用户名: 密码: 验证码:
广州地铁混凝土结构在环境多因素作用下抗侵蚀耐久性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地铁工程是国家级重大工程,对混凝土结构耐久性要求很高,一般设计使用寿命为100年。混凝土作为地铁工程用量最大的材料,材料的耐久性能对混凝土结构耐久性有着极大的影响;同时由于工程的特殊性,地铁混凝土处于潮湿和地下水流经的环境中,不仅遭受着比地面更严重的碳化环境和地下水的压力渗透作用,而且还受到地下水中存在的各种腐蚀性介质的侵蚀,同时还受荷载、列车振动、杂散电流等影响,在很大程度上加剧了对混凝土的侵蚀作用。因此,相对于其它建设工程,地铁混凝土由于遭受侵蚀而导致混凝土耐久性受影响的问题显得特别突出,直接关系到地铁混凝土结构的正常安全运行和使用年限,对地铁混凝土结构在各(多)因素作用下的抗侵蚀耐久性进行全面系统的研究,具有重要的理论意义和实践价值。
     本文以广州地铁工程混凝土为研究对象,率先在国内开展地铁工程混凝土在各(多)因素作用下的抗侵蚀耐久性的全面系统研究。首先,对地铁工程混凝土的侵蚀环境和侵蚀情况现状进行了现场调研,对实际工程混凝土使用的原材料和配合比进行了分析及对混凝土的耐久性能进行了常规性试验研究。然后,进一步采用模拟及加速试验方法,对地铁混凝土的抗碳化侵蚀、抗地下水溶蚀、抗Cl~-、SO_4~(2-)离子侵蚀,以及在杂散电流、荷载的复合因素作用下的侵蚀进行了深入系统的研究,在此基础上完成了地铁工程混凝土耐侵蚀性评价与建议。
     广州地铁工程混凝土侵蚀环境和侵蚀情况现状现场调研表明,地铁各线路沿线地下水对混凝土结构具有腐蚀性的比例为7.57%~28.87%,以侵蚀性CO_2的腐蚀所占比例最多,影响最大;对钢筋混凝土结构中钢筋具有腐蚀性的比例各线路均在50%以上,最高达80%左右,腐蚀因素以Cl~-的单因素腐蚀为主,Cl~-与SO_4~(2-)的双因素腐蚀占腐蚀水样的20%左右。地铁站厅、站台的碳化环境较地面稍严重,隧道内的碳化环境更为严重。在混凝土管片的预留孔、拼装缝,道床与二次衬砌混凝土的施工缝层面,混凝土现浇衬砌的施工缝、构造缝等位置容易出现渗漏溶出现象,由于各种原因导致的混凝土裂缝处渗漏也较严重,这是对地铁混凝土耐侵蚀性危害最大的一种形式,也是最为普遍的一种现象。
     对实际工程混凝土的质量调研和试验研究表明,除超过一半的砂样可能有潜在碱活性危害外,用于广州地铁工程的其它混凝土原材料质量状况良好;11家搅拌站供应广州地铁工程的C30P8同等级混凝土由于原材料、配合比、生产工艺的不同,混凝土各项耐久性能均有较大差异:抗渗性能优良,28d电通量在650~1360C之间,抗硫酸盐侵蚀系数在0.88~1.18之间,碳化深度从14mm到25mm不等,钢筋锈蚀失重率在0.06%~0.25%之间,相互间差异较大,以电通量小于1000C,抗蚀系数在1.0~1.1之间,抗硫酸盐等级为“中”,碳化深度小于18mm的混凝土居多;存在电通量大于1000C,抗蚀系数<1.0,抗硫酸盐等级为“低”,碳化深度大于20mm的混凝土,不利于混凝土的耐久性。
     采用加速试验方法研究了地铁混凝土的抗碳化侵蚀和抗地下水溶蚀性能,运用模型相似理论,得到基于28天碳化结果的寿命预测公式: t_p=λ_tt_m=28(X_p/λ_aX_m)~2/365
     说明混凝土碳化寿命与钢筋保护层厚度XP,28天标准碳化深度Xm相关,实际钢筋保护层厚度影响最大。11家搅拌站混凝土抗碳化耐久寿命从94年到312年不等,差异较大。
     根据试验结果并参考相关文献,得出混凝土抗渗漏溶蚀安全使用年限公式: T=0.1×VCa/Q(M-M_0)
     说明水渗漏溶蚀寿命与混凝土的水渗漏量Q,混凝土墙的CaO含量相关。若水渗漏量接近为零,则抗渗漏溶蚀寿命会无限延长。以石灰浸出量达到10%为临界状态,实测广州地铁混凝土某裂缝处日渗漏量为1000ml,由试验结果计算,得出地铁混凝土抗地下水溶蚀性能基本能满足100年的耐久性要求。
     采用模拟及加速试验方法深入研究了地铁混凝土抗地下水中Cl~-离子、SO_4~(2-)离子侵蚀性能,对10d~180d渗透进混凝土中的Cl~-离子含量的测定结果进行曲线拟合,拟合方程为cj=atb。研究结果表明:提高温度使得乘数a增大;而干湿交替下使拟合方程的幂指数b增大;增大配制水溶液中氯离子的浓度对拟合方程的乘数a和幂指数b会同时产生影响,从而得出采用干湿交替养护,并适当提高配制水溶液中腐蚀离子的浓度,是研究Cl~-离子腐蚀的较好的加速试验方法。Cl~-+SO_4~(2-)双因素腐蚀下,渗透进混凝土中的有效Cl~-=Cl~-+SO_4~(2-)×0.25,试验表明,这个含量高于Cl~-离子单因素作用下渗透进混凝土中的Cl~-含量,即SO_4~(2-)离子的存在对钢筋锈蚀有加速作用。以混凝土中氯离子含量为水泥质量的0.1%为临界值,当地下水中氯离子含量为350.58mg/L(腐蚀等级为弱)时,对实际处于干湿交替环境中的地铁工程混凝土,渗透进入的氯离子含量拟合方程为:c j = 0. 01356t~(0.20962),达到临界值需要37.8a,混凝土抗氯离子侵蚀的耐久性远低于设计要求;当地下水中氯离子含量为7203mg/L(腐蚀等级为强),同时存在2805mg/L的SO_4~(2-)离子时,对实际处于长期浸水环境中的地铁工程混凝土,渗透进入的Cl~-+SO_4~(2-)×0.25含量拟合方程为: cj = 0. 02608t~(0.30291),达到临界值仅需约90d,故对个别腐蚀严重部位应采取特殊防腐蚀措施。
