用户名: 密码: 验证码:
多功能菌剂的组合效应研究及其抑菌物质的特性和分离
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花和加工番茄是新疆重要的经济作物,针对早春气温变化大、苗期烂根病发病重和单一菌株生防效果不稳定等问题,开展了多功能细菌组合的筛选及其效应研究。研究结果如下:
     根据菌株生长特性、相互间拮抗和组合抑菌活性等试验结果,筛选了23个抑菌活性优于单一芽孢杆菌的组合,发现芽孢杆菌组合BCL-8具有显著的抗病促生效果。室内促生试验表明:组合BCL-8可促进加工番茄发芽和苗期生长,发芽率可提高10%,使苗期株高、鲜重和干重分别增加66.58%、176.19%和143.75%。在温室和田间条件下,组合BCL-8对加工番茄立枯病的防治效果分别达40.08%和55.42%。对构成组合BCL-8的3株芽孢杆菌SL-13、SL-14和SL-44进行了常规生理生化特征和16S rDNA的分析,结果表明SL-13、SL-14和SL-44均为枯草芽孢杆菌(Bacillus subtilis),Genbank登录号分别为:FJ788426,FJ788427和FJ788428。
     通过研究BCL-8发酵后各组分的抑菌活性,确定了盐析粗提物为该组合的主要抑菌物质,并初步确定为蛋白类物质。BCL-8抑菌粗蛋白理化性质研究表明,该抑菌蛋白热稳定性好,在120℃处理30min后仍保持较高的抑菌活性;活性pH范围在4.0~10.0之间;能耐受乙醇、甲醇、乙酸乙酯、丙酮、乙腈、石油醚、氯仿多种有机溶剂,且稳定性好;紫外线照射不影响其抑菌活性;对蛋白酶K作用不敏感;粗蛋白能有效抑制Rhizoctonia solani Kuhn、Fusarium oxysporum f. sp. lycopersici、Phytophthora capsici、Sclerotinia sclerotiorum、Acidovorax avenae sub sp. citrulli、Alternaria solani Sorauer等多种病原菌。
     枯草芽孢杆菌SL-13,SL-14和SL-44的无菌发酵液可分别通过30%-60%硫酸铵、40%-100%硫酸铵和30%-50%硫酸铵盐析沉淀获得活性粗蛋白。经DEAE -Sepharose Fast Flow离子交换层析、Sephadex G-75凝胶过滤和二次离子交换层析后,从菌株SL-13、SL-14和SL-44的活性粗蛋白中分别获得一个活性峰,经检测其蛋白含量分别为0.0052 mg/mL、0.0087 mg/mL和0.0021 mg/mL,蛋白回收率分别为6.1%、8.7%和4.2%,纯化倍数分别为60.1、56.7和75.1,经SDS-PAGE电泳分析其分子量大小分别为30kD,24kD和17.8kD。
     通过对菌株SL-13,SL-14和SL-44抑菌物质基本性质的检测和含有几丁质和酪蛋白的平板实验发现SL-13菌株的抑菌蛋白具有较高的几丁质酶活性。在合成培养基条件下研究了菌体生长、抑菌活性以及几丁质酶活性三者的关系,发现抑菌活性与几丁质酶活性成正相关,说明几丁质酶是枯草芽孢杆菌SL-13产生的主要抑菌物质。使用纯化的几丁质酶处理立枯丝核菌能够水解破坏立枯丝核菌,使菌丝断裂,内溶物泄露,具有抑菌杀菌的作用;SL-13产几丁质酶的最适反应温度为50℃;在pH3~9的范围内都具有良好的活性,酶与底物反应的最适pH为7.0。
     将抗病促生芽孢杆菌和缓解盐胁迫促生细菌进行组合筛选,根据体外抑菌活性初筛、盆栽和小区试验,筛选出组合多功能菌剂BCL-8+Rs-5,该菌剂在盆栽和小区条件下对棉花立枯病的防效分别达54.41%和51.06%,在盐胁迫条件下使棉苗干重提高了40.85%,具有显著的抗病促生和缓解盐胁迫效能。多功能菌剂的大田试验结果表明,菌剂包衣处理对棉花苗期立枯病的防治效果达16.24%,滴灌处理对棉花苗期生长有明显的促进作用,增产率可达10.51%;菌剂滴灌处理对加工番茄苗期立枯病的防治效果达26.34%,使开花数提高30.31%,结果数提高29.07%,增产率为5.04%。
     经多功能菌剂处理后,棉花和加工番茄植株根部的抗性酶类(POD,PPO,PAL,SOD和CAT)活性均有不同程度的提高,即多功能菌剂能诱导棉花和加工番茄产生系统抗病性。多功能菌剂对作物根际土壤可培养微生物组成和数量的影响不同,滴灌处理可有效提高土壤中细菌和放线菌数量,减少真菌数量,符合健康土壤的微生态分布趋势。土壤细菌16S-rDNA DGGE指纹分析与平板计数分离方法得到的结果一致。
The cotton and the processing tomato are the main industrial crops in Xinjiang province. The root rot diseases happened severely because of temperature changes in spring in xinjiang and the biological control effect of single strain was unstable. So we carried out the research of screen and efficacy of multifunctional strains formulation. The major results of this study are as follows:
     According to the results of growth characterization, antagonistic experiments between single strain and antagonistic examination of combinations in vitro, 23 combinations with superior suppressive effect than mono antagonistic strains were obtained. By further in vivo inoculation test, the combination BCL-8 was shown to have remarkable disease control and growth-promoting effect. The combination BCL-8 could promote seed sprouting of processing tomato. When treated with BCL-8, the seeds germination rate increased 10%, and the seedling height, fresh weight and dry weight of processing tomato seedlings increased 66.58%, 176.19% and 143.75%, respectively. The control efficacy of the combination BCL-8 to seedling Rhizoctonia rot of processing tomato were 40.08% and 55.53% under greenhouse and field conditions, respectively. The combination BCL-8 also increased production of processing tomato 24.32% in the field. The combination BCL-8 was composed of Bacillus sp. SL-13, SL-14 and SL-44.These three strains have been identified as Bacillus subtilis,GenBank accession number are FJ788426,FJ788427 and FJ788428.
