用户名: 密码: 验证码:
智能优化算法及其在电力系统无功优化中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统无功优化对确保电力系统优化运行具有重要作用,它直接关系到电力系统运行的安全性与经济性。随着智能优化算法的发展,寻求收敛性好、鲁棒性强且具有智能特征的优化算法,以求解电力系统无功优化问题已成为重要的研究方向,且具有重要的理论意义与工程实际意义。本文在已有研究成果的基础上,提出了单目标/多目标的导向搜索算法与单目标/多目标的动态多群体自适应差分进化算法,对电力系统静态单目标无功优化、静态多目标无功优化、动态单目标无功优化、动态多目标无功优化、典型函数优化等问题进行了深入的研究和探讨,主要内容包括以下五方面:
     (1)提出了一种单目标导向搜索算法(Oriented Search Algorithm, OSA)。该算法将搜索个体模拟为人的搜索行为,搜索对象(目标函数最优解)模拟为可向搜索个体传送导向信息的智能体,以使搜索个体与搜索对象间相互通讯。通过对典型函数优化问题以及求解以系统网损最小为目标的电力系统静态单目标无功优化问题进行测试,结果验证了OSA的有效性,OSA是求解电力系统静态单目标无功优化问题的一种有效工具。
     (2)提出了一种多目标导向搜索算法(Multi-objective Oriented Search Algorithm, MOOSA).该算法基于OSA的寻优思想,引入多目标优化算法的评价策略与选择策略,寻找分布均匀且收敛性好的Pareto最优前沿。通过对考虑静态电压稳定性的电力系统静态多目标无功优化问题进行测试,结果验证了该算法能够折衷不同目标函数值,找出使各目标函数尽量优的分布均匀的Pareto前沿,是一种有效的求解考虑静态电压稳定性的电力系统静态多目标无功优化工具。
     (3)提出了一种单目标动态多群体自适应差分进化算法(Dynamic Multi-group Self-adaptive Differential Evolution Algorithm,DMSDE)。该算法为基于自适应控制参数改进差分进化算法(Self-adapting Control Parameters Modified Differential Evolution, SACPMDE)的一种改进算法。通过对电力系统静态单目标、多目标无功优化问题进行测试,结果验证了该算法是求解电力系统静态单目标、多目标无功优化问题的一种有效工具。为进一步提高算法性能,引入带局部搜索方法,即带局部搜索的动态多群体自适应差分进化算法(DMSDE with Local Search Algorithm, DMSDELS)。通过对典型函数优化问题进行测试,结果验证了DMSDELS具有较高的搜索精度和收敛性,且具有较强的跳出局部最优解能力。
     (4)采用提出的单目标动态多群体自适应差分进化算法(Dynamic Multi-group Self-adaptive Differential Evolution Algorithm,DMSDE)求解动态单目标无功优化问题。该动态单目标兀功优化问题是针对在日负荷动态变化情况下,考虑控制设备如有载调压变压器抽头、无功补偿电容器组档位的日允许最大动作次数约束,使系统在合理电压下的日有功网损最小。通过仿真测试,结果验证了DMSDE是求解电力系统动态单目标无功优化问题的一种有效工具。
     (5)提出了一种多目标动态多群体自适应差分进化算法(Multi-objective Dynamic Multi-group Self-adaptive Differential Evolution Algorithm,MODMSDE)。该算法基于DMSDE的寻优思想,引入多目标优化算法的非支配排序与拥挤度法以评价和选择新的种群。考虑到控制设备日允许最大动作次数的限制使不同时段的优化问题具有时间耦合性,提出了基于动态多目标优化的动态无功优化的执行策略。通过对动态多目标无功优化以及函数优化问题进行测试,结果验证了该算法的有效性,同时也验证了基于动态多目标优化的动态无功优化的执行策略是有效的。
Reactive power optimization plays an important role in optimal operation of power systems, which directly effects on the security and effectiveness of power system operation. With the development of intelligent optimization algorithms, exploring them with better convergence and robustness for solving reactive power optimization becomes an attractive research area and is of theoretical and engineering practical significance. On the basis of previous research achievements, the paper investigates single/multiple objective oriented search algorithms and single/multiple objective dynamic multi-group self-adaptive diferential evolution algorithms to deal with static single/multiple objective reactive power optimization, dynamic single/multiple objective reactive power optimization, and benchmark function optimization. The contents mainly include five parts listed as follows:
     (1) A single-objective oriented search algorithm (OSA) is proposed. In OSA, the search individual simulates human behavior, and the search-object (the optimal solution of the objective function) works like an intelligent agent that can transmit oriented information to search individuals, so that search-individuals and the search-object can communicate with each other. Through testing on typical benchmark function optimization and static single-objective reactive power optimization based on OSA, the efficiency of the proposed algorithm is verified and OSA is proved to be an efficient tool for dealing with static single-objective reactive power optimization in power system.