     探讨了杂散电流对地铁混凝土抗溶蚀及抗地下水中Cl~-离子、SO_4~(2-)离子侵蚀性能的影响。假定混凝土中CaO溶出量与电流密度成正比,当地铁杂散电流为60mA/m2时,混凝土的抗溶蚀耐久寿命比单纯抗地下水溶蚀的耐久寿命缩短了约30%,杂散电流的存在加速了混凝土的溶蚀。与单纯地下水腐蚀作用相比,复合了杂散电流作用后,不仅加速了腐蚀离子的侵入速率,侵入混凝土内的自由氯离子和硫酸根离子含量显著增加;而且改变了腐蚀离子在混凝土中的分布状态,Cl~-离子在钢筋附近富集,从而显著加剧了混凝土中钢筋的锈蚀速率;增加腐蚀离子浓度对钢筋锈蚀的加速作用大于增加电流密度。
     研究了弯曲荷载和SO_4~(2-)、Cl~-离子共同作用下混凝土的抗侵蚀性能。在弯曲应力下,纯弯区拉应力层受荷载破坏最严重,使外部的SO_4~(2-)、Cl~-离子更容易向混凝土内部扩散,渗透进入混凝土中的SO_4~(2-)、Cl~-离子量最大,Ca2+含量被减少,从而使钢筋的锈蚀作用加速,短龄期已观察到钢筋的力学性能有所下降。至60d龄期,由于SO_4~(2-)、Cl~-离子反应生成的钙矾石和氯铝酸盐填充微小孔隙使结构致密而使混凝土的强度有所增大,但这些新产物在短时间内的裂缝愈合作用和增强作用并不足以减少它们对钢筋腐蚀的影响。荷载作用下,孔的周围应力集中,致使一些微孔扩展而形成大孔,混凝土的最可几孔径增大。所以,应力腐蚀对混凝土的影响重点在于使钢筋的锈蚀速度加快,其影响虽不及杂散电流,但是比单纯地下水腐蚀更厉害。
     在上述研究基础上,对广州地铁混凝土结构耐久性做了整体论的评价。广州地铁混凝土使用的原材料整体上质量情况良好,混凝土质量标准检验全部合格,配合比基本上合理,今后重点是解决材料的质量稳定性和施工的质量均匀性,从耐久性高度追求更严格的、更科学的配合比和更好的施工质量。认为本研究的实验室结果可以反映广州地铁混凝土结构主体的耐久性演变规律和可能的服役寿命;同时认为本研究在已建工程的实地勘察中发现的多种缺陷真实地反映了影响广州地铁混凝土结构耐久性的薄弱环节,如果不能妥善处理和大力防治,可能会成为影响地铁工程耐久寿命及安全性的关键问题。最后提出了提高广州地铁混凝土结构耐久性的措施建议和改进混凝土结构耐久性试验方法的建议。
Being the State key project, metro engineering has a high demand for the durability of concrete structure whose designed service-life is about 100 years. Meanwhile, concrete is the biggest amount component material for subway engineering, its durability has great influence on that of concrete structure. And the particularity of metro environment is that the concrete structure is in a moist and groundwater flowing surroundings, in which it not only suffer, compared with on the ground, more serious carbonization attack and the action of groundwater pressure osmosis, but also was subjected to the attack of various corrosive medium existed in the groundwater and at the same time, the influence of loading, the vibration of running train and the stray current etc, all of which largely increased the concrete corrosion. In comparison with the other construction projects, the problem of concrete anti-corrosion durability for metro engineering is particularly prominent, which directly affects the normal safety operation and service life of metro system. So it is of important theoretical and practical value to comprehensively study the durability of metro concrete on erosion resistance in many factors.