     It was showed that the crude antagonistic substance was determined as a kind of protein by the reactions of triketohydrindene hydrate and biure. This protein was thermostable for it had strong inhibitory activities after treated at 120℃for 30min. It was proved that the protein was still active in buffer with pH from 4.0 to 10.0. The antagonistic effect of protein treated with various kinds of organic solvent was displayed that it was stable in ethnol, methanol, acetone, chloroform and so on. The inhibitory titer of protein exposed under ultraviolet radiation was similar to visible light. Proteinase K had no effect on its activity. Several pathogens were strongly inhibited by the protein, such as Fusarium oxysporum f.sp. lycopersici,Rhizoctonia solani Kuhn, Phytophthora capsici,Sclerotinia sclerotiorum, Acidovorax avenae sub sp Citrulli and Alternaria solani Sorauer.
     Antibiotic substances produced by B. subtilis SL-13, SL-14 and SL-44 were extracted by 30%-60%,40%-100% and 30%-50% ammonium sulfate-fractionation, respectively. Then antibiotic substances were partially separated by means of DEAE-Sepharose Fast Flow column chromatography, sephadex G-75 column and second round DEAE-Sepharose Fast Flow column chromatography. One active peak of B. subtilis SL-13, SL-14 and SL-44 were yielded during step elution. The antifungal proteins recycling rate were 6.1%、8.7% and 4.2%, respectively. The concentration were 0.0052 mg/mL、0.0087 mg/mL and 0.0021 mg/mL, respectively. The molecular weights of the purified protein were confirmed as 33kD, 24kD and 17.8kD by SDS-PAGE, respectively.
     Through examination of antifungal substances to B.subtilis SL-13, SL-14 and SL-44 and the plate experiments contain the chitin and the casein. We found that the B. subtilis strain SL-13 secretes proteins have high chitinase activity. The relations of B. subtilis SL-13 growth, chitinase activity and antifungal activity were studied in synthesized medium condition. With the extension of incubation the chitinase production had a positive correlation with the changing of antifungal activity. That is the chitinase was the main antifungal substances of strain SL-13. When detecting antifungal activity, the Rhizoctonia solani Kuhn treated by purified enzyme could not prolong, the cell wall broke, protoplasm leaked out, and the mycelia cracked. The microscopic analysis showed that the main effect of the purified enzyme was to degrade cell wall. The optimum temperature of the purified chitinase was 50?C. The enzyme was stable in the pH range of 5~9 for 1h at 50?C. It had an optimal pH of 7.0 when assayed with colloidal chitin as a substrate.
     The growth promotion and disease control strains and salt-relieving and growth promotion strains were combined to screening multifunctional strains formulation. According to the results of antagonistic examination in vitro and greenhouse and plot experiment in vivo, The combination BCL-8+Rs-5 was found have remarkable growth promotion, salt-relieving and disease control effects. The control efficacy of the combination BCL-8+Rs-5 to seedling Rhizoctonia rot of cotton were 54.41% and 51.06% under greenhouse and plot conditions, respectively. The cotton seedling dry weight was increased by 40.85%. The study result indicated the control efficacy of BCL-8+Rs-5 to seedling Rhizoctonia root rot of cotton was 16.24% in field. The treatment of drip irrigation with BCL-8+Rs-5 could obvious promote growth of cotton seedling. The effect of increase production of cotton reached 10.51%. The control efficacy of treatment of drip irrigation with BCL-8+Rs-5 to seedling Rhizoctonia root rot of processing tomato was 26.34%. The number of blossoms was enhanced 30.31%, and the number of fruits was enhanced 29.07%. The effect of increase production of processing tomato reached 5.04%.
     The activity of resistant enzyme (POD,PPO,PAL,SOD and CAT) increased after treated with BCL-8+Rs-5 in roots of cotton and processing tomato. It was obvious that the multifunctional strains formulation BCL-8+ Rs-5 have induction of systemic resistance. The influence of multifunctional strains formulation BCL-8+ Rs-5 is different to composition and quantity of plant rhizosphere microorganism. BCL-8+ Rs-5 can effectively raise the amount of the bacterial and actinomycete in soil and decrease the amount of the fungi. It conforms to the distributed tendency of healthy soil microecology. The result of 16S-rDNA DGGE fingerprint analysis showed consistent.
引文
1.马富裕,周治国,郑重,等.新疆棉花膜下滴灌技术的发展与完善.干旱地区农业研究.2004,22(3):202-208
    2.章国荣,盛来运.新疆棉花产业发展中的问题与对策.中国统计.2004.(9):27-29
    3.闫志江.对新疆番茄酱生产发展的思考,中国农垦经济,2000,(4):6
    4.张彦军.新疆兵团加工番茄产业的调查与思考,新疆农垦科技,2003,(6):12-14
    5.刘兰育,柴付军.棉花膜下滴灌技术研究与应用[J].新疆农垦科技,2002,2:26-28
    6.赵思峰,廖依学,李明,等.新疆加工番茄病虫草害发生概况及综合防治技术.新疆农业科学,2004(5):325-330
    7.刘兰育,柴付军.棉花膜下滴灌技术研究与应用[J].新疆农垦科技,2002,2:26-28.