     (2) A multi-objective oriented search algorithm (MOOSA) is proposed. MOOSA is based on OSA with the evaluation and selection strategies of multi-objective optimization to search well distributed and converged at Pareto-optimal front. Through testing on static multi-objective reactive power optimization based on MOOSA, the simulations prove that the proposed algorithm has the capability of trading off different objective function values and searching a well distributed set of solutions as closed to the true Pareto-optimal front as possible. As a result, MOOSA is proved to be an efficient tool for dealing with multi-objective reactive power optimization considering static voltage stability in power system.
     (3) A single-objective dynamic multi-group self-adaptive differential evolution algorithm (DMSDE) is proposed. DMSDE is an improved algorithm based on self-adapting control parameters modified differential evolution (SACPMDE). Through testing on static single/multiple objective reactive power optimization based on DMSDE, the results demonstrate that DMSDE is an efficient method to dispatch static single/multiple objective reactive power flow. In order to further improve the performance of the proposed algorithm, local search method is employed, namely DMSDE with local search algorithm (DMSDELS). The results show that DMSDELS is better in the search precision, convergence property and has strong ability to escape from the local sub-optima through testing on typical benchmark function optimization.
     (4) DMSDE is employed to solve dynamic single-objective reactive power optimization. Subjected to the maximum daily allowable number of switching operations for control devices which includes transformer taps and capacitor banks, the objective of the dynamic single-objective reactive power optimization under the varying daily load of power system is to minimize active power losses while maintaining acceptable daily voltage profiles. The simulations on dynamic single-objective reactive power optimization illustrate that DMSDE is an efficient method.
     (5) A multi-objective dynamic multi-group self-adaptive differential evolution algorithm (MODMSDE) is proposed. MODMSDE is based on DMSDE with the non-dominated sorting method and crowding-distance method of multi-objective optimization to evaluate and select new population. Considering that the limitation to the maximum daily allowable number of switching operations for control devices couples different time-period optimization together, an implementation based on dynamic multi-objective optimization is employed to solve dynamic multi-objective reactive power optimization. Through testing on dynamic-based reactive power optimization and benchmark function optimization based on MODMSDE, the efficiency of the proposed algorithm is verified and the implementation based on dynamic multi-objective optimization for the dynamic reactive power model is effective.
引文
[1]J. Carpentier. Contribution al'etude du dispatching economique. Bulletin de la Societe Francaise des Electriciens,1962.
    [2]李文沅.电力系统安全经济运行——模型与方法.重庆:重庆大学出版社,1989.
    [3]周任军.电力系统无功电压控制中的改进优化方法研究.[博士论文].武汉:华中科技大学,2005.
    [4]戴朝华,搜寻者优化算法及其应用研究.[博士论文].成都:西南交通大学,2010.
    [5]L.J. Fogel, A.J. Owens, M. J. Walsh. Artificial intelligence through simulated evolution. New York: John Wiley,1966.
    [6]I. Rechenberg. Evolutionsstrategie-optimierung technischer systeme nach prinzipien der biologischen evolution. Stuttgart:Fromman-Holzboog,1973.
    [7]H.P. Schwefel. Numerische optimierung von computer-modellen mittels der evolutionsstragegie:mit einer vergleichenden Einfuhrung in die hill-climbing-und zufallsstrategie. [PhD thesis]. Birkhauser Verlag, Basel und Stuttgart,1977.
    [8]J.H. Holland. Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, 1975.
    [9]J.R. Koza. Genetic programming:on the programming of computers by means of natural evolution. MIT Press, Massachusetts,1992.
    [10]R. Storn, K. Price. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR95-012, International Computer Science Institute, Berkley,1995.
    [11]E. Bonabeau, M. Dorigo, G. Theraulaz. Swarm intelligence:from natural to artificial system. Oxford University Press, New York,1999.
    [12]J. Kennedy, R.C. Eberhart. Particle swarm optimization. In:Proc. of The 4th IEEE International Conference on Neural Networks, Piscataway,1995:1942-1948.
    [13]K. Penev, G. Littlefair. Free search-a novel heuristic method. In:Proc. of The PREP 2003, Exeter, UK, EU,2003:133-134.
    [14]A.P. Engelbrecht. Fundamentals of computational swarm intelligence. Chichester:Wiley, cop.2005.
    [15]Y. Shi, R. Eberhart. Empirical study of particle swarm optimization. In:Proc. of The Congress on Evolutionary Computation, Washington,1999:1945-1950.
    [16]M. Clerc, J. Kennedy. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 2002,6(1):58-73.
    [17]Standard PSO 2007 (SPSO-07) on the Particle Swarm Central, Programs section,2007. [Online]. Available:http://www.particleswarm.info.
    [18]J. J. Liang, A.K. Qin, P.N. Suganthan, S. Baskar. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation. 2006,10(3):67-82.
    [19]张文.基于粒子群优化算法的电力系统无功优化研究.[博士论文].济南:山东大学.2006.
    [20]R.Gamperle, S.D. Muller, P. Koumoutsakos. A parameter study for differential evolution. In A. Grmela, N.E. Mastorakis, editors, Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation, Interlaken, Switzerland, WSEAS Press,2002:293-298.
