鞘位对纹枯病抗性的影响.中国植物保护学会,第八届全国会员代表大会暨21世纪植物保护发展战略学术研讨会论文集,2001,709-713.
    张春山,孙秀华,孙亚杰.玉米纹枯病调查研究[J].吉林农业科学,1992,17(3):37-39.
    张存山.玉米纹枯病调查研究[J].吉林农业科学,1992,(3):37-39.
    张红生,朱立宏.水稻抗纹枯病研究现状与展望[J].水稻摘要,1990,9(6):1-3.
    张旗,何湘君,潘秀英.RNA加尾和引物延伸RT-PCR法实时定量检测microRNA,北京大学报(医学版).2007,39(1):87-90.
    张宇,张勇,杨长成等MicroRNA表达检测技术进展.新乡医学院学报,2008,25(6):634-637.
    张志明,宋锐,彭华等.用生物信息学挖掘玉米中的microRNAs及其靶基因,作物学报,2010,36(8):1324-1335.
    张志明.立枯丝核菌AG212IA诱导玉米差异表达基因的研究[D].雅安:四川农业大学博士学位论文,2006.
    章文蔚.马铃薯microRNA的鉴定及分析.南昌大学硕士毕业论文,2007.
    赵茂俊,张志明,李晚忱等.玉米纹枯病研究进展,2006,32(1):5-8.
    郑达.玉米纹枯病菌致病性及玉米阶段性生理生化因素研究[D].雅安:四川农业大学,1999.
    朱惠聪.玉米上一种立枯丝核菌病害[J].植物病理学报,1982,12(2):61-62.
    Achard P, Herr A, Baulcombe DC, et.al. Modulation of floral development by a gibberellin-regulated microRNA[J]. Development,2004,131:3357-3365.
    Aida M, Ishida T, et.al. Genes involved in organ separation in Arabidopsis:An analysis of the cup-shaped cotyledon mutant. Plant Cell,1997,9(6):841-57.
    Allen E, Xie Z, Gustafson AM, et.al. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell,2005,121,207-221.
    Allen E, Xie Z, Gustafson AM, Sung GH, et.al. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet,2004, 36(12):1282-1290.
    Ambros V, Bartel B, Baa'tcl D P, et al. A uniform system for microRNA annotation. RNA, 2003,9(3):277-279.
    Axtell M.J., Bartel DP. Antiquity of microRNAs and their targets in land plants, The Plant Cell,2005,17(6):1658-1673.
    Bao N, Lye KW, Barton MK. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell,2004. (7):653-662.
    Bari R, Pant BD, Stitt M, Scheible WR. PHO2, mi-croRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol,2006,141(3):988-999.
    Baskerville S, Bartel DE. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA,2005, (11):241-247
    Bateman DF. Alteration of cell wall components during pathogenesis by Rhizoctonia solani[A],1967.
    Boland GJ, et al. Antagonism of white mold(Sclerotinia sclerotiorum) of bean by fungi from bean and rapeseed flowers. Can.J.Bot,1989,67:1775-1781.
    Bonnet E, Wuyls J, Rouze P, et.al. Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding freee nergies than random sequences. Bioinformatics,2004, Vol.20(17):2911-2917
    Bonnet E, Wuyts J, Rouze P, et.al. Detection of 91 potential conserved plant micro RNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA,2004,101:11511-11516.
    Brennecke J, Aravin AA., Stark A, et.al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila, Cell,2007,128 (6):1089-1103
    Calin G.A., Sevignani C, Dumitru CD, et.al. Human microRNA genes are frequently located at fragile sites and genomic resions involved in cancers, Proc Natl Acad Sci USA,2004,101(9):2999-3004.
    Carling DE, Baird RE, Gitaitis RD, et.al. Characterization ofAG-13, a newly Reported Anastomosis Group of Rhizoetonia solani. Phytopathology.2002.92:893-899
    Carling DE, Kuninaga S, Brainard KA. Hyphal Anastomosis Reactions, rDNA-Internal Transcribed Spacer Sequences, and Virulence Levels Among Subsets of Rhizoctonia solani Anastomosis Group-2 (AG-2) and AG-BI. Phytopathology.2002,92(1): 43-50.
    Carlsbecker A., Lee JY., Roberts CL, et.al. Cell signalling by microRNA165/6 directsgene dose-dependent root cell fate.Nalure,2010,465(4):316-321.
    Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science, 2003,301(5631):336-338.