    8.章国荣,盛来运.新疆棉花产业发展中的问题与对策.中国统计.2004.(9):27-29.
    9.陈中义,张杰,黄大昉 .植物病害生防芽孢杆菌抗菌机制与遗传改良研究植物病理学报,2003,33(2):97-103.
    10. Kilian M, Steiner U, Krebs B, et al. FZB24(R) Bacillus subtilis mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz-Nachrichten Bayer, 2000,53 (1):72-93
    11. F.J.LóPEZ-ESCUDERO, M.A. BLANCO- LóPEZ, 2005. Effect of drip irrigation on population of Vertillium dahliae in Olive Orchards, J. Phytopathology 153,238-239
    12.徐飞鹏,李云开,任树梅.新疆棉花膜下滴灌技术的应用与发展的思考[J]农业工程学报,2003,19(1)25-27
    13.马富裕,周治国,郑重,等.新疆棉花膜下滴灌技术的发展与完善[J].干旱地区农业研究,2004,22(3):202–208
    14.赵思峰,廖依学,李明,等.新疆加工番茄病虫草害发生概况及综合防治技术.新疆农业科学,2004(5):325-330
    15.林毅,陈金辉,黄志鹏.芽孢杆菌几丁质酶及其在植物病虫生物防治中的应用.福建农业科技,1998.增刊:32-33
    16.冯书亮,王容燕,林开春,等.拮抗细菌Bs-208菌株鉴定及对几种植物病原菌的抑菌测定.中国生物防治,2003,19(4):171-174
    17.何红.辣椒内生枯草芽孢杆菌(Bacillus subtilis)防病促生作用的研究.福建农林大学博士学位论文. 2003.
    18.陈志谊,高太东,倪寿坤,等. 1997.枯草芽孢杆菌B-916防治水稻纹枯病的田间试验.中国生物防治,13(2):75-78
    19. Baker CJ Stavely JR. 1985. Biocontrol of bean rust by Bacillus subtilis under field conditions. Plant Disease, 69(9):770-772
    20.林福呈,李德葆.枯草芽孢杆菌(Bacillus subtilis)S9对植物病原真菌的溶菌作用.植物病理学报,2003,33(2):174-177
    21. Algam AS, Xie GL, LIB, et al. Biological control of bacterial wilt of tomato by Bacillus spp. under green house environment. Acta phytopathologica sinica,2006,36(l):80-85
    22. Ryu C M, Murhy J F, Mysore K S. Plant growth-promoting rhizobacteria systemically protectArabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1- independent and jasmonic acid- dependent signaling Pathway. Plant journal,2004,39(3):381-392
    23.丁国春,付鹏,李红梅等.枯草芽孢杆菌ARll菌株对南方根结线虫的生物防治.南京农业大学学报,2005,28(20):46-49
    24. Emmert E A B, Handelsman J. Biocontrol of plant disease:a (Gram-) positive perspective. Mierobiology,1999,171(l):l-9
    25. Junge H,Krebs B, Kilian M. Strain selection,production and formulation of the biological plant vitality enhancing agent FZB24 Bacillus subtilis. Pflanzenschutz-Nachtichten Bayer, 53(l):94-104
    26. Asaka O, Shada M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol,2000,62(11):4081-4085
    27.陈志谊,高太东,倪寿坤等.枯草芽孢杆菌B-916防治水稻纹枯病的田间试验.中国生物防治,1997,13(2):75-75
    28.张学君,凌宏通,李洪连等.生物农药麦丰宁B3对小麦纹枯病的抑制作用.植物病理学报,1994,.24(4):361-366
    29.张霞,唐文华,张力群等.枯草芽孢杆菌B931防治植物病害和促进植物生长的作用.作物学报,2007,33(2):236-241
    30.王素英.对作物具有促生和防病作用的细菌组合的筛选.中国农业大学硕士学位论文, 2003.
    31. Kilian M,Steiner U,Krebs B,etal. FZB24(R) Bacillus subtilis-mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz-Nachrichten Bayer, 2000,53(l):72-93
    32.何红.辣椒内生枯草芽孢杆菌(Bacillus subtilis)防病促生作用的研究.福建农林大学博士学位论文. 2003
    33. Benhamou N, Kloepper J W, Quadt-Hallmann A,etal. 1996. Induction of defense-related ultrastructural modification in pea rot tissues inoculated with endophytic bacteria. Plant Physiol, 112:919-929
    34. Quadt-Hallmann A, Benhamou N, Kloepper J W. Bacterial endophytes in cotton: mechanisms of entering the plant, Can J Microbiol.,1997,43(6):577-582
    35.洪永聪,范晓静,来玉宾等.枯草芽孢菌株TLZ在茶树体内的内生定殖.茶叶科学,2006,26(4):270-274
    36.蔡学清,何红,胡方平.双抗标记法测定枯草芽孢杆菌BS-2和BS-1在辣椒体内的定殖动态.福建农林大学学报(自然科学版),2003,32(1):4l-45
    37.陈晓斌,张炳欣,楼兵干等.运用生色基因标记黄瓜根围促生菌(PGpR)筛选菌株.微生物学报,2001,41(3):257-292
    38. Quadt-Hallmann A,Kloepper J W. Immunological detection and localization of the cotton endophyte enterobacter asburiae JM22 in different plant species. Can J Microbiol,1996,42(11):1144-1154
    39.陈晓斌,顾振芳,周杭英.黄瓜PGPR菌株根部定殖的扫描电镜研究.上海交通大学学报(农业科学版),2004,22(2):153-156
    40.邱思鑫.防病促生植物内生芽孢杆菌.福建农林大学博士学位论文. 2004
    41.董汉松.植物诱导抗病性—原理和研究.科学出版社. 1995
    42. Van Loon, L.C., P.A.H.M Bakker and C.M.J. Pieterse. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol, 1998,36: 453-483