    [21]A. Nobakhti, H. Wang. A simple self-adaptive differential evolution algorithm with application on the ALSTOM gasifier. Applied Soft Computing.2008,8(1):350-370.
    [22]J. Brest, M. S. Maucec. Population size reduction for the differential evolution algorithm. Applied Intelligence.2008,29(3):228-247.
    [23]R. Mallipeddi, P. N. Suganthan. Empirical study on the effect of population size on differential evolution algorithm. In:Proc. of IEEE Congress on Evolutionary Computation, Hong Kong, 2008:3663-3670.
    [24]P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger, S. Tiwari. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical Report, May 2005 and KanGAL Report #2005005, Nanyang Technological University, Singapore, IIT Kanpur, India.
    [25]J. Teo. Exploring dynamic self-adaptive populations in differential evolution. Soft Computing-A Fusion of Foundations, Methodologies and Applications.2006,10(8):673-686.
    [26]R. Mallipeddi, P.N. Suganthan. Differential evolution algorithm with ensemble of populations for global numerical optimization. OPSEARCH.2009,46 (2):184-213.
    [27]J. Zhang, A.C. Sanderson. An approximate Gaussian model of differential evolution with spherical fitness functions. In:Proc. of IEEE Congress on Evolutionary Computation, Singapore, 2007:2220-2228.
    [28]M.M. Ali, A. Torn. Population set-based global optimization algorithms:some modifications and numerical studies. Computers and Operations Research.2004,31(10):1703-1725.
    [29]J. Ronkkonen, S. Kukkonen, K.V. Price. Real-parameter optimization with differential evolution. In: Proc. of IEEE Congress on Evolutionary Computation, Edinburgh, Scotland,2005:506-513.
    [30]J. Liu, J. Lampinen. A fuzzy adaptive differential evolution algorithm. Soft Computing-A Fusion of Foundations, Methodologies and Applications.2005,9 (6):448-462.
    [31]A. K. Qin, P. N. Suganthan. Self-adaptive differential evolution algorithm for numerical optimization. In:Proc. of IEEE Congress on Evolutionary Computation, Edinburgh, Scotland,2005:1785-1791.
    [32]J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer. Selfadapting control parameters in differential evolution:A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation.2006,10(6):646-657.
    [33]J. Brest, B. Boskovic, S. Greiner, V. Zumer, M. S. Maucec. Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Computing-A Fusion of Foundations, Methodologies and Applications.2007,11(7):617-629.
    [34]J. Zhang, A.C. Sanderson. JADE:adaptive differential evolution with optional external archive. IEEE Transactions on Evolutionary Computation.2009,13(5):945-958.
    [35]L.H.Wu, Y.N. Wang. Self-adapting control parameters modified differential evolution for trajectory planning manipulator. Control Theory Application.2007,5(4):365-373.
    [36]吴亮红.差分进化算法及应用研究.[硕士论文].湖南:湖南大学,2007.
    [37]K Price. Differential evolution a fast and simple numerical optimizer. In:Proc. of Biennial Conference of The North American Fuzzy Information Processing Society, New York,1996:524-527.
    [38l吴亮红,王耀南,袁小芳,周少武.自适应二次变异差分进化算法.控制与决策.2006,21(8):898-901.
    [39]赵光权,彭喜元,孙宁.基于混合优化策略的微分进化改进算.电子学报.2006,34(12A):2402-2405.
    [40]赵光权,彭喜元,孙宁.带局部增强算子的微分进化改进算法.电子学报.2007,35(5):849-853.
    [41]A.K. Qin, V.L. Huang, P.N. Suganthan. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation.2009, 13(2):398-417.
    [42]H.Y. Fan, J. Lampinen. A trigonometric mutation operation to differential evolution. J. of Global Optimization.2003,27(1):105-129.
    [43]S. Das, A. Abraham, U.K. Chakraborty, A. Konar. Differential evolution using a neighborhood based mutation operator. IEEE Transactions on Evolutionary Computation.2009,13 (3):526-553.
    [44]J.P. Chiou, C.F. Chang, C.T. Su. Ant direction hybrid differential evolution for solving large capacitor placement problems. IEEE Transactions on Power Systems.2004,19(4):1794-1800.
    [45]J.P. Chiou, C.F. Chang, C.T. Su. Variable scaling hybrid differential evolution for solving network reconfiguration of distribution systems. IEEE Transactions on Power Systems.2005,20(2):668-674.
    [46]Ld.S. Coelho, V.C. Mariani. Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect. IEEE Transcations on Power Systems. 2006,21(2):989-996.
    [47]C.H. Liang, C.Y. Chung, K.P. Wong, X.Z. Duan. Parallel optimal reactive power flow based on cooperative co-evolutionary differential evolution and power system decomposition. IEEE Tranctions on Power Systems.2007,22(1):249-257.
    [48]N. Noman, H. Iba. Accelerating differential evolution using an adaptive local search. IEEE Tranctions on Evolutionary Computation.2008,12(1):107-125.
    [49]S. Das, A. Abraham, A. Konar. Automatic clustering using an improved differential evolution algorithm. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans.2008, 38(1):218-237.