    Castoldi M., Schmidt S, Benes V, et.al. Asensitive array for microRNA expression profiling(miChip)based on lockednucleic acids(LNA), RNA,2006,12(5):913-920.
    Chen CZ, Li L, Lodish HF. MicroRNAs modulate hemmopoietic lineage differentiation. Science,2004,5654:83-86
    Chen CF., Ridzon DA., Broomer AJ, et.al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res,2005,33(20):179-180.
    Chen HM, Li YH, Wu SH. Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis. Proc Natl Acad Sci USA,2007,104:3318-3323.
    Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development, Science,2003,1126:1-2.
    Chen XM. MicroRNA biogenesis and function in plants. FEBS Lett,2005,579(26): 5923-5931.
    Chiou TJ, Aung K, Lin SI, et.al. Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell,2006,18(2):412-421.
    Chiou TJ. The role of microRNAs in sensing nutrient stress. Plant Cell Environ,2007, 30(3):323-332.
    Cokus SJ, Feng S, Zhang X, et.al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning, Nature,2008,452 (7184):215-219
    Combier JP., Frugier F, De BF, et.al. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA 169 in Medicago truncatula. Genes &,2006,20(22):3084-3088.
    Dharmasiri N, Dharmasiri S, Weijers D, et.al. Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell,2005,9:109-119.
    El-Yahyaoui F, Moreau S, Vernie T, et.al. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA 169 in Medicago truncatula. Genes Dev,2006,20(22):3084-3088.
    Emery JF, Floyd SK, Alvarez J, et.al. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol,2003,13(20):1768-1774
    Emery JF, Floyd SK, Alvarez J, et.al. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol,2003,13:1768-1774
    Enright AJ, John B, Gaul U, et.al. MicroRNA targets in Drosophila. Genome Biol,2003, 5:R1.
    Errampalli D, Patton D, Castle L, et.al. Embryonic lethals and T-DNA insertional mutagenesis in Arabidopsis. The Plant Cell,1991,3(2):149-157.
    Fahlgren N, Howell MD, Kasschau KD, et.al. High-throughput sequencing of Arabidopsis microRNAs:evidence for frequent birth and death of MIRNA genes. PLoS ONE, 2007,2(2):e219.
    Flor HH. Current status of the gene-for-gene concept. Annual Review of Phytopathology, 1971(9):275-296.
    Fode B, Siemsen T, Thurow C, et.al. The Arabidopsis GRAS protein SCL14 interacts with class Ⅱ TGA transcription factors and is essential for the activation of stressinducible promoters. Plant Cell,2008,20,3122-3135.
    Fujii H, Chiou TJ, Lin SI, et.al. A miRNA in-volved in phosphate-starvation response in Arabidopsis. Curr Biol,2005,15(22):2038-2043.
    Garcia D. A miRacle in plant development:Role of microRNAs in cell differentiation and patterning. Semin Cell Dev Biol,2008,19:586-595.
    Gifford ML, Dean A, Gutierrez RA, et.al. Cell-specific nitrogen responses mediate de-velopmental plasticity. Proc Nall Acad Sci USA,2008,105(2):803-808.
    Glazinska P, Zienkiewicz A, Wojciechowski W and Jan Kopcewicz. The putative miR172 target gene InAPETALA2-like is involved in the photoperiodic flower induction of Ipomoea nil[J]. Plant Physiol,2009,166,(16):1801-1813.
    Gramantieri L, Ferracin M, Fomari F, et.al. Cyclin G1 is a target of miR-22a,a microRNA frequently downregulated in human hepatocellular carcinoma, Cancer Res,2007, 67(13):6092-6099.
    Griffiths JS, Grocock RJ, Van DS, et.al. miRBase:microRNA sequences, targets and gene nomenclature. Nucl Acids Res,2006,34:140-144.
    Guo HS, Xie Q, Fei JF, et.al. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell,2005,17:1376-1386.
    Ham MH, Goud S, Song L, et.al. The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc Natl Acad Sci USA, 2004,101:1093-1098.
    Han HL, Tian X, Li YJ. et.al. Microarray-based Analysis of Stress-regulated microRNAs in Arabidopsisthaliana, RNA,2008,14:836-843.
    Hashiba T. Sample size and sampling method needed for investigating the disease incidence of rice sheath blight disease. Annals of the Phylopathological Society of Japan,1997,52 (1):47-52.
    Hatfield R, Vermerris W. Ligninformationin plants:the dilemma oflinkage specificity. Plant Physiology,2001,126:1351-1357.