     Taking GZ metro engineering as the research object, this paper takes the lead of the domestic in comprehensively studying the durability of metro engineering concrete structure in various factors and particularly in corrosion resistance. Firstly, a site investigation on the corrosion condition and situation of metro concrete engineering, an analysis on the raw materials and mix proportion of metro engineering concrete were carried out and a canonical experimental study on the durability of metro concrete was executed. Then,a further research on the resistance of carbonation and corrosive CO_2 attack, the groundwater dissolving corrosion, the corrosion of ions (Cl~-、SO_4~(2-)), and the erosion under the composite action of stray electric current and loading by using simulative experiment method designed particularly were realized. On the basis of these, a comprehensive evaluation on the concrete structure durability of GZ metro was presented and a set of suggestion for improving the anti-corrosion durability of metro project is completed.
     From the investigation in site on the corrosion condition and situation of metro concrete structure, it is demonstrated that 7.57%-28.87% of groundwater samples along with the metro line is corrosive to the concrete structure, of which, the corrosive CO_2 has the maximum ratio and the most important effects. Among every line of GZ metro, the average proportion of groundwater samples that have corrosive effect to the steel of reinforcement concrete is all more than 50%, the maximum is about 80%, the single corrosion factor of steel is mainly Cl~- ion, the composite corrosive factor of Cl~-and SO_4~(2-) consist of 20% of groundwater samples. Carbonation attack is slightly more serious in metro stations halls and platforms than on the ground, and is even much more serious in the tunnels. It is easy to find water leakage in the pre-embeded holes and joints of the prefabrication pipe sections, the construction joints between the track bed and the second lining concrete, the construction joints of the mine tunneling method concrete. There also exist serious leakage in the concrete cracks induced by various reasons, all of these are found to be the most harmful and popular way to destroy the corrosion resistance of the metro concrete.
     By the quality investigation and experimental durability detection of the practical metro engineering concrete, it was indicated that the quality of the raw materials used in metro engineering was well qualified, except that more than an half of sand samples have the latent alkali activity. The C30P8 concretes which were supplied by the 11 concrete companies varied in their durability performance because of the differences of raw materials, mix proportion and manufactured process: The anti-water-penetration performance of the concretes are all excellent, but the electric flux of 28d concrete samples varies among 650-1360C and the anti-vitriol corrosion coefficient ranges over 0.88-1.18, showing that the mutual differences between different companies are great. Most concretes have the 28d electric flux less than 1000C, the anti-vitriol corrosion coefficient being between 1.0-1.1 and the grade of the anti-vitriol corrosion bein“gmedium”. But, there are some concretes with low durability level, of which the 28d electric flux is greater than 1000C, the anti-vitriol corrosion coefficient is less than 1.0, the grade of anti-vitriol corrosion is low.
     Through a set of accelerated test methods, the resistance to carbonation and groundwater dissolving corrosion of the metro concrete was studied. By the use of model similarity theory, the service-life prediction equation of concrete carbonation based on the data of 28 days was obtained: t_p=λ_tt_m=28(X_p/λ_aX_m)~2/365
     It is showed that the carbonation service-life is related to the thickness of reinforcement cover and the 28d standard carbonation depth of the concrete, practically, strongly relating to the former. The service-life prediction results among 11 concrete companies were quite different, varying from 94 years to 312 years.
     Taking the CaO leaching amount of 10% as the critical state of service life and the measured leakage amount per day at a certain crack of GZ metro concrete 1000ml as a parameter, the anti-seepage-corrosion safe life of the concretes, deduced by the accelerated test results, would be calculated as follow: T=0.1×VCa/Q(M-M_0)
     It is showed that the water corrosion service life is related to the percolating water amount and the total CaO content in the concrete. If percolating water speed tend to zero, the water corrosion service life would approach to infinite. With calculating from the experimental results, it can be concluded that the anti-seepage-corrosion performance of the concretes meets basically the requirements of 100-year durability.
     Through simulating and accelerating test methods, the corrosion resistance of the metro concrete to Cl~- ion, SO_4~(2-) ion in the groundwater was studied deeply. The fitted equation of penetration amount of Cl~- ion into concrete during 10d~180d is cj=atb. The test results showed that: the multiplier“a”became larger when temperature rose, the exponent b increased when alternate wetting and drying curing was used, augmenting the concentration of chloride ion would aggrandize the multiplier a and the exponent b simultaneously. Therefore, the alternate wetting and drying and higher concentration of chloride ions curing is a good accelerated test method for studying Cl~- ions corrosion. In the condition of Cl~-+SO_4~(2-) multiple corrosion, the average penetration amount of Cl~-+SO_4~(2-)×0.25 (effective Cl~- ions content) was higher than the average penetration amount of Cl~- ion in the condition of Cl~- ion single factor corrosion, which indicates that the existence of SO_4~(2-) ion accelerated the steel corrosion. Taking 0.1% content of chloride over cement mass as the critical value of steel corrosion, when the measured chloride content in groundwater was 350.58mg/L (“weak”corrosion grade) and the condition of metro was in alternate wetting and drying, the regression equation for chloride ion content, Cj, infiltrating into concrete is: c j = 0 .01356t~(0.20962), and attaining this critical value needed only 37.8a, so, the chloride resistance of concrete was far lower than the design requirements. When the measured Cl~- ion and SO_4~(2-) ions content in groundwater was 7203mg/L (“strong”corrosion grade) and 2805mg/L respectively, and the metro concrete was immersed in groundwater in long-term, the fitted regression equation of Cl~-+SO_4~(2-)×0.25 was c j = 0 .02608t~(0.30291), and attaining this critical value needed only 90d. Apparently, a special anti-corrosion measures should be taken for the individual parts under serious corrosion condition.