    [50]S. Rahnamayan, H.R. Tizhoosh, M.M. A. Salama. Opposition-based differential evolution. IEEE Transactions on Evolutionary Computation.2008,12(1):64-79.
    [51]Y.Y. Guang, Y.D. Zhao, K.P. Wong. A modified differential evolution algorithm with fitness sharing for power system planning. IEEE Transactions on Power Systems.2008,23(2):514-522.
    [52]J.P. Chiou. A variable scaling hybrid differential evolution for solving large-scale power dispatch problems. IET Generation, Transmission & Distribution.2009,3(2):154-163.
    [53]C.Y. Chung, C.H. Liang, K.P. Wong, X.Z. Duan. Hybrid algorithm of differential evolution and evolutionary programming for optimal reactivepower flow. IET Generation, Transmission & Distribution.2010,4(1):84-93.
    [54]K. Deb. Multi-objective optimization using evolutionary algorithms. Chichester:Wiley, cop.2001.
    [55]R.S. Rosenberg. Simulation of genetic populations with biochemical properties. [PhD thesis]. University of Michigan, Ann Harbor, Michigan,1967.
    [56]J. D. Schaffer. Multiple objective optimization with vector evaluated genetic algorithms. [PhD thesis]. Vanderbilt University,1984.
    [57]C.C.A. Coello. Evolutionary multiobjective optimization:A historical view of the field. IEEE Computational Intelligence Magazine.2006, 1(1):28-36.
    [58]D.E. Goldberg. Genetic algorithms in search, optimization and machine learning. Addison-Wesley Publishing Company, Reading, Massachusetts,1989.
    [59]N. Srinivas, K. Deb. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation.1994,2(3):221-248.
    [60]J. Horn, N. Nafpliotis, D. E. Goldberg. A niched Pareto genetic algorithm for multiobjective optimization. In:Proc. of The First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, Piscataway, New Jersey,1994:82-87.
    [61]C.M. Fonseca, P.J. Fleming. Genetic algorithms for multiobjective optimization:Formulation, discussion and generalization. In:Proc. of The Fifth International Conference on Genetic Algorithms, San Mateo, California,1993:416-423.
    [62]E. Zitzler, L. Thiele. Multi-objective evolutionary algorithms:a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation.1999,3(4):257-271.
    [63]E. Zitzler, M. Laumanns, L.Thiele. SPEA2:Improving the strength Pareto evolutionary algorithm. EUROGEN 2001, Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Athens, Greece,2002:95-100.
    [64]J.D. Knowles, D.W. Corne. Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation.2000,8(2):149-172.
    [65]K. Deb, A. Pratap, S. Agarwal, T. Meyarivan. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation.2002,6(2):182-197.
    [66]C.S. Chang, D.Y. Xu, H.B. Quek. Pareto-optimal set based multiobjective tuning of fuzzy automatic train operation for mass transit system. IEE Proc. on Electric Power Applications.1999, 146(5):577-583.
    [67]H.A. Abbass, R. Sarker. The Pareto differential evolution algorithm. Int. J. on Artificial Intelligence Tools.2002,11(4):531-552.
    [68]F. Xue, A.C. Sanderson, R.J. Graves. Pareto-based multiobjective differential evolution. In:Proc. of IEEE Congress on Evolutionary Computation, Canberra, Australia,2003:862-869.
    [69]K.E. Parsopoulos, D.K. Taoulis, N.G. Pavlidis, V. P. Plagianakos, M. N. Vrahatis. Vector evaluated differential evolution for multiobjective optimization. In:Proc. of Congress on Evolutionary Computation, Portland, Oregon, USA,2004:204-211.
    [70]A.W. Iorio, X. Li. Solving rotated multi-objective optimization problems using differential evolution. In:Proc. of AI 2004:Advances in Artificial Intelligence, Cairns, Australia,2004:861-872.
    [71]T. Robic, B. Filipic. DEMO:Differential evolution for multiobjective optimization. In:Proc. of The Third International Conference on Evolutionary Multi-Criterion Optimization,Guanajuato, Mexico, 2005:520-533.
    [72]S. Kukkonen, J. Lampinen. GDE3:The third evolution step of generalized differential evolution. In: Proc. of The IEEE Congress on Evolutionary Computation, Edinburgh, UK,2005:443-450.
    [73]S. Kukkonen, J. Lampinen. Performance assessment of generalized differential evolution 3 (GDE3) with a given set of problems. In:Proc. of The IEEE Congress on Evolutionary Computation, Singapore,2007:3593-3600.
    [74]S. Kukkonen, J. Lampinen. Performance assessment of generalized differential evolution 3 with a given set of constrained multi-objective test problems. In:Proc. of The IEEE Congress on Evolutionary Computation, Trondheim, Norway,2009:1943-1950.
    [75]Q.F. Zhang, H. Li. MOEA/D:A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation.2007,11 (6):712-731.
    [76]H. Li, Q.F. Zhang. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation.2009,13(2):284-302.
    [77]H. Li, Q.F. Zhang. A multiobjective differential evolution based on decomposition for multiobjective optimization with variable linkages. Lecture Notes in Computer Science,2006:583-592.