    Huang SQ, Peng J, Qiu CX, et.al. Heavy metal-regulated new microRNAs from rice, Journal of Inorganic Biochemistry,2009,103:282-287.
    Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta,2009,229(4):1009-1014.
    Jia X, Wang W.X,Ren L, et.al. Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopisis thaliana. Plant Mol Biol, 2009,71:51-59.
    Jiang, P, Wu H, Wang W, et.al. MiPred:classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res,2007,35:339-344.
    Jones-Rhoades MW, Bartel DP and Bartel B. MicroRNAS and their regulatory roles in plants. Annual review of plant biology,2006,57:19-53
    Jones-Rhoades MW, Bartel DP. Computational identifica-tion of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell,2004,14(6):787-799.
    Jover-Gil S, Candela H, Ponce MR. Plant microRNAs and development. Int J Dev Biol, 2005,49:733-744
    Jung HJ, Kang H. Expression and functional analyses of microRNA4 17 in Arabidopsis thaliana under stress conditions. Plant Physiology andBiochemistry,2007,45, 805-811
    Jung JH and Park CM. MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development inArabidopsis[J]. Planta, 2007,225(6):1327-1338.
    Jung JH, Seo YH, Seo PJ, et.al. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis[J]. Plant Cell, 2007,19:2736-2748.
    Kasschau K, Xie Z, Allen E, et.al. P1/HC-Pro, a Viral Suppressor of RNA Silencing, Interferes with Arabidopsis Development and miRNA Function. Developmental Cell, 2003,4(2):205-217.
    Kasschau KD, Xie Z, Allen E, et.al. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis develop-ment and miRNA unction. Dev Cell,2003,4(2): 205-217.
    Kim J, Jung J, Reyes JL, et.al. MicroRNA directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems, plant J,2005,42(1): 84-94.
    Kim SK, Nam JW, Rhee JK, et.al. MiTarget:microRNA target gene prediction using a support vector machine. BMC Bioinform,2006,7:411.
    Kiriakidou M, Nelson PT, Kouranov A, et.al. A combined computational-experimental approach predicts human microRNA targets. Genes Dev,2004,18:1165-1178.
    Kloosterman WP, Wienholds E, Bruijn E, et.al. In situ detection of mi RNAs in animal embryos using LNA-modified oligonucleotide probes, Nat Methods,2006,3(1): 27-29.
    Krichevsky AM, King KS, Donahue CP, et.al. A microRNA array reveals extensive regulation of microRNAs during brain development,2003, RNA,9(10):1274-1281
    Kuan S, Martin W and Patrick H. Alkaline Phosphatase of the Chick, Partial Characterization of the Tissue Isozymes, Proc Soc Exp Biol Med,1966, 122:172-176.
    Lau NC, Lim LP, Weinstein EG, et.al. An abundant class of tiny RNAs with probable regulatoryroles in Canorkabditis elegans. Science,2001,294(5543):858--862
    Lee RC, Feinbaum RL and Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity tolin-14. Cell,1993,75(5):843-854
    Lelandais BC, Naya L, Sallet E, et.al. Genome-Wide Medicago truncatula Small RNA Analysis Revealed Novel MicroRNAs and Isoforms Differentially Regulated in Roots and Nodules. Plant Cell,2009,21(9):2780-2796
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell,2005, 120:115-120.
    Lewis BP, Shih IH, Jones-Rhoades MW, et.al. Prediction of mammalian microRNA targets. Cell,2003,115:787-798.
    Li H, Deng Y, Wu T, Subramanian S, et.al. Misexpression of miR482, miR1512, and miR1515 Increases Soybean Nodulation. Plant Physiology,2010,153(4):1759-1770
    Liang RQ, Li W, Li Y, et.al. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res,2005,33(2):e17.
    Liu Q, Zhang YC, Wang CY, et.al. Expression analysis of phyto-hormone regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett,2009,583(4):723-728.
    Liu ZL and Sinclair JB. Differentiation ofintraspeciflc groups within anastomosis group-1 of Rhizoctonia solani using ribosomal DNA internal transcribed spacer and isozyme comparisons. Canadian Journai of Plant Pathology,1993,15:272-280
    Llave C, Kasschau KD, Rector MA. Endogenous and silencing associated small RNAs in plants. Plant Cell,2002, (14):1605-1619.
    Llave C, Xie Z, Kasschau KD, Carrington JC. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabi-dopsis miRNA. Science,2002,297(5589):2053-2056.