    43. Camphell M M,Ellis B E. Fungal elicitor-mediated response in pine cell cultures .Plant Physiol,992,98:62-70
    44.张晓燕,芦春莲,田志喜.植物诱导抗病性.保定师专学报,2001,14(4):9-12
    45. pieterse C M J, Van Wees SCM, Van Pelt J A. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant cell,1998, 10:1571-1580
    46. Uknes S,winter A M, Delaney T. Biological induction of systemic acquired resistance in Arabidopsis. Mol Plant-Microbe Interact, 1993, 6:692-698
    47.谢栋,彭憬,王津红等.枯草芽饱杆菌抑菌蛋白x98的纯化和性质.微生物学报,1998,38(l):13-19
    48. Maget-Dana R, Peypoux F. lturins, a special class of spore-forming lipopeptides:biological and physicochemical properties. Toxieology, 1994,87, 151-174
    49. Zheng G L,Yan L Z,Vederas J C,et al. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtiloson. Bacteriology,1999. 181(23):7346-7355
    50.童有仁,马志超,陈卫良等.枯草芽孢杆菌B034拮抗蛋白的分离纯化及特性分析.微生物学报,1999, 39(4):339-343
    51. Jansen, E. F.et al. Subtilin, An antibacterial product of Bacillus sutilis culturing conditions and properties. Arch. Biochem, 1944,4:287-309
    52. A. Lyver et al .Competitive inhibition of Clostridium botulinu m type E by Bacillus species in a value-added seafood product packaged under a modified atmosphere. Food Research International,1998, 31(4):311-319
    53.钟青萍.纳豆菌及其抑菌蛋白的研究.[博士论文]:江西:南昌大学博士论文,2001
    54. Oscariz, J. et al. Detection and characterization of cerein 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. Ferns Microbial. Lett. 1999, 178:337-341
    55. G. Zheng et al. Isolation, partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain. Lett.Appl.Microbiol,1999, 28( 5):363-367
    56. Katz, E., Demain, A.L. The peptide antibiotics of Bacillus:chemistry,biogenesis,and possible functions. Bacteriol. Rev,1977,41:449-474
    57. Ralph, W. J., John R. T., Bibek R. Bacteriocins of gram-positive bacteria. Microbiol. Rev.,1995,59(2):171-200
    58. C. Munibazai and L. B. Bullerman. Isolation and partial characterization of antifungal metabolites of Bacillus pumilus. J. Appl. Microbil.1998,84:959-968
    59. A-L. Moyne, R. Shelby, T. E. Cleveland et al. Baxillomycin D: an iturin with antifungal activity against Aspergillus flavus J. Appl. Microbiol, 2001,90:622-629
    60. J. Bechard, K. C. Eastwell, R. L. Sholberg et al. Isolation and partial chemical characterization of an antimicrobial peptide produced by a strain of Bacillus subtilis. J. Agric. Food Chem,1998,46:5335-5361
    61. Michael A. Von Tersch and Bruce C.et al. Bacteriocin from Bacillus megaterium ATCC19213:Comparative studies with megacin A-216,J. Bacteriol.,1983:866-871
    62. William S.A. Brusilow and David L. et al. Improved purification and some properties of megacin Cx, a bacteriocin produced by Bacillus megaterium. J. Biol. Chem.,1981,256,1:159-164
    63. Novotny, J.F and Perry, J. J. Characterization of bacteriocins from two strains of Bacillus thermoleovuram. a thermopHilic hydrocarbon-utilizing species. Appl. Environ. Micrbiol,1992,58:2993-2996
    64. Oscariz,J. et al. Characterization and mechanism of action of cerein 7,a bacteriocin produced by Bacillus cereus Bc7. J. Appl. Microbil.2000,89:361-369
    65. Naclerio, G et al. Antimicrobial activity of a newly identified bacteriocin of Bacillus cereus. Appl. Environ. Micrbiol,1993,59(12):4313-4316
    66.程安春. SA38蜡样芽孢杆菌在体外对几种致病菌的生物拮抗试验,中国兽医杂志,1994(2 0),2:12-13
    67. A.Cherif et al.Thuricin 7:a novel bacteriocin produced by Bacillus thuringiensis BMG1.7,a new strain isolated from soil. Lett. Appl. Microbiol,2001,23(4):243-250
    68.关雄.苏云金芽孢杆菌的生物活性物质及其蛋自基因.福建农业大学学报,2001,30(3 ):293-296
    69. M. Lebbadi,etal. Fungicin M4:a narrow spectrum peptide antibiotic from Bacillus licheniformis M-4.J.Appl.Microbil,1994,77:49-53.