     The influence of stray current on the dissolving corrosion resistance and Cl~- ion and SO_4~(2-) ion corrosion resistance of the metro concrete was explored. Assuming that the amount of the dissolving CaO was proportional to the current density in concrete and the stray current of the metro was 60mA/m2, it is demonstrated that the service life of metro concrete reduced by 20% compared with that of no stray current only, so the presence of stray current obviously accelerated the ions corrosion. Compared with groundwater corrosion, the stray current not only increased the invasion rate of ion , significantly increased the content of free chloride ions and sulfate ion into concrete, but also changed the distribution state in the concrete of the corrosion ions, Cl~- ion concentrating near the steel, thus significantly increasing the corrosion rate of steel in concrete. Meanwhile, increasing the concentration of the corrosion ions had the greater influence on the steel corrosion than increasing the current density.
     The anti-corrosion power of metro concrete against the combination action of bending loading and SO_4~(2-), Cl~- ion in the groundwater was studied. It is showed that stretching strength caused by the bending stress of loading led micro-fissure to form and extend and outside SO_4~(2-), Cl~- ion to penetrate inside more easily and more concentrating in the pure tension stress area, oppositely, the content of Ca2+ ion to decrease, all of which would accelerate the rusting of reinforcement. The mechanic performances of steel bar had been found to descend. The concrete structure was tested to be densified and the strength increased slightly because of the formation of ettringite to fill the fissures, and the existing of Cl~- ion in the structure weakened the densification result. But, this kind of densification and strengthening is insufficient to compensate the effect of attacking of Cl~- and SO_4~(2-) ions to the reinforcement. The loading action led the stress focusing around the holes and some micro-fissures to extend to become big holes, the most probable bore diameter being increase. Therefore, it is obviously that the important influence of stress corrosion on concrete lies in accelelating the rusting of reinforcement of concrete, which might be milder than that of stray current but graver than that of the erosion of groundwater. Based on the above-mentioned research on durability, a holistic evaluation is made on the durability of concrete structure in GZ metro. The raw materials used for Guangzhou metro concrete are qualified as a whole, the examination of concrete quality all meets the requirements of standard, and the mix proportion is basically reasonable. It is the key point from now on to settle the quality stability of raw materials and the quality uniformity of construction structure, to pursue stricter and scientific mix proportion and the more excellent construction quality aiming to the level of durability. The laboratory research result in this toFig is considered to reflect the durability regulation and possible service life of the concrete main body structure of GZ metro; it is also considered that various defects found through the investigation of built project in site truly reflect the weak link of the durability of GZ metro concrete structure in GZ metro. If they can't be handled carefully and cured strongly, they may become the key problems which influence the durability life and safety of the metro engineering. At the last, some measure suggestions are put forward to improve the durability performance of the concrete structure in GZ metro and certain proposals about the experimental method for concrete durability are also presented.
引文
[1]张庆贺,朱合华,庄荣等.地铁与轻轨[M].北京:人民交通出版社, 2001.
    [2]蓝兰.我国地铁建设状况分析[J].中国仪器仪表, 2009, (10): 28-31.
    [3] 2010年广州市地下轨道建设工期策划[G].内部资料, 2010.
    [4]张誉,蒋利学,张伟平等.混凝土结构耐久性概论[M].上海:上海科学技术出版社, 2003.
    [5]冯乃谦,蔡军旺,牛全林等.山东沿海钢筋混凝土公路桥的劣化破坏及其对策的研究[J].混凝土, 2003, (1): 3-6.
    [6]倪志廷,王振强.水利工程混凝土的碳化和冻融破坏及防治[J].山西建筑, 2005, 31(23): 108-109.
    [7]李天艳,邓敏,詹炳根.碱集料反应与冻融循环协同作用对混凝土破坏的影响[J].混凝土与水泥制品, 2006, (5):1-4.
    [8] Yin J., Zhou S.Q., Xie Y.J. et al. Investigation on compounding and application of C80–C100 high-performance concrete[J]. Cement and Concrete Research, 2002, 32(2): 173-177.
    [9] Tamimi A.K., Abdalla J.A., Sakka Z.I. Prediction of long term chloride diffusion of concrete in harsh environment[J]. Construction and Building Materials, 2008, 22(5): 829-836.
    [10] Chen D., Mahadevan S. Chloride-induced reinforcement corrosion and concrete cracking simulation[J]. Cement and Concrete Composites, 2008, 30(3): 227-238.
    [11]罗福午主编.建筑结构缺陷事故的分析及防止[M].北京:清华大学出版社, 1996.
    [12]邵筱梅,高世龙,李英男.混凝土结构耐久性的评述[J].建筑设计, 2003, (3):
    [13]蔺安林,周晓军.地铁迷流对钢筋混凝土中钢筋腐蚀的模拟试验研究[J].西部探矿工程, 1999, (3): 66-71.