    Lu C, Kulkarni K, Souret FF, et.al. MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Research,2006, 16(10):1276-1288.
    Luo VC, Zhou H, Li Y, et.al. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Leters,2006,580(21):5111-5116.
    Maleck K, Levine A, Eulgem T, et.al. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet,2000,26:403-410.
    Mallory AC and Vaucheret H. Functions of microRNAs and related small RNAs in plants. Nat Genet,2006,16(8):2001-2019.
    Mara C, Julian, Javier Acero, et.al. Mating type-correlated molecular markers and demonstration of heterokaryosis in the phytopathogenie fungus Thanatephorus cucumeris(Rhizoctonia solani) AG-1-IA by AFLP DNA fingerprinting analysis. Biotech,1999,67:49-56.
    Margulies M, Egholm M, Altman WE, et.al. Genome sequencing in microfabricated high-density picolitre reactors, Nature,2005,437 (7057):376-380.
    Marshall DS, Rush MC. Infection cushion formation on rice sheaths by Rhizoctonia solani. Phytopathology,1980,70 (10):947-950.
    Martinez DE, Costa ML, Guiamet JJ. Senescence-associated degradation of chloroplast proteins inside and outside the organelle. Plant Biol,2008,1:15-22.
    Massaquoi RC, Rush MC. Relationship of quantity of epiciticular wax to resistance of rice to sheath blight. Phytopathology,1987,77(12):17-23.
    Mcelrone, Andrew J, Chantal D, et.al. Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Global Change Biology,2005,11(10):1828-1836.
    Mi SJ, Cai T, Hu YG, et.al. Sorting of small RNAs into arabidopsis argonaute complexes is directed by the 5 terminal nucleotide. Cell,2008,133(1):116-127.
    Mittler R. Oxidative stress, antioxidants and stress toler-ance. Trends Plant Sci,2002,7(9): 405-410.
    Mirocha CJ, Uritani I, et al. The dynamic role of molecular constituent in plant parasite interactions [C]. St Paul:Bruce Publishing Co,1967,58-79.
    Mockaitis K, Estelle M. Auxin receptors and plant development:A new signaling paradigm. Annu Rev Cell Dev Biol,2008,24:55-80.
    Mohammadi M, Banihashemi M, Hedjaroude GA, et.al. Genetic diversity among Iranian isolates of Rhizoctonia solani Kuhn anastomosis groupl subgroups based on isozyme analysis and total soluble protein pattern. Journal of Phytopathology Phytopathologische Zeitschrift,2003,151:162-170
    Moschos SA, W illiams AE, Perry MM, et.al. Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in theanti. inflammatory action of glucocorticoids, BMC Genomics,2007,8(1):240.
    Moxon S, Jing R, Szittya G, et.al. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening, Genome Res,2008,18(10): 1602-1609
    Nag A, King S, Jack T. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. PNAS,2009,106(52):22534-22539.
    Navarro L, Dunoyer P, Jay F, et.al. A plant miRNA con-tributes to antibacterial resistance by repressing auxin signaling. Science,2006,312(5772):436-439.
    Niu QW, Lin SS, Reyes JL, et.al. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resis-tance. Nat Biotech,2006,24(11): 1420-1428
    Nogueira FT, Chitwood DH, Madi S, et.al. Regulation of Small RNA accumulation in the Maize Shoot Apex, PLoS Genetics,2009,5(1):e1000320.
    Nooden LD, Guiamet JJ, John I. Senescence mechanisms. Physiol Plant,1997,101: 746-753.
    Palatnik JF, Wollmann H, Schommer C, et.al. Sequence and Expression Differences Underlie Functional Specialization of Arabidopsis MicroRNAs miR159 and miR319[J]. Developmental Cell,2007,13(1):115-125.
    Palatnik JF, Allen E, Wu X, et.al. Control of leaf morphogenesis by microRNAs. Nature, 2003,425(6955):257-263.
    Pant BD, Buhtz A, Kehr J, et.al. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J,2008,53(5):731-738.
    Pant BD, Musialak-Lange M, Nuc P, et.al. Identification of nutrient-responsive Arabidopsis and rapeseed micrornas by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol,2009,150(3): 1541-1555.
    Papp I, Mette MF, Aufsatz W'Daxinger L, et.al. Evidence for Nuclear Processing of Plant Micro RNA and Short Interfering RNA Precursors. Plant Physiol,2003, (132): 1382-1390
    Parmeter JR. Rhizoctonia solani. Biology and Pathology,1970.
