用户名: 密码: 验证码:
结构陶瓷微波烧结/焊接腔内电磁场分布的仿真模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构陶瓷具有耐高温、耐氧化、耐腐蚀、耐磨耗等优点,因此,在非常严苛的环境或工程应用条件下,所展现的高稳定性与优异的机械性能,使其在材料工业上倍受瞩目,其市场潜力巨大。结构陶瓷的微波烧结/焊接技术是一种利用微波加热对材料进行烧结/焊接。它是利用微波具有的特殊波段与材料的基本细微结构耦合而产生热量,使其材料整体加热至烧结/焊接温度而实现致密化的方法,是制备新型高性能结构陶瓷材料和产品的重要技术手段。
     本论文研究的目的是借助先进的电磁仿真软件研究烧结/焊接腔空腔和加载试样时电磁场的分布规律,通过精确的图形显示和色彩对比来表征微波电磁场的分布,对试样的几何尺寸与微波参数对电磁场分布的影响进行分析与探讨。掌握单模/多模微波烧结/焊接腔内电磁场的分布以及如何控制其均匀范围的方法,可确定实际工艺过程中试样的大小和放置位置,提高试样烧结/焊接的成功率,制备出尺寸较大且形状复杂的结构陶瓷零件,对微波烧结/焊接工艺都具有重要的指导意义,对改进和研发新的先进实验或生产设备具有非常重要的应用价值。
     利用HFSS软件,对单模烧结腔的谐振特性和电磁场的分布规律进行数值模拟,分析其建模仿真中的影响因素,并且借助实验进行验证。模拟其加载试样后的电场分布,探讨试样的几何尺寸对烧结腔和试样内部电场分布的影响。
     单模烧结腔在加载圆柱状试样后,腔内电场的三个均匀区域都有不同程度的缩小,两边的均匀区域缩小程度相对较小,中间的均匀区域由于试样吸收微波能量受到较大影响,均匀区域的场强密度和稳定性都大大降低。试样不同的几何尺寸对烧结腔和试样内部电场分布的影响:当表面半径R较小时,试样的电场分布从里到外逐渐增强,R的增大使试样中心和左右两端出现较高电场,腔内中间的均匀区域受到破坏,两边的受到“挤压”。轴向高度H不同都会使试样内部出现完全相反的电场分布,当H处于发生变化的分界点时,试样内部的场强趋于一致。H的增大使径向表面退极化场的减少幅度大于轴向表面的增加幅度,也使腔内中间的均匀区域的场稳定性逐渐升高。
     模拟单模微波焊接腔空载和加载试样后的电场分布,探讨试样的放置方向对烧结腔和试样内部电场分布的影响。研究结果表明:沿Z轴方向摆放时,负载的接触面上电磁场的分布强度较强且相对均匀。
     对微波多模谐振腔内不同尺寸的烧结试样时,腔内和试样内部电场分布的进行了模拟并讨论,当试样高度不变时,随着直径的减小,多模烧结腔内的电场均匀性呈现上升趋势,同时烧结腔内的电场强度E也逐渐升高,试样尺寸为d=80mm,h=100mm时,试样内部电场分布较为均匀。当试样直径不变时,随着高度的减小,多模烧结腔内的电场均匀性也是呈现上升趋势,但此时腔体内的电场强度呈现下降趋势,当试样尺寸为d=40mm,h=80mm时,试样内部电场分布同样比较均匀。后者试样内部的电场强度较前者要强很多。
     多模腔内焊接试样的摆放方向对电磁场分布影响较小,而试样的大小对焊接过程中的试样接触面上的电磁场分布有较大的影响,研究表明,焊接面场强分布均匀的范围为半径r小于40mm高度h小于50mm。
Structural ceramics have tremendous market potential profit for the highstability and good mechanical properties in very harsh environment or engineeringapplication conditions, such as high-temperature resistance, oxidation resistance,corrosion resistance and wear resistance. Microwave sintering/welding technologyis achieved by using the microwave absorption property of the materials. The heatgenerated to high temperature by coupling of the special band of the microwaveand the basical material microstructure. The materials can be overall heated forsintering/weldingdensification.This technologyis important for preparingthe newhigh performance materials and products of structural ceramics.
     By using the simulation software to simulate the electromagnetic fielddistribution inside the specimen and the cavities, the research work of this thesisprovides the technical support in improving the microwave sintering/weldingprocess and design the new advanced R&D microwave heating equipment, Thetechnique is also can be used to analyze the influence of the microwave parametersand sample dimension on electromagnetic field distribution.
     The accurate graphic display and color contrast were used to characterizemicrowave electromagnetic field distribution rule of the geometric size of samples.The simulation is achieved by using high frequency structure simulator(HFSS) based on the finite element method. The accuracy and reliability of HFSSapplications to model and simulate the microwave sintering are proved by thenumerical simulation and experimental results of field contour distribution. Theimproved cavity design with an extended distribution range of homogenous fieldbased on the simulation is also studied, which can be used for sintering larger sizesamples.