    [14] Darowicki K.,Zakowski K. A New Time-Frequency Deterioration Method of Stray Current, Field Interference on Metal Structures[J]. Corrosion Science, 2004, 46(5): 1061-1070.
    [15]张庆贺,朱合华,庄荣等.地铁与轻轨[M].北京:人民交通出版社, 2001.
    [16]黄炳德.地铁结构耐久性影响因素及其寿命预测研究[D].上海:同济大学, 2007.
    [17] Kilareski W.R. Failure of reinforcement concrete structures due to corrosion[J].Material Performance, 1980, (3): 326-330.
    [18]вайковА.А.ОвлиянииминеральныхВодНалортланлцентиослособахегоустранения-стронтелънаяпромыщленность. 1926, No.4
    [19] Ruettgers A., Vidal E.N., Wing S.P. An Investigation of the permeability of Mass Concrete with Particular Reference to Boulaer Dam[J]. Construction Materials, 1987, (4): 516-521.
    [20]李金玉,曹建国.水工混凝土耐久性的研究和应用[M].北京:中国电力出版社, 2004.
    [21] ERLINB, STARKDC. Identification and occurrence of thaumasite in concrete [J]. Highway Res Rec, 1965, (115): 108-113.
    [22] Crammond N. The occurrence of thaumasite in modern construction-a review[J]. Cement and concrete composite. 2002, 24(4): 393.
    [23]马保国,高小建.混凝土在SO_4~(2-)和CO32-共同存在下的腐蚀破坏[J].硅酸盐学报, 2004, 32( ): 1219-1224.
    [24]王永东.氯盐侵蚀引起的钢筋锈蚀对地下结构耐久性影响的研究[D].上海:同济大学, 2008.
    [25]曹楚南.腐蚀电化学[M].北京:化学工业出版社, 1995.
    [26]易友祥.一种积极有效的地铁杂散电流防护方案[J].天津理工学院学报, 1995, 11(2): 1-5.
    [27]马鸿儒.北京地下铁道的杂散电流腐蚀与防护[J].城市轨道交通, 1990, (1): 11-19.
    [28] Uhlig H.H., Revie R.W. Corrosion and Corrosion Control. A Wiley-Interscience Publication JOHN WELEY & SONS, 1985(Third Edition): 261-268.
    [29]樊云昌,草兴国,陈怀荣等.混凝土中钢筋腐蚀的防护与修复[M].北京:中国铁道出版社, 2002.
    [30]杨崇豪.建筑材料的腐蚀及控制设计[M].北京:水利电力出版社, 1990.
    [31]王大富,施养杭,黄庆丰.混凝土应力腐蚀研究现状[J].山西建筑, 2010, (3): 60-61.
    [32] Clifton J.R. Predicting the service life of concrete [J]. ACI materials Jonrnal, 1993, 90(6): 611-617.
    [33]水蕴华.科学技术研究方法[M].西安:西北工业大学出版社, 1988.
    [34]覃维祖,混凝土结构耐久性的整体论[J].建筑技术, 2003, (1): 19-22.
    [35]吴中伟.论水泥砼耐久性研究的思路与方法[G].内部资料, 1996.
    [36]吴中伟.水泥砼工作者面临的挑战与机会[J].混凝土与水泥制品, 1996, (1): 56-58.
    [37] Mehta P.K. Concrete technology at the crossoads-problems and opportunities. Concrete Technology-Past, present and future. Proceedings of V.M.Malhotra Symposium. ACI SP144, 1994.
    [38]李果,戴靠山,袁迎曙.钢筋混凝土耐久性试验方法研究[J].淮海工学院学报, 1997, 18(4): 41-45.
    [39]肖佳,勾成福.混凝土碳化研究综述[J].混凝土, 2010, (1): 40-44.
    [40] Steffens A,et al. Modeling of carbonation for corrosion risk prediction of prediction of concrete structure[J]. Cement and Concrete Research, 2002, 32(6): 935-941.
    [41]王铠.水电站混凝土坝受水的分解类腐蚀的工程实例分析[J].勘察科学技术, 2003, (2):
    [42]王铠.华南重碳酸盐水的水化学[J].勘察科学技术, 1983, (3):
    [43]水利水电科学研究院结构材料研究所编.大体积混凝土[M].北京:水利水电出版社, 1990.
    [44] Darowicki K, Zakowski, K. A New Time-Frequency Deterioration Method of Stray Current Field Interference on Metal Structures[J]. Corrosion Science, 2004, 46(5): 1061-1070.
    [45]江见鲸.混凝土结构工程学[M].北京:中国建筑工业出版社, 1998.
    [46]牛荻涛,陈亦奇,于澍.混凝土结构的碳化模式与碳化寿命分析[J].西安建筑科技大学学报, 1995, 27 (4): 365-369.
    [47] Parrott. A study of carbonation-induced corrosion[J]. Magazine of Concrete Research, 1994, 46( ): 23-28.
    [48]吴丽,卜贵贤.混凝土碳化的影响因素及碳化深度预测模型[J].防渗技术, 2002, 8(3): 10-15.