    [78]S.K. Goudos, J.N. Sahalos. Pareto optimal microwave filter design using multiobjective differential evolution. IEEE Transactions on Antennas and Propagation.2010,58(1):132-144.
    [79]K.V.R.B. Prasad, P.M. Singru. Identifying the optimum design of turbo-alternator using different multiobjective optimization algorithms. In:Proc. of The International Conference on Recent Trends in Information, Telecommunication and Computing, Kochi, Kerala,2010:150-158.
    [80]M.A. Abido, N.A. Al-Ali, Multi-objective differential evolution for optimal power flow. Lisbon, Portugal.2009:101-106.
    [81]J.A. Momoh, R. Adapa, M.E. El-Hawary. A review of selected optimal power flow literature to 1993. Ⅰ. nonlinear and quadratic programming approaches. IEEE Transactions on Power Systems.1999,14 (1):96-104.
    [82]J.A. Momoh, M.E. El-Hawary, R. Adapa. A review of selected optimal power flow literature to 1993. Ⅱ. newton, linear programming and interior point methods. IEEE Transactions on Power Systems. 1999,14(1):105-11.
    [83]李亚男,张粒子,杨以涵.考虑电压约束裕度的无功优化及其内点法.中国电机工程学报.2001,21(9):1-4.
    [84]刘明波,李健,吴捷.求解无功优化的非线性同伦内点法,中国电机工程学报.2002,22(1):1-7.
    [85]程新功,厉吉文,曹立霞,刘雪连.基于电网分区的多目标分布式并行无功优化研究.中国电机工程学报.2003,23(10):109-113.
    [86]程莹,刘明波.含离散控制变量的大规模电力系统无功优化.中国电机工程学报.2002,22(5):54-60.
    [87]赵波,郭创新,张鹏翔,曹一家.基于分布式协同粒子群优化算法的电力系统无功优化.中国电机工程学报.2005,25(21):1-7.
    [88]Q.H. Wu. J.T. Ma. Power system optimzal reactive power dispatch using evolutionary programming. IEEE Transactions on Power Systems.1995,10(3):1243-1249.
    [89]A. Abbasy, S.H. Hosseini. Ant colony optimization-based approach to optimal reactive power dispatch:A comparison of various ant systems. In:Proc. of IEEE PES PowerAfrica 2007-Conference and Exhibition Johannesburg. South Africa.2007:1-8.
    [90]Z. Liu, D.M. Zhao, X. Zhang, B.T. Dan, F.H. Guan. Reactive power optimization in power system based on chaos ant colony algorithm. Sustainable Power Generation and Supply.2009:1-4.
    [91]S.Q. Sheng, J. Li. Study of reactive power optimization based on artificial immune ant colony algorithm. In:Proc. of The Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, Nanjing, China,2008:2311-2315.
    [92]I. Oumarou, D.Z. Jiang, Y.J. Cao. Optimal reactive power optimization by ant colony search algorithm. In:Proc. of The Fifth International Conference on Natural Computation, Tianjian, China, 2009:50-55.
    [93]K. Iba. Reactive power optimization by genetic algorithm. IEEE Transactions on Power Systems. 1994,9 (2):685-692.
    [94]Q.H. Wu, Y.J. Cao, J.Y. Wen. Optimal reactive power dispatch using an adaptive genetic algorithm. Int. J. Elect. Power Energy Syst.1998,20(8):563-569.
    [95]W. Yan, F. Liu, C.Y. Chung, K.P. Wong. A hybrid genetic algorithm-interior point method for optimal reactive power flow. IEEE Transactions on Power Systems.2006,21(3):1163-1169.
    [96]P. Subbaraj, P.N. Rajnarayananb. Optimal reactive power dispatch using self-adaptive real coded genetic algorithm. Electric Power Systems Research.2009,79(2):374-381.
    [97]J.G. Vlachogiannis, J. Ostergaard. Reactive power and voltage control based on general quantum genetic algorithms. Expert Systems with Applications.2009,36(3) Part 2:6118-6126.
    [98]G. Coath, M. Al-Dabbagh, S. Halgamuge. Particle swarm optimization for reactive power and voltage control with grid-integrated wind farms. In:Proc. of The IEEE Power Engineering Society General Meeting, Denver, Colorado, USA,2004:303-308.
    [99]W. Zhang, Y.T. Liu. Reactive power optimization based on PSO in a practical power system. In: Proc. of The IEEE Power Engineering Society General Meeting, Denver, Colorado, USA, 2004:239-243.
    [100]W. Zhang, Y.T. Liu. Adaptive particle swarm optimization for reactive power and voltage control in power systems. Lecture Note in Computer Science.2005,36(12):449-452.
    [101]W. Zhang, Y.T. Liu. Adaptive particle swarm for reactive power optimization in power systems. International Journal of Engineering Intelligent System.2006,14(3):161-167.
    [102]B. Zhao, C.X. Guo, Y.J. Cao. A multi-agent based particle swarm optimization approach for reactive power dispatch. IEEE Transactions on Power Systems.2005,20 (2):1070-1078.