    70. K-H.LEE,etal. Partial characterization of polyfermenticin SCD,a newly identified bacteriocin of Bacillus polyfermenticus,Lett. Appl. Microbiol.,2001,32:146-151
    71.赵白鸽等.枯草芽孢杆菌B-903对苹果轮纹菌的抑菌作用及其对病害的控制效果.植物病理学报, 27,213-214
    72.崔云龙等.短小芽孢杆菌D82对小麦根腐病原菌拮抗的研究,中国生物防治,1995,11(3): 114-118
    73. C. Munibazai and L. B. Bullerman. Isolation and partial characterization of antifungal metabolites of Bacillus pumilus. J. Appl. Microbil.1998,84:959-968
    74. Zuber,P et al. Peptide antibiotics. In:Bacillus subtilis and other Gram-Positive Bacteria:Biochemistry,Physiology,and Molecular Genetics,Washington,D.C. American Society for Microbiology,1993:897-916
    75. J. Bechard, K. C. Eastwell, R. L. Sholberg et al. Isolation and partial chemical characterization of an antimicrobial peptide produced by a strain of Bacillus subtilis. J. Agric. Food Chem,1998,46:5335-5361
    76. Oscariz,J. et al. Characterization and mechanism of action of cerein 7,a bacteriocin produced by Bacillus cereus Bc7. J. Appl. Microbil.2000,89:361-369
    77. Bhunia,A.K, M.C. lohunson, and B. Ray. Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. J. Appl. Bacteriol.,1991,70:25-33
    78. Rongguang Y, M.C. Johnson, and B. Ray. Novel method to extract large amounts of bacteriocins fromL actic acid bacteria. Appl. Environ Microbiol,1992,58;3355-3359
    79. Michail. M. Yakimov et.al. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface bacillus licheniformis BAS50. Appl. Environ Microbiol,1995,5:1706-1713
    80. P. Patnaik et al. Purification and characterization of a bacteriocin-like compound (Lichenin) produced anaerobically by Bacillus licheniformis isolated form water bufalo. J. Appl. Microbil.2001,91(4):636-642
    81. B. Hyronimus, Le Marrec C. and Urdaci MC. a bactereiocin-like inhibitory substance produced by Bacillus coagulans I4. J. Appl. Microbiol,1998,85(1):42-50
    82. A.Cherif et al.Thuricin 7:a novel bacteriocin produced by Bacillus thuringiensis BMG1.7,a new strain isolated from soil. Lett. Appl. Microbiol,2001,23(4):243-250
    83.田黎等.海洋生境芽孢杆菌的培养条件及产生的胞外抑菌蛋白。海洋学报,2001-7,23 ( 4): 87-91
    84. Schneider A, et al. Targetted alteration of the substrate specificity of peptide syhthetases by rational module swapping. Mol. Gen. Genet, 1998, 257: 308-318
    85. Bessalle R, et al. Structure-function studies of amphiphilic antibacterial peptides. Med. Chem,1993,36: 1203- 1209
    86. Boman HG,et al. Antibacterial and antimalarial properties of peptides that are cecropin Amelittin hybrids. FEBS Lett.,1989,259: 103-106
    87. Asaka 0&Shoda M, 1996. Asaka 0, Shoda M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol,1996, 62 (11):4081-4085.
    88.林东,徐庆,刘忆舟,等.枯草芽孢杆菌50113分泌蛋白的抑菌作用及抑菌蛋白的分离纯化.农业生物技术学报,2001,9 (1):77-80.
    89.李法虎.M.Benhur. R.Kere.劣质水灌溉对土壤盐碱化及作物产量的影响[J].农业工程学报,2003,19(1):63-66.
    90.牛东玲,王启基盐碱地治理研究进展土壤通报[J].2002,6(33):01-07
    91.李兰奇,王新.新疆水资源利用与农业可持续发展分析[J].中国水利,2003:54-57.
    92.李毅,王文焰,王全九.论膜下滴灌技术在干旱-半干旱地区节水抑盐灌溉中的应用[J].灌溉排水,2001,20(2):42-46
    93.赵福庚,何龙飞,罗庆云.植物逆境生理生态学[M].化学工业出版社. 2004
    94.利容千,建波.植物逆境细胞及生理学[M].武汉大学出版社. 2002
    95.周峰,李平华,王宝山. K+稳态与植物耐盐性的关系[J].植物生理学通讯.2003, 39 (2):35-39
    96. Davies WJ, Zhang J. Root signal and the regulation of growth and development of plants in drying soil [J]. Annu Rev Plant Physiol Plant Mol Boil.1991, 42: 55-76
    97.孙小芳,郑青松,刘友良. NaCl胁迫对棉子萌发及幼苗生长的伤害[J].植物资源与环境学报,2000,9(3):22-25
    98.刘爱荣,赵可夫.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用[J].植物生理与分子生物学报.2005, 31(4):389-395
    99. Haseqawa PM, Bressan PA, ZHU JK. Plant cellular and molecular response to high salinity [J]. Anne Rex Plant Physiol Mol Biol. 2000, (51):463-499
    100.张淑红,张恩平,庞金安等.植物耐盐性研究进展[J].北方园艺.2000, 3 (31):19-20
    101.陈洁,林栖风.植物耐盐生理及耐盐机理研究进展[J].海南大学学报.2003, 2(12):177-182
    102.张新春,庄炳昌,李自超.植物耐盐性研究进展[J].玉米科学.2002, 10(1):50-56
    103.孙小芳,郑青松,刘友良. NaCl胁迫对棉子萌发及幼苗生长的伤害[J].植物资源与环境学报,2000,9(3):22-25
    104.谢得意,王惠萍,王付欣,等.盐胁迫对棉花种子萌发及幼苗生长的影响[J].中国棉花, 2000,27(9):12-13.
    105.罗宾主编(陈恺元等译).棉花生理学[M].上海:上海科技出版社,1983.
    106.刘国强.棉花品种资源耐盐性鉴定研究[J].作物品种资源,1993,(2): 21-22.
    107.叶武威.氯化钠和食用盐对棉花种子萌发的影响[J].中国棉花,1994,21(3):14-15.
    108.贾玉珍等.棉花出苗及苗期耐盐性指标的研究[J].河南农业大学学报,1987,21(1):30-41.