    [49] Khanml, Lynsdce CJ. Strength permeability and carbonation of high performance concrete [J]. Cement and Concrete Research , 2002, 32(1): 123-131.
    [50] Frangopol D M, Lin Kai yun, Estes A C. Reliability of reinforced concrete girders under corrosion at tack[J]. Journal of Structural Engineering, 1997, 123 (3): 286-297.
    [51]冯乃谦.高性能混凝土结构[M].北京:机械工业出版社, 2004, 65-78.
    [52]牛狄涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社, 2003, 10-32.
    [53]金立兵.多重环境时间相似理论及其在沿海混凝土结构耐久性中的应用[D].浙江大学, 2008.
    [54]李果,袁迎曙,耿欧.气候条件对混凝土碳化速度的影响[J].混凝土, 2004, (11): 49-51.
    [55]李文卿,汤永净,潘红科.上海地铁一号线地下连续墙混凝土碳化规律研究[J].混凝土, 2005, (12): 109-112.
    [56]徐道富.环境气候条件下混凝土碳化速度研究[J].西部探矿工程, 2005, (10): 147-149.
    [57]涂永明,吕志涛.应力状态下混凝土的碳化试验研究[J].东南大学学报, 2003, 33(5): 573-576.
    [58]蔡传国.高龄混凝土表面碳化与应力腐蚀关系的调查与试验研究[J].混凝土, 2007, (6): 4-6.
    [59]蔡传国.混凝土表面碳化与应力腐蚀关系的实验研究[J].中国市政工程, 2007, (3):68-69.
    [60] [60]蔡传国.高龄混凝土表面碳化与应力腐蚀关系的研究[J].实验力学, 2007, 22(5): 495-499.
    [61]余红发.抗盐卤腐蚀的水泥混凝土的研究现状与发展方向[J].硅酸盐学报, 1999, 27( ):237-245.
    [62] Nezzar RJarrah,Omar Saeed, etal. Electrochemical Behavior of Steel in Plain and Blended Cement Concretes in Sulphate and Chloride Environment[J]. Construction and Building Materials, 1995, (9): 97-103.
    [63] Maher A Bader. Performance of Concrete in a Coastal Environment[J]. Cement & Concrete Composites, 2003, (25): 539-548.
    [64] Xu Y. The Influence of Sulfates on Chloride Binding and Pore Solution Chemistry[J]. Cement and Concrete Research, 1997, (27): 1841-1850.
    [65]金祖权,孙伟等.混凝土在硫酸盐、氯盐溶液中的损伤过程[J].硅酸盐学报, 2006, 34(5): 630-635.
    [66] BROWN P W, BADGER S. The distributions of bound sulfates and chlorides in concrete subjected to mixed NaCl, MgSO4, Na2SO4 attack[J]. Cement and Concrete Research, 2000, 30(10): 1535-1542.
    [67] OMAR Saeed Baghabra Al-Amoudi, MOHAMMED Masiehuddin, YASER A B Abdui-Al. Role of chloride ions on expansion and strength reduction in plain and blended cements in sulfate environments [J]. Constr Build Mater, 1995, 9(1): 25-33.
    [68] FELDMAN R F, BEAUDOIO J J, PHILIPOSE K E. Effect of cement blends onchloride and sulfate ion diffusion in concrete [J]. Cemento, 1991, 8(8): 3-18.
    [69] TUMIDAJSKE P J, CHAN G W. Effect of sulfate and carbon dioxide on chloride diffusivity [J]. Cement and Concrete Research, 1996, 26(4): 551–556.
    [70] DEHWAH H A F, MASLEHUDDIN M, AUSTIN S A. Long-term effect of sulfate ions and associated cation type on chloride-induced reinfor-cement corrosion in Portland cement concretes [J]. Cement and Concrete Research, 2002, 24(1): 17–25.
    [71]吴瑾.钢筋混凝土结构锈蚀损伤检测评估[M].北京:北京科学出版社, 2005.
    [72] Mangat P.S., Limbachiya M.C. Effect of initial curing on chloride diffusion in concrete repair materials [J]. Cement and Concrete Research, 1999, 29(9 ): 1475-1485.
    [73] MAAGE M., HELLAND S., CARLESEN J.S.暴露于海洋环境的高性能混凝土中的氯化物渗透[A].见:高性能混凝土的耐久性[C].北京:北京科学出版社, 1998.
    [74] Tuutti K. Corrosion of steel in concrete [R]. Stockholm: Swedish Cement and Concrete Research Institute, 1982.
    [75] Clear K.C. Time-to-corrosion of reinforcing steel in concrete slabs[A]. Performance after 830 Daily salt Applications (3)[C]. Report NO. FHWA/RD-76/70. Federal Highway Administration, 1976, 59.
    [76] Amey S.L., Johnson D.A., Matthew A. et al. Predicting the service life of concrete marine structures: an environmental methodology[J]. ACI structural Jorunal, 1998, 95(2): 205-214.
    [77]余红发,孙伟,麻海燕等.混凝土使用寿命预测方法的研究I—理论模型[[J].硅酸盐学报, 2002, 30(6): 686-690.