    [103]B. Zhao, C.X. Guo, Y.J. Cao. An improved particle swarm optimization algorithm for optimal reactive power dispatch. In:Proc. of The IEEE Power Engineering Society General Meeting, San Francisco,2005:272-279.
    [104]A.A.A. Esmin, G. Lambert-Torres, A.C. Zambroni de Souza. A hybrid particle swarm optimization applied to loss power minimization. IEEE Transactions on Power Systems.2005,20(2):859-866.
    [105]J.G. Vlachogiannis, K.Y. Lee. A comparative study on particle swarm optimization for optimal steady-state performance of power systems. IEEE Transactions on Power Systems.2006, 21(4):1718-1728.
    [106]G.A. Bakare, G. Krost, G.K. Venayagamoorthy, U.O. Aliyu. Differential evolution approach for reactive power optimization of Nigerian grid system. In:Proc. of The IEEE Power Engineering Society General Meeting, Tampa, USA,2007:1-6.
    [107]M. Varadarajan, K.S. Swarup. Differential evolutionary algorithm for optimal reactive power dispatch. Electrical Power and Energy Systems.2008,30(8):435-441.
    [108]M. Varadarajan, K.S. Swarup. Differential evolution approach for optimal reactive power dispatch. Applied Soft Computing.2008,8(4):1549-1561.
    [109]M. Varadarajan, K.S. Swarup. Volt-var optimization using differential evolution. Electrica Power Components and Systems.2008,36(4):387-408.
    [110]X.X. Zhang W.R. Chen, C.H. Dai, W.Z. Cai. Dynamic multi-group self-adaptive differential evolution algorithm for reactive power optimization. International Journal of Electrical Power and Energy Systems.2010,32(5):351-357.
    [111]L. Grant, G.K. Venayagamoorthy, G. Krost, G.A. Bakare. Swarm intelligence and evolutionary approaches for reactive power and voltage control. In:Proc. of IEEE Swarm Intelligence Symposium, ST. Louis MO, USA,2008:21-23.
    [112]S.Z. Wang, L.X. Ma, D.S. Sun. Hybrid differential evolution particle swarm optimization algorithm for reactive power optimization. In:Proc. of Asia-Pacific, Chengdu, China,2010:1-4.
    [113]Y.L. Zhao, Q. Yu, C.G. Zhao. Distribution network reactive power optimization based on ant colony optimization and differential evolution algorithm. In:Proc. of The 2nd IEEE International Symposium on Power Electronics for Distributed Generation Systems, Hefei, China, 2010:472-476.
    [114]X. Shu, Z.F. Liu, J.H. Zhang, Q. Yang. Research on adaptive niche differential evolution algorithm for reactive power optimization. In:Proc. of The 8th International Conference on Advances in Power System Control, Operation and Management,Shenzhen, China,2009:1-6.
    [115]Y. del Valle, G.K.Venayagamoorthy, S. Mohagheghi, J.C. Hernandez, R.G. Harley. Particle swarm optimization:basic concepts, variants and applications in power systems. IEEE Transactions on Evolutionary Computation.2008,12(2):171-95.
    [116]M.R. AlRashidi, M.E. El-Hawary. A survey of particle swarm optimization applications in electric power systems.IEEE Transactions on Evolutionary Computation.2009,13(4):913-918.
    [117]张武军,叶剑锋,梁伟杰,方鸽飞.基于改进遗传算法的多目标无功优化.电网技术.2004,28(11):67-71.
    [118]冯士刚,艾芊.利用强度Pareto进化算法的多目标无功优化.高电压技术.2007,33(9):115-119.
    [119]冯十刚,艾芊.带精英策略的快速非支配排序遗传算法在多目标无功优化中的应用.电工技术学报.2007,22(12):146-151.
    [120]M.S. Kumari, S. Maheswarapu. Enhanced genetic algorithm based computation technique for multi-objective optimal power flow solution. International Journal of Electrical Power and Energy Systems.2010,32(6):736-742.
    [121]H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, Y. Nakanishi. A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Transactions On Power Systems.2000,15(4):1232-1239.
    [122]M.A. Abido. Optimal power flow using particle swarm optimization. International Journal of Electrical Power and Energy Systems.2002,24(7):563-571.
    [123]娄素华.现代电力系统优化模型及其相关算法研究.[博十论文].武汉:华中科技大学,2005.
    [124]W. Zhang, Y.T. Liu. Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm. International Journal of Electrical Power and Energy Systems.2008,30(9):525-532.
    [125]刘佳,李丹,高立群,宋立新.多目标无功优化的向量评价自适应粒子群算法.中国电机工程学报.2008,28(31):22-28.
    [126]熊虎岗,程浩忠,胡泽春,贾德香.基于混沌免疫混合算法的多目标无功优化.电网技术.2007,31(11):33-37.
    [127]H.G. Xiong, H.Z. Cheng, H.Y. Li. Optimal reactive power flow incorporating static voltage stability based on multi-objective adaptive immune algorithm. Energy Conversion and Management.2008,49(5):1175-1181.