    109. Levitt J. Responses of Plants to Environmental Stress (2ed.)[J], 1980
    110. Sharma S K et al. Saline Environment and Plant Growth. Agro Botanical Publishers(India)[J], 1986.
    111. Robin B A.作物抗性生理学(中译本)[M].北京:科学出版社,1986.
    112.李付广,李凤莲,李秀兰.盐胁迫对棉花幼苗不同组织水分含量的影响[J].河南农业科学, 1994,(4):5-7.
    113. Longenecker DE. The influence of high sodium in soil upon fruiting and shedding, boll characteristics,fibre properties and yields of two cotton species[J]. Soil Sci, 1974,118:387-396.
    114. Longenecker DE. The influence of soil salinity upon fruiting and shedding, boll characteristics, fibre properties and yields of two cotton species [J]. Soil Sci, 1973,115:294-302.
    115. Razzouk S etal. Effects of salinity on cotton yield and quality [J]. Field Crop Res, 1991, 26:305-314.
    116.叶武威,刘金定,樊宝相,等.盐分(NaCl)对陆地棉纤维性状的影响[J].中国棉花, 1997,24(3):17-18.
    117.中科院土壤研究所编译室编.盐渍土问题译文集[C]北京:科学出版社,1964.
    118.牛东玲,王启基,盐碱地治理研究进展[J]土壤通报,2002,33:(6)450-455
    119. Ashraf M ,McNeilly T ,Bradshaw A D. Selection and heritability of tolerance to sodium chloride in four orage species[J ].Crop Sci.1987,26:232-234.
    120.翟凤林,曹鸣庆.植物的耐盐性及其遗传改良[M].北京:农业出版社,1989.23-35
    121. Fostado, Pedersen PA. Container grown Tree Seedling Response to Sodium Chloride Applications in Different Substrates [J]. Environmental Pollution, 2000, 109(2): 203-210.
    122.杨茁萌,黄军,石定燧,等.鲁梅克斯K-1杂交酸模耐盐性的初步研究[J].中国草地,2000, (1):26-30.
    123.高吉寅,关建平,王明珍,等.小麦幼苗盐胁迫蛋白研究[J].作物品种资源, 1994,1:25-27
    124. Glick BR. The enhancement of plant growth by free-living bacteria [J]. Can J Microbiol.1995, 41:109-117
    125. VarvaraPG, Glick BR. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria [J]. Plant Physiol Biochem. 2001, 39:11-17
    126. Markus W, Helmut J, Wilfried HS (2004) Bacillus subtilis as growth promotor in hydroponically grown tomatoes under saline conditions [J]. Acta Hortic.2004, 1(659):363-369
    127. Belimov AA, Hontzeas N, Safronova VI,et al. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.) [J]. Soil Biol Biochem.2005, 37: 241-250
    128. Kloepper JW, Schroth M. Plant growth promoting rhizobacteria on radishes[C]. In Proceedings of the fourth International Conference on Plant Pathogenic Bacteria (Vol.2).1978, pp879-892 Argers, France: Station de Pathologie Vegetale et Phytobacteriol, INRA
    129. Glick BR, Penrose DM, Ma W. Bacterial promotion of plant growth [J]. Biotech Adv.2001, 19:135-138
    130. Glick BR, Liu C, Ghosh S, et al. The effect of the plant growth promoting rhizobacterium Pseudomonas putida GR12–2 on the development of canola seedlings subjected to various stresses [J]. Soil Biol Biochem. 1997, 29:1233-1239
    131.陈晓斌,张炳欣.植物根围促生细菌(PGPR)作用机制的研究进展[J].微生物学杂志2000,20(1)38-41
    132.姚拓,龙瑞军,王刚,等.兰州地区盐碱地小麦根际联合固氮菌分离及部分特性研究[J].土壤学报2004,41(3):444-448.
    133.李凤霞,张德罡.高寒地燕麦和盐碱地小麦PGPR菌的生长特性与促生性,甘肃农业大学硕士学位论文2004,5.
    134. Shafiq Hussain, Mirza MS,Malik KA. Production of Phytohormones by the Nitrogen Fixation Bacterialsloated from Sugarcan [J]. 1999,2(1-4): 61-76.
    135. Castignetti D, Smarrelli J. Siderophores, the iron nutrition of Plant, and nitrate reductase[J]. FEBS Lett, 1986,209:147-151.
    136. B.R. Glick, The enhancement of plant grwth by free-living bacteria [J]. Can. J. Microbiol. 1995,41:109-117.
    137. Bacilio M, Rodriguez H, Moreno M, et al. Mitigation of salt stress in wheat seedling by a gfp-tagged Azospirillum lipoferum. Biol Fertil Soils 2004,40:188-193.
    138. Dueikovsky A N, Mordukhova E A, Kochetkov V, et al. Growth promotion of blackcurrant softwood outings by recombinant strain pseudomonas fluorescens BSP53a synthesizing an increased amount of indole-3-acetic acid [J]. Soi1 Biol.Biochem, 1993 25:1277-1281.
    139. Shimon Mayaka, Tsipora Tirosh , Bernard R.et al. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers[J].Plant Science 2004:166:525-530.
    140.王素英.对作物具有促生和防病作用的细菌组合的筛选.中国农业大学硕士学位论文2003年6月
    141.马富裕等.新疆棉花膜下滴灌技术的发展与完善.干旱地区农业研究.2004,22(3):202-208
    142. Douglas J. Mills, C. Benjamin Coffman et al. 2002.Factors Associated with Foliar Disease of Staked Fresh Marked Tomatoes Grown Under Differing Bed Strategies, .Plant Disease 86:356-360
    143. Ristaino, J.B.1991.Influence of Rainfall, Drip Irrigation, and Inoculum Density on the Development of Phythphthora Root and Crown Rot Epidemics and Yield in Bell Pepper, Phytopathlogy 75,973-976
    144. Ristaino, J.B., Hord, M.J., Gumpertz, M.L. Population Density of Phytophthora capsici in Field Soils in Relation to Drip Irrigation, Rainfall, and Disease Incidence. Plant Disease, 1992, 76,1017-1024
    145.陶光灿,王素英,王玉平,等.芽孢杆菌属(Bacillus sp.)10株细菌混合制剂对4种作物出苗及苗期生长的影响.应用与环境生物学报,2003,9(6):598~602
    146.春燕,郭敏,林学政,等.拟康氏木霉和枯草芽孢杆菌对黄瓜枯萎病的协同防治作用[J].中国生物防治, 2005,21(3):206~208.