    Rajagopalan R, et.al. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Development,2006,20:3407-3425.
    Ramalingan et.al. Chlorinated Dioxins Dibenzofurens Perspect,1986,485-499.
    Ranocha P, Chabannes M, Chamayou S, et.al. Laccase down-regulation causes alterations in phenolic metabolism and cell wall structurein poplar. Plant Physiology,2002,129: 145-55.
    Rehmsmeier M, Steffen P, Hochsmann M, et.al. Fast and effective prediction of microRNA/target duplexes. RNA,2004,10:1507-1517.
    Reinhart BJ, Weinstein EG, Rhoades MW, et.al. MicroRNAs in plants. Genes Dev,2002, 16:1616-1626.
    Reyes JL, Chua NH. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J,2007,49(4):592-606
    Rhoades MW, Reinhart BJ, Lira LP, et.al. Prediction of plant microRNA targets. Cell,2002, 110:513-20.
    Robert S Allen, Li JY, Melissa I Stahle, et.al. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci,2007, (104):16371-16376.
    Ru P, Xu L, Ma H, et.al. Plant fertility defects induced by the enhanced expression of microRNA 167[J]. Cell Res,2006,16:457-465.
    Saetrom O, Ola Snove J, Saetrom P. Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. RNA,2005,11:995-1003.
    Schommer C, Palatnik JF, Aggarwal P, et.al. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol,2008,6(9):e230.
    Schwab R, Palatnik J, Riester M, et.al. Specific effects of microRNAs on the plant transcriptome[J]. Developmental Cell,2005,8(4):517-527.
    Sempere LF, Freemantle S, Pitha Rowe I, et.al. Expression profiling of mammalian microRNAs uncovers a subset of brain expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol,2004,5(3):R13
    Shi R, and Chiang VL. Facile means for quantifying microRNA expression by real-timePCR. Biotechniques,2005,39 (4):519-525
    Shukla LI., ChinnusamyV and Sunkar R. The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta,2008,1779:743-748.
    Simmons CR, Fridlender M, Navarro PA, et.al. A maize defense-inducible gene is a major facilitator superfamily member related to bacterial multidrug resistance efflux antiporters, Plant Molecular Biology,2003,52:433-446.
    Smita R and Thomas G. Interplay of miR164, CUP-SHAPED COTYLEDON genes andLATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana[J]. The Plant Journal,2008,55:65-76.
    Sriram S, Raguchander T, Babu S, et.al. Inactivation of phytotoxin produced by the rice sheath blight pathogen Rhizoctonia solani. Canadian Journal of Microbiology,2000, 46(6):520-524.
    Subramanian S, Fu Y, Sunkar R, et.al. Novel and nodulation-regulated microRNAs in soybean roots, BMC Genomics,2008,9:160.
    Suh, Lee MR, Kim Y, et.al. Human embryonic stem cells express a unique set of microRNAs, Dev Biol,2004,270(2):488-498.
    Sunkar R and Zhu JK. Novel and stress-regulated microRNAsand other small RNAs from Arabidopsis, Plant Cell,2004,16(8):2001-2019.
    Tanurdzic M, Vaughn MW, Jiang H, et.al,. Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biology,2008,6 (12):2880-2895.
    Thomson JM, Parker J, Perou CM, et.al. A custom microarray platform for analysis of microRNA gene expression. Nat Methods,2004,1(1):47-53
    Tomari Y, Zamore PD. MicroRNA biogenesis:drosha can't cut it without a partner. Curr Biol,2005,15:61-64.
    Rosewich UL, Pettway RE, McDonald BA, et.al. High levels of gene flow and heterozygoty excess characterize Rhizoctonia solani AG-1-IA(Thanatephorus cucumeris)from Texas. Fungal Genet and Biol,1999,28:148-159.
    Van Elsas JD, Garbeva P, Salles J. Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens. Biodegradation,2002; 13(1):29-40.
    Van Sandt VST., Suslov D., Verbelen JP, et.al. Xyloglucan transglucosylase activity loosens a plant cell wall. Annals of Botany,2007,100:1467-1473
    Vaucheret H, Vazquez F, Crete P, et.al. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev,2004,18(10):1187-1197.
    Vidhyasekaran P, Ponmalar T R, Samiyappan R. Rice sheath blight produces host-specific toxin. Rice Biotechnology,1998,35:21.