    [128]K.S.Varadarajan, K.S. Swarup. Network loss minimization with voltage security using differential evolution. Electric Power Systems Research.2008,78(5):815-823.
    [129]赵波.群集智能计算和多智能体技术及其在电力系统优化运行中的应用研究.[博士论文].浙江大学,2005.
    [130]朱春明.电力系统动态无功优化问题的研究.[博十论文].广州:华南理工大学,2003.
    [131]Y.Y. Hsu, H.C. Kuo. Dispatch of capacitors on distribution system using dynamic programming. IEE Proc. of Generation, Transmission and Distribution.1993,140(6):433-438
    [132]F.C. Lu, Y.Y. Hsu. Fuzzy dynamic programming approach to reactive power/voltage control in a distribution substation. IEEE Transactions on Power Systems.1997,12(2):681-688.
    [133]Y. Y. Hsu, F.C. Lu. A combined artificial neural network fuzzy dynamic programming approach to reactive power/voltage control in a distribution substation. IEEE Transactions on Power Systems.1998,13(4):1265-1271.
    [134]Y. T. Liu, P. Zhang, X.Z. Qiu. Optimal volt/var control in distribution system.International Journal of Electrical Power and Energy Systems.2002,24(4):271-276.
    [135]Y.M. Deng, X.J. Ren, C.C. Zhao, D.P. Zhao. A heuristic and algorithmic combined approach for reactive power optimization with time-varying load demand in distribution systems. IEEE Transactions on Power Systems.2002,17(4):1068-1072.
    [136]任晓娟,邓佑满,赵长城,赵大薄.高中压电网动态无功优化算法的研究.中国电机工程学报.2003,23(1):31-36.
    [137]Z. Hu, X. Wang, H. Chen, G.A. Taylor. Volt/var control in distribution systems using a time-period based approach. IEE Proc. of Generation, Transmission and Distribution.2003,150(5):548-554.
    [138]张勇军,俞悦,任震,李邦峰.实时环境下动态无功优化建模研究.电网技术.2004,28(12):12-15.
    [139]吴文传,张伯明.能量损耗最小的无功补偿动态优化算法研究.中国电机工程学报.2004,24(4):68-73.
    [140]吴文传,张伯明.电容器实时优化投切的最优匹配注入流法.中国电机工程学报.2004,24(1):35-39.
    [141]刘明波,朱春明,钱康龄,李芳红.计及控制设备动作次数约束的动态无功优化算法.中国电机工程学报.2004,24(3):34-40.
    [142]周任军,段献忠.计及调控成本和次数的配电网无功优化策略.中国电机工程学报.2005,25(9):21-27.
    [143]王秀丽,李正文,胡泽春.高压配电网无功/电压的日分段综合优化控制.电力系统自动化.2006,30(7):5-9.
    [144]Z.H. Bie, Y.H. Song, X.F. Wang, G.A. Taylor, M.R. Irving. Integration of algorithmic and heuristic techniques for transition-optimised voltage and reactive power control. IEE Proc. of Generation, Transmission and Distribution.2006,153(2):205-210.
    [145]刘蔚,韩祯祥.配电网无功补偿的动态优化算法.中国电机工程学报.2006,26(10):79-85.
    [146]W. Yan, F. Liu, K.P. Wong. Hybrid genetic algorithm-interior point method for optimal reactive power flow. IEEE Transactions on Power Systems.2006,21(3):1163-1169.
    [147]F. Liu, W. Yan. Hybrid immune genetic method for dynamic reactive power optimization. In:Proc. of The International Conference on Power System Technology, Chongqing, China, 2006:2605-2610.
    [148]刘方.关于电力系统动态最优潮流的几种模型与算法研究.[博十论文].重庆:重庆大学,2007.
    [149]于钊,赵登福,夏经德,杜正春.电力系统动态无功/电压优化控制的一种新算法.西安交通大学学报.2006,40(12):1441-1445.
    [150]沈茂亚,丁晓群.自适应免疫粒子群算法在动态无功优化中应用.电力自动化设备.2007,27(1):31-35.
    [151]A.A. Zhang, Z.C. Jiang, H.G. Yang. Dynamic reactive power optimization using mathematical morphology and genetic algorithm. In:Proc. of The International conference on Industrial Technology, Chengdu, China,2008:709-714.
    [152]A.A. Zhang, H.G. Yang. Pareto-set based multi-objective dynamic reactive power and voltage control. In:Proc. of The International Conference on Sustainable Power Generation and Supply, Nanjing, China,2009:1-6.
    [153]M.B. Liu, C.A. Canizares, W. Huang. Reactive power and voltage control in distribution systems with limted switching operations. IEEE Transactions on Power Systems.2009,24(2):889-899.
    [154]何佳,吴耀武,娄素华,熊信艮.基于微粒群优化算法的电力系统动态无功优化.电网技术.2007,31(2):47-52.
    [155]杨超,张步涵,陶芬,段献忠.电力系统多时段无功电压控制的两阶段优化法.高电压技术.2007,33(9):104-109.