    147. Weller D M. Biological control of soil borne plant pathogens in the rhizosphere with bacteria [J]. Annu Rev Phytopathol, 1998, 26:397~407.
    148.余超,党秋玲.新疆地区加工番茄病害的综合防治.长江蔬菜, 2003(10):28
    149.蔡燕飞,廖宗文,董春,等.番茄青枯病的土壤微生态防治研究.农业环境保护, 2002,21(5):417-420
    150. Sharma M P,Gaur A, Sharma O P. Prospects of arbuscular mycorrhiza in sustainable management of root- and soil-borne diseases of vegetable crops. // Disease management of fruits and vegetables. Springer Netherlands Publishing, 2004:501-539
    151.柳春燕,郭敏,林学政,等.拟康氏木霉和枯草芽孢杆菌对黄瓜枯萎病的协同防治作用.中国生物防治, 2005,21(3):206-208
    152. Siddiqui I A, Shaukat S S. Mixtures of plant disease suppressive bacteria enhance biological control of multiple tomato pathogens. Biology and Fertility of Soils, 2002, 36: 260-268
    153. Roberts D P, Lohrke S M, Meyer S L F, et al. Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber. Crop Protection, 2005, 24(2): 141-155
    154.陶光灿,王素英,王玉平,等.芽孢杆菌属(Bacillus sp.)10株细菌混合制剂对4种作物出苗及苗期生长的影响.应用与环境生物学报, 2003,9(6):598-602
    155. Guo J H, Qi H Y, Guo Y H, et al. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control, 2004, 29(l):66-72
    156. Jetiyanon K, Kloepper J W. Mixtures of plant growth-promoting rhizobacteria for induction ofsystemic resistance against multiple plant diseases. Biological Control, 2002, 24(3): 285-291
    157.陈晓斌,张炳欣.植物根围促生细菌(PGPR)作用机制的研究进展.微生物学杂志, 2000, 20(1):38-41
    158.陶晶,李晖,李春,等.协同增效型拮抗细菌组合CL-7和CL-8的稳定性及其对加工番茄的促生防病效果.中国生物防治, 2006, 22(4): 290-295
    159.陶晶,赵思峰,李春,等.芽孢杆菌SL-23和SL-44对加工番茄防病促生效果的研究.新疆农业科学, 2006, 43(5): 362-365
    160.方中达.植病研究方法(3版).北京:中国农业出版社,1998
    161.朱天辉,杨佐忠.枯草芽孢杆菌菌种退化及其控制.西南林学院学报, 2000,20(1):31-35
    162.崔林,孙振,孙福在,等.马铃薯内生细菌的分离及环腐病拮抗菌的筛选鉴定.植物病理学报, 2003,33(4)353-358
    163.林福呈,李德葆.枯草芽孢杆菌(Bacillus subtilis) S9对植物病原真菌的溶菌作用.植物病理学报, 2003,33(2):174-177
    164.张霞,唐文华,张力群.枯草芽孢杆菌B931防治植物病害和促进植物生长的作用.作物学报, 2007, 33(2):236-241
    165. Lourenco Júnior V, Maffia L A, da Romeiro R S, et al. Biocontrol of tomato late blight with the combination of epiphytic antagonists and rhizobacteria. Biological Control, 2006, 38(3): 331-340
    166.陈中义,张杰,黄大昉.植物病害生防芽孢杆菌抗菌机制与遗传改良研究.植物病理学报, 2003, 33 (2):97-103
    167. Junge H, Krebs B, Kilian M. Strain selection, production and formulation of the biological plant vitality enhancing agent FZB24 Bacillus subtilis. Pflanzenschutz-Nachrichten Bayer, 2000, 53(l):94-104
    168. Kloepper J W, Ryu C M, Zhang S A. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 2004, 94(11):1259-1266
    169.王光华.生防细菌产生的拮抗物质及其在生物防治中的作用.应用生态学报, 2004,15(6):1100~1104
    170.王雅平等.抗真菌蛋白BII的分离纯化及其性质的研究。生物化学与生物物理学报,1993, 25 (4): 391-396
    171.陈红,李平,王玲霞,等.混合培养提高水稻纹枯病生防效果的研究[J].中国农学通报, 2001,17(5):1~5.
    172.胡剑,林心怡,张九一等.拮抗菌BS-98分泌抑菌蛋白的条件及发酵液特性[J].微生学通报,1996,23(6): 323-326.
    173.李建武,肖能賡,余瑞元,等.生物化学实验原理和方法[M].北京:北京大学出版社,1994.150-155
    174.方中达.植病研究方法[M].北京:中国农业出版社(第三版),1998.
    175.陶晶,吴艳,李春等.新疆加工番茄主要病害拮抗菌的筛选及其方法研究[C].第一届全国化学工程与生物化工年会论文集.南京,2004,11.
    176.张鹏,洪葵庄,林海鹏,等.抗真菌活性物质的分离纯化及生物活性研究.福建热作科技,2006,31(1):36~41.