    [78]余红发,孙伟,麻海燕等.混凝土使用寿命预测方法的研究II[J].硅酸盐学报, 2002, 30(6): 691-695.
    [79]余红发,孙伟,麻海燕等.混凝土使用寿命预测方法的研究III—混凝土使用寿命的影响因素及混凝土寿命评价[[J].硅酸盐学报, 2002, 30(6): 696-701.
    [80]杨德斌,申春妮.水泥混凝土抗硫酸盐侵蚀性能快速评估的影响因素研究[A].见:生态环境与混凝土技术国际学术研讨会[C]. 67-72.
    [81] Rajasekaran G. Sulphate attack and ettringite formation in the lime and cement stabilized marine clays[J]. Ocean Engineering, 2005, 32( ): 1133-1159.
    [82] Ibrahim E.S. Corrosion control in electric power systems[J]. Electric Power Systems Research, 1999, 52(3): 9-17.
    [83] Srikanth S., Sankaranarayanan T.S.N, Gopalakrishna K. Corrosion in a buriedpressurized water pipeline[J]. Engineering Failure Analysis, 2005, 5(12): 634-637.
    [84] Bertolini L., Carsana M., Pedeferri P. Corrosion behavior of steel in concrete in the presence of stray current[J]. Corrosion Science, 2007, 49(8): 1056-1068.
    [85] Robles H.F.C, Plascencia G., Koch K. Rail base corrosion problem for North American transit systems[J]. Engineering Failure Analysis, 2009, 16(3): 281-294.
    [86]杨向东,曲学兵,周晓军.外加直流电腐蚀钢筋引起混凝土破坏机理的研究[J].西部探矿工程(岩土钻掘矿业工程), 1999, 11(4): 92-96.
    [87]蔺安林,周晓军.地铁迷流对混凝土中钢筋的腐蚀及混凝土强度影响的实验研究[J].世界隧道, 1999, (6): 1-8.
    [88]周晓军,高波,郭建国等.混凝土中钢筋受外直流电腐蚀对其强度影响的试验研究[J].地铁与轻轨, 2001, (4): 17-23.
    [89]吴雄.杂散电流和氯离子共同作用下钢筋混凝土的劣化特征研究[D].武汉:武汉理工大学, 2008.
    [90]庞原冰,李群湛.地铁杂散电流模型讨论[J].重庆工学院学报, 2007, 2(11): 110-114.
    [91]李威,王爱兵,王禹桥.应用于地铁杂散电流腐蚀测量的硫酸铜电极实验研究[J].中国矿业大学学报, 2005, 12(4): 62-66.
    [92]胡曙光,耿健,丁庆军.杂散电流干扰下掺矿物掺合料水泥石固化氯离子的特点[J].华中科技大学学报, 2008, 36(3): 32-34.
    [93]耿健.杂散电流与氯离子共存环境下钢筋混凝土劣化机理的研究[D].武汉:武汉理工大学, 2008.
    [94] Ahmad S, Reinforcement corrosion in concrete structures, its monitoring and service life prediction--a review[J]. Cement & Concrete Composites 2003, (25): 459-471.
    [95]林江,唐华,于海学.地铁迷流腐蚀及其防护技术[J].建筑材料学报, 2002(1): 72-76.
    [96]贺丽娟.地铁迷流对隧道衬砌耐久性的影响[J].现代隧道技术, 2002, (6): 29-34.
    [97]周晓军.地铁杂散电流对衬砌耐久性影响及防护的探讨[J].地下空间与工程学报, 2007,(3): 522-528.
    [98]杜应吉,马少军,蔡跃波等.地铁工程混凝土抗杂散电流耐久寿命预测[J].水利与建筑工程学报, 2003, (3): 7-9.
    [99] SCHNEIDER U., NAGELE E. Stress corrosion of cement mortar in ammonium sulfate[J]. Cement and Concrete Research, 23(1): 13-19.
    [100] SCHNEIDER U., CHEN S.W. The chemomechnical effect and themechanochemical effect on high-performance concrete subjected to stress corrosion[J]. Cement Concrete Research, 1998, 28(4): 509-522.
    [101] SCHNEIDER U., CHEN S.W. Behavior of high-performance concrete under ammonium nitrate solution and sustained load[J]. ACI Materials,1999, 2 (8): 57-63
    [102]林毓梅,吴相豪.在盐酸溶液(pH=2)中混凝土腐蚀试验研究[J].河海大学学报, 1996, 24(4): 114-118.
    [103]林毓梅,姜国庆.在5%硫酸钠溶液中混凝土应力腐蚀试验研究[J].混凝土与水泥制品, 1996, (2): 22-25.
    [104]陈拴发.高性能混凝土应力腐蚀与腐蚀疲劳特性研究[D] .西安:长安大学, 2004.
    [105]陈栓发,王秉纲.高性能混凝土应力腐蚀评价指标[J].交通运输工程学报, 2005, 5(1): 6-10.
    [106]陈栓发,王秉纲.高性能混凝土应力腐蚀影响因素显著性分析[J].长安大学学报(自然科学版), 2005, 25(5): 1-5.
    [107]王爱勤,曹建国,李金玉等.高浓度和荷载条件下混凝土硫酸盐侵蚀特性及抗侵蚀技术[A].见:阎培玉,姚燕主编.水泥基复合材料科学与技术[C].北京:中国建筑工业出版社, 1999.