    Vidhyasekaran P, Samiyappan R. Host-specific toxin production by Rhizoctonia solani-the rice sheath blight pathogen. Phytopathology,1997,87(12):1258-1263.
    Vierstra RD. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol,2009,10:385-397.
    Wang JW, Wang LJ, Mao YB, et.al. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell,2005,17:2204-2216
    Wang JW, Czech B and Weigel D. miR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis thaliana[J]. Cell,2009,138(4): 738-749.
    Wang JF, Zhou H, Chen YQ, et.al. Identification of 20 microRNAs from Oryza sativa, Nucleic Acids Res,2004,32(5):1688-1695.
    Wei LY, Zhang DF, Xiang F, et.al. Differentially expressed miRNAs potentially involved in the regulation of defense mechanism to drought stress in maize seedlings. Int J Plant Sci,2009,170(8):979-989.
    Williams L, Grigg SP, Xie M, et.al. Fletcher. Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and itsAtHD-ZIP target genes[J]. Development,2005,132:3657-3668.
    Willmann MR and Poethig RS. Conservation and evolution of miRNA regulatory programs in plant development. Curr Opin Plant Biol,2007,10:503-511
    Wu G, Park MY, Conway SR, et.al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell,2009,138(4):750-759.
    Wu MF, Tian Q and Reed JW. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction[J]. Development, 2006,133:4211-4218.
    Xie Z, Kasschau KD, Carrington JC. Negative feedback regulation of Dicer-Likel in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol,2003,13(9): 784-789.
    Yamasaki H, Abdel-Ghany SE, Cohu CM, et.al. Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem,2007,282:16369-16378.
    Yan N, Lu Y, Sun H, et.al. A microarray for microRNA profiling in mouse testis tissues. Reproduction,2007,134(1):73-79
    Yao Y, Guo G., Ni Z, et.al. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biology,2007,8 (6):R96.
    Yoshikawa M, Peragine A, Park MY, et.al. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev,2005,19:2164-2175
    Yu B, Yang Z, Li J, et.al. Methylation as a crucial step in plant microRNA biogenesis. Science,2005a,307:932-935
    Zeng Y and Cullen BR. Sequence requirements for micro RNA processing and function in human cells, RNA (New York),2003,9(1):112-123.
    Zentgraf U, Jobst J, Kolb D, et.al. Senescence-related gene expression profiles of rosette leaves of Arabidopsis thaliana:leaf age versus plant age. Plant Biol,2004,6(2): 178-183.
    Zhang BH, Pan X P, Wang Q L et.al, Identification aad charactefizalion of new plant microRNAs using EST analysiis. Cell Res,2005, VoL 15(5):336-360
    Zhang BH, Stellwag EJ, Pan XP. Large-scale genome analysis reveals unique features of microRNAs. Gene,2009,443(1-2):100-109.
    Zhang BH, Wang Q, Pan X P. MicroRNAs and thor regulatory roles in plants. Plant BioL, 2006, VoL57:19-53
    Zhang HH, Wang XJ., Li G.X., et.al. Detection of let27a microRNAby real-time PCR in gastric carcinoma. World Gastroenterol,2007,13 (20):2883-2888
    Zhang JY, Xu YY, Huan Q, et.al. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics,2009,10:449.
    Zhang L, Chia JM, Kumari S, et.al. A genome-wide characterization of micro RNA genes in maize. PLoS Genet,2009,5(11):e1000716.
    Zhang Q, He XJ and Pan XY. Real-time quantification of microRNAs by RNA-tailing and primer-extension RT-PCR. Journal of Peking University,2007,39(1):87-91.
    Zhang YJ. miRU:an automated plant miRNA target prediction server. Nucleic Acids Research,2005,33:701-704.
    Zhang ZX, Wei LY, Zou XL, et.al. Submergence-responsive microRNAs are potentially in-volved in the regulation of morphological and metabolic adaptations in maize root cells. Ann Bot,2008,102(4):509-519.
    Zhao B, Liang R, Ge L, et.al. Identification of drought-induced microRNAs in rice. Biochem and Biophys Res Commun,2007,354(2):585-590
    Zhou XF, Wang GD, Zhang W. UV-B responsive microRNA genes in Arabidopsis thaliana. Mol Syst Biol,2007,3(103):1-10.
    Zhou ZS, Huang SQ, Yang ZM. Bioinformatic identifica-tion and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophys Res Commun,2008, 374(3):538-542.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700