    177.童有仁,马志超,陈卫良,等.枯草芽孢杆菌B034拮抗蛋白的分离纯化及特性分析.1999,39(4):38~43.
    178.别小妹,吕凤霞,陆兆新,等.Bacillus subtilis fmbJ脂肽类抑菌物质的分离和鉴定.生物工程学报,2006,22(4):609~614.
    179.陆健.蛋白质纯化技术及应用.北京:化学工业出版社,2005.
    180.黄秀梨,辛明秀.微生物学实验指导.北京:高等教育出版社,2008.
    181.邓小雁,朱建兰.Dh菌株胞外蛋白酶及几丁质酶的活性测定.西北农业学报,2006,15(5):128~131,135.
    182.陈毓荃.生物化学实验方法和技术.北京:科学出版社,2002
    183. Chaurasia B., Pandey A., Palni L.M., et al. Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Res. Microbiol., 2005, 160 (1): 75~81.
    184.向万胜,吴金水,肖和艾,等.土壤微生物的分离、提取与纯化研究进展.应用生态学报,2003,14(3): 453~456
    185.李阜隶.农业微生物实验技术[M].北京:中国农业出版社,1998
    186.郭坚华,王玉菊,李谨,等.抑菌圈-定殖力双重测定法筛选青枯病生防细菌.植物病理学报,1996,26(1):49~54
    187.邬行彦,熊宗贵,胡章助.抗生素生产工艺学,1980
    188.林璧润,谢双大,杨丽梅,等.拮抗细菌P78对黄瓜疫病及丝瓜霜霉病的防治作用.中国生物防治,1999,15(3).
    189.帅正彬.植物病原细菌素的研究进展.植物保护,1995,4:37~39.
    190.郭坚华,潘登明,任欣正.抗青枯生防菌桔抗物质的初步研究.南京农业大学学报,1994,18(2):59~62
    191. Broadbent,P.,Baker,K. F.,Franks,N.et al. Effect of Bacillus spp. on increased growth of seedlings in steamed and nontreated soil. Phytopathology,1997,67: 1027-1034
    192.杨海莲,孙晓璐,宋未.植物根际促生细菌和内生细菌的诱导抗病性的研究进展[J].植物病理学报, 2000, 30(2):106~110.
    193. Turner J T and Backman P A. Factors relating to peanut yield increase after seed treat with Bacillus subtilis. Plant diease, 1991, 75:347~353.
    194. J. Hwang and D.M. Benson. Expression of induced systemic resistance in poinsettia cuttings against Rhizoctonia stem rot by treatment of stock plants with binucleate Rhizoctonia. Biological Control 2003(27):73~80
    195.徐瑞富,王小龙.花生连作田土壤生物群落动态与土壤养分关系研究[J].花生学报, 2003, 32(3):19-23
    196.李洪连,王守正,张明智,等.不同棉花抗性品种根际真菌区系分析及对棉花枯萎病菌的抑制作用[J].棉花学报, 1992, 4(2) :73-76
    197. Bella A. Phytoalex in production and Verticillium wilt resistance in cotton[J].Phtopatholigy, 1969,59:1119-1127.
    198.封海胜,张恩苏,万书波,等.土壤微生物与连、轮作花生的相互效应研究[J].莱阳农学院学报, 1995, 12 (2) :97-101.
    199. Wei,G.et al.Induced systemic resistance to cucumber diseases and incresaed plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology.1996,86:221~224
    200. Zhan XH, Jiang YH, Xu YC, et al. Advance in researches on mechanism of microbial inoculants on promoting plant growth [J]. Plant Nutr & Fertilizer Sci, 1999,5(2):97~105
    201.王忠.植物生理实验指导,扬州大学(自编),1999
    202. Kanchalee Jetiyanon, and Joseph W. Kloepper. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biological Control 2002 (24): 285~291.
    203.汤章城,王国强,史益敏,等.现代植物生理学实验指南.北京:科学出版社,1999
    204.李靖,利容千,袁文静.黄瓜感染霜霉病菌叶片中一些酶活性的变化.植物病理学报,1991,21(4):277~283
    205. Koike N, Hyakumachi M. Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: lignification and superoxide generation [J]. European Journal of Plant Pathology, 2001, 107(5): 523~533
    206.中国科学院南京土壤研究所微生物室编著.土壤微生物研究法.北京:科学出版社, 1985
    207.高鸣宁.新疆甜瓜经疫霉菌毒素诱导后酶活性的变化.植物生理通讯,1998(4):256-258.
    208. Mario,Moniz Desa.Rapid activation of phenylpropanoid metabolism in elicitor-treated hybrid Poplar(Populustrichocarpa Torr&Gray×Populusdeltoides Marsh)suspension-cultured cells.Plant physiology, 1992, 98:728~737
    209.崔素萍,左豫虎,王彦杰,等.诱导处理对小麦穗内与抗病相关的酶活性的影响,植物病理学报,2001,31(1):91~92
    210.李靖,利容千,袁文静.黄瓜感染霜霉病菌叶片中一些酶活性的变化.植物病理学报, 1991,21(4):277~283
    211.吴岳轩,曾富华,王荣臣.杂交稻对白叶枯病的诱导抗性与细胞内防御酶系统关系的初步研究.植物病理学报,1996,26(2):127~131
    212.叶明志,王树彬,高汉芳,等.水稻对细菌性病害的抗性与多酚氧化酶活性的关系.福建农业大学学报,1996,25(1):50~55.
    213.杨家书,李舜芳,吴畏.小麦品种对白粉病抗病性与过氧化物酶的关系.植物病理学报,1984,14(4):235~239,
    214.康白.微生态学[M].大连:大连出版社, 1988. 291~293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700