    [108]何世钦,贡金鑫.弯曲荷载作用对混凝土中氯离子扩散的影响[J].建筑材料学报, 2005, 8(2): 134-138.
    [109]何世钦,王海超,贡金鑫.荷载与锈蚀共同作用下钢筋混凝土梁抗弯试验研究[J].水力发电学报, 2007, 26(6): 46-51.
    [110]贡金鑫,王海超,李金波.腐蚀环境中荷载作用对钢筋混凝土梁腐蚀的影响[J].东南大学学报(自然科学版), 2005, 35(3): 421-426.
    [111]赵尚传,贡金鑫,水金锋.弯曲荷载作用下水位变动区域混凝土中氯离子扩散规律试验[J].中国公路学报, 2007, 2(4): 76-82.
    [112]林毓梅,冯琳.在海水中混凝土应力腐蚀试验研究[J].水力学报, 1992, (5): 40-45.
    [113]黄战,刑锋,董必钦等.荷载作用下的混凝土硫酸盐腐蚀研究[J].混凝土, 2008, (2): 66-69.
    [114]邢锋,冷发光,冯乃谦.长期持续荷载对混凝土氯离子渗透性的影响[J].混凝土, 2004, (5): 3-8.
    [115] Jin Zuquan, Sun Wei. Damage of concrete attacked by sulfate and sustained loading[J]. Journal of Southeast University (English Edition), 24(1): 69-73.
    [116]余红发,孙伟.在盐湖卤水环境中混凝土应力腐蚀行为[J].哈尔滨工业大学学报, 2007, 39(12): 1965-1968.
    [117]慕儒,严安,孙伟.荷载作用下高强混凝土的抗冻性[J].东南大学学报, 1998, 28(4): 138-143.
    [118]慕儒,严安,严捍东.冻融和应力复合作用下HPC的损伤与损伤抑制[J].建筑材料学报, 1999, 2(4): 359-364.
    [119]慕儒.冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D].南京:东南大学, 2000.
    [120] Bassuoni M.T., Nehdi M.L. Durability of self-consolidating concrete to sulfate attack under cyclic environment and flexural loading[J]. Cement and Concrete research, 2009, 39( ): 206-226.
    [121]杜应吉.地铁工程混凝土耐久性研究与寿命预测[D].河海大学, 2005.
    [122]陈聪,杨林德,张杰.地铁结构的耐久性研究[J].地下空间与工程学报, 2008, 10(5): 912-917.
    [123]李清福,李科,李明欣.基于可变模糊集理论的地下工程结构耐久性评估[J].河南科学, 2010, 28(5): 553-557.
    [124]王建强.地铁隧道衬砌结构钢筋锈蚀及耐久性研究[D].西安:长安大学, 2009.
    [125]杜磊.混凝土耐久性研究及在天津地铁地下车站设计中的应用[J].甘肃科技, 2010, 26(11): 132-135.
    [126]吕志刚.浅析地铁结构耐久性设计[J].建材技术与应用, 2007, (11): 23-25.
    [127]程骁.关于地铁工程耐久性的思考[J].地下工程与隧道, 2006, (4): 5-7.
    [128]傅沛兴.《混凝土配合比的科学规律性的研究》北京市建设委员会科技成果鉴定, 2009年8月.
    [129]徐善华,牛荻涛,王庆霖.钢筋混凝土结构碳化耐久性分析[J].建筑技术开发, 2002, 29(8): 16-18.
    [130]崔广心.相似理论与模型试验[M].徐州:中国矿业大学出版社,
    [131]袁润章.胶凝材料学[M].武汉:武汉工业大学出版杜,
    [132] A.E.谢依金, B.霍夫斯基, M.и.勃鲁谢尔.水泥混凝土的结构与性能[M].北京:中国建筑工业出版社,
    [133]黄人能,沈威等编译.新拌混凝土的结构和流变特征[M].北京:中国建筑工业出版,
    [134]何庭蕙,黄小清,陆丽芳.工程力学[M].华南理工大学出版社, 2007.
    [135] Hillerborg A, Modeer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-782.
    [136] T. Nakamura, G. Sudon and S. Akaiwa. Mineralogical Composition of Expansive Cement Clinker Rich in SiO2 and Expansibility[A]. in: Cement Association of Japan, Proceedings of the 5th International Symposium on the Chemistry of Cement.1969, Vol.4, 351-365.
    [137]高小建,马保国,童荣珍. Thaumasite的结构、形成机理及对混凝土的破坏、作用[J].硅酸盐通报, 2005, (1): 51-56.
    [138]高礼雄,姚燕,王玲.温度对碳硫硅钙石形成的影响[J].硅酸盐学报, 2005, (4): 525-527.
    [139] Rapha?l Tixier and Mobasher Biczok. Modelling of damage in cement based materials subjected to external sulphate attack.Ⅱ: Comparision with experiments[J]. Journal of Materials in Civil Engineering, 2003, 15 (4): 314-322.
    [140]文梓芸.《广州市商品混凝土产业技术管理机制的现状分析研究》,广州市科技委1999年科技项目.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700