    [156]姜振超,杨洪耕.基于数学形态学和遗传算法的配电网动态无功优化方法.电网技术.2007,31(23):68-73.
    [157]蔡昌春,丁晓群,王宽,沈茂亚,吴祯.动态无功优化的简化方法及实现.电力系统自动化.2008,32(5):43-58.
    [158]Y. Li, Y.J. Cao, Z.Y. Liu, Y. Liu, Q.Y. Jiang. Dynamic optimal reactive power dispatch based on parallel particle swarm optimization algorithm. Computers and Mathematics with Applications. 2009,57(11-12):1835-1842.
    [159]张雪霞,陈维荣.导向搜索算法在电力系统无功优化中的应用.西南交通大学学报.2010,45(3):418-423.
    [160]X.X. Zhang, W.R. Chen, C.H. Dai. Application of oriented search algorithm in reactive power optimization of power system. In:Proc. of The 3rd International Conference on Deregulation and Restructuring and Power Technologies, Nanjing, China,2008:2856-2861.
    [161]余娟.无功优化新模型和算法研究及其在电压稳定风险评估中的应用.[博十论文].重庆:重庆大学,2008.
    [162]R.D. Zimmerman, C. Murillo-Sanchez, D. Gan. Matlab Power System Simulation Package (Version 3.1b2), Available at http://www.pserc.cornell.edu/matpower/.
    [163]熊岗虎.计及静态电压稳定性的多目标无功潮流优化.[博士论文].上海:上海交通大学,2008.
    [164]熊虎岗,程浩忠,李宏仲.基于免疫算法的多目标无功优化.中国电机工程学报.2006,26(11):102-108.
    [165]X.X. Zhang, W.R. Chen. Multi-objective oriented search algorithm for multi-objective reactive power optimization. In:Proc. of The 5th International Conference on Intelligent Computing, Ulsan, Korea,2009:232-241.
    [166]V.L.Huang, P.N.Suganthan, A.K.Qiin, S. Baskar. Multiobjective differential evolution with external archive and harmonic distance-based diversity measure. Technical Report, Nanyang Technological University,2005.
    [167]张雪霞,陈维荣.动态多群体自适应差分进化算法及函数优化.电子学报.2010,38(8):1825-1830.
    [168]K. Price, R. Storn, J. Lampinen. Differential evolution-a practical approach to global optimization. Springer, Berlin,2005.
    [169]R. Storn, K. Price. Differential evolution- a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization.1997,11(4):341-359
    [170]A.A.A. EL Ela, S.R. Spea. Optimal corrective actions for power systems using multi-objective genetic algorithms. Electric Power Systems Research.2009,79 (5):722-733.
    [171]S. Panda. Multi-objective evolutionary algorithm for SSSC-based controller design. Electric Power Systems Research.2009,79(6):937-944.
    [172]M.A. Abido. Multiobjective particle swarm optimization for environmental/economic dispatch problem. Electric Power Systems Research.2009,79 (7):1105-1113.
    [173]M. Farina, K. Deb, P. Amato. Dynamic multi-objective optimization problems:Test cases, approximations, and applications. IEEE Transactions on Evolutionary Computation.2004, 8(5):425-442.
    [174]R. Mallipeddi, P.N. Suganthan. Ensemble of constraint handling techniques. IEEE Transactions on Evolutionary Computation.2010, PP(99):1-19.
    [175]T. Takahama, S. Sakai. Constrained optimization by the constrained differential evolution with gradient-based mutation and feasible elites. In Proc. of IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada,2006:1-8.
    [176]V.L. Huang, A.K. Qin, P.N. Suganthan, M.F. Tasgetiren. Multi-objective optimization based on self-adaptive differential evolution algorithm. In Proc. of IEEE Congress on Evolutionary Computation, Singapore,2007:3601-3608.
    [177]V.L. Huang, A.K. Qin, K. Deb, E. Zitzler, P.N. Suganthan, J.J. Liang, M. Preuss, S. Huband. Problem definitions for performance assessment of multi-objective optimization algorithms. Technical Report Technical Report 2007. Special Session on Constrained Real Parameter Optimization at CEC-07 (25-28 September'07).
    [178]K. Zielinski, R. Laur. Differential evolution with adaptive parameter setting for multi-objective optimization. In Proc. of IEEE Congress on Evolutionary Computation, Singapore, 2007:3585-3592.
    [179]K. Zielinski, R. Laur. Adaptive parameter setting for a multi-objective particle swarm optimization algorithm. In Proc. of IEEE Congress on Evolutionary Computation, Singapore,2007:3019-3026.
    [180]D. Sharma, A. Kumar, K. Deb, K. Sindhya. Hybridization of SBX based NSGA-II and sequential quadratic programming for solving multi-objective optimization problems. In Proc. of IEEE Congress on Evolutionary Computation, Singapore,2007:3003-3010.
    [181]A. Kumar, D. Sharma, K. Deb. A hybrid multi-objective optimization procedure using PCX based NSGA-II and sequential quadratic programming. In Proc. of IEEE Congress on Evolutionary Computation, Singapore,2007:3011-3018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700