     Three uniform region of the electromagnetic field decreases to different levels when the cylindrical samples are loaded on single-mode sintering cavity.The smaller reduction can be obtained on the evenly area of both-side. The largerreduction can be obtained on the middle uniformity region due to the largermicrowave energy absorption. The uniform field density and stability of thisregion is greatly reduced. Improved single-mode sintering cavity can furtherextendthe uniform field space range, uniform field volume is doubled.The electricfield distribution of the sinteringcavityand the effects of the sample geometrysizeand microwave parameters are studied as follow: firstly, the electric field of thesample increases graduallyfrom inside to outside when the surface radius R is verysmall; secondly, the higher electric field appears in the center and both sides of thesample with increases of the radius R. The completely opposite electric fielddistribution is obtained when the axial height (H) and the relative dielectricconstantεr is different. The internal electric field of the sample becomes uniformwhen the axial height (H) and the relative dielectric constantεr at the point of thechanging boundary. The reduction scale of the radial surfacedepolarization field islarger than the increased scale of the axial surface depolarization field when theaxial height H is increased. The stability of the middle uniform region inner thecavity increases gradually. The depolarization field of the sample is increased dueto the increases of the relative dielectric constantεr..The stability of the middleuniform region inner the cavity decreases gradually. The inner electric field of thesample is increased gradually from inside to outside while the inner electric fieldof the cavity is not be changed when the tangent of dielectric lose angle (tgδ) isdifferent. The depolarization field increases with the increasing of the tangent ofdielectric lose angle (tgδ)
     The electric field distributions of the single-mode microwave welded cavityand the loaded sample are simulated. The influences orientation of the sample onthe inner electric field of the cavityand the loaded samples are also discussed. Theresults show that the contact surface electromagnetic field intensity is muchstronger and relatively uniform when the orientation of the sample is along the Zaxis.
     The uniformity of the inner electric field distribution of the different sizedsintered sample in the microwave multimode resonant cavity is also simulated anddiscussed. If the height is not changed, the inner electric field intensity anduniformity in the microwave multimode resonant cavity increase with thedecreasing of the diameter. The inner electric field distributions of the sample isuniform with the sample size of d = 80mm, h = 100mm. If the diameter is notchanged, the inner electric field uniformity increases while the electric fieldintensity decreased in the microwave multimode resonant cavity with thedecreasing of the height. The inner electric field distributions of the sample isuniform with the sample size of d = 40mm, h = 80mm. The internal electricintensityof the latter sample is much stronger than that of the former one.
     For the multi-mold cavity welding sample, the influence of the loadingdirection on the electromagnetic field distribution is small, while the influence ofthe sample dimension on sample contact surface electromagnetic fields distributionin the welding process is much higher. The results show that the uniformelectromagneticfields distribution area is in theregion of radius R less than 40mmand height less than 50 mm.
     In conclusion, the technical is very important to improve the microwavesintering/welding process and design the new advanced R&D microwave heatingequipment by simulating the electromagnetic field specimen and distributionsimulation in the single and multi mode sintering/welding cavities and the loadedsamples. The sample dimension and loading direcution can be controlled in thesintering/weding process to improve the success ratio of the microwavesintering/weding. The larger size and complex structural ceramics can be easilyfabricated.
引文
[1]曾令可王慧张海文张明程小苏高性能陶瓷材料的发展现状及展望佛山陶瓷2002,6(63)
    [2]李县辉,孙永安,张永乾.陶瓷材料的烧结方法[J].陶瓷学报,2003,24(2):120-121
    [3]高丽,王海川,周云,等.微波加热在冶金中的应用进展[J].安徽工业大学学报,2003,20(4):55-58
    [4]郑英,牛玉清,牛学军,等.微波在矿物处理过程中的应用[J].铀矿冶,2002,21(3):151-153
    [5]王庆志,孙平.微波技术在食品工业中的应用[J].河北农业科学,2008,12 (12):54-55
    [6]胡祥发;微波技术的发展与应用现代物理知识2006,1, 32-34
    [7]张瑜,郝文辉,高金辉.微波技术及应用[M].第一版.西安:西安电子科技大学出版社,2006,55-66,206-210
    [8]李世普。特种陶瓷工艺学[M]。武汉工业大学出版社。2007年,58-78
    [9]范景莲,黄伯云等。微波烧结原理与研究现状。粉末冶金工业(J),2004,14(1):29。
    [10]吴红,史洪刚,冯宏伟,等.微波烧结技术的研究进展[J].兵器材料科学与工程,2004,27(4):59-61
    [11]张兆镗,钟若青.微波加热技术基础[M].第一版.北京:电子工业出版社,1988,49-77
    [12]张天琦,崔献奎,张兆镗.微波加热原理、特性和技术优势[J].筑路机械与施工机械化,2008,25(7):9-14
    [13]易健宏唐新文罗述东李丽娅彭元东微波烧结技术的进展及展望-《-粉末冶金技术》2003,06 35-38
    [14]刘继胜.微波烧结工作原理及工业应用研究[J].机电产品开发与创新,2007,20(2):20-21
    [15]马金龙童学锋彭虎烧结技术的革命--微波烧结技术的发展及现状《新材料产业》2001 1130-32
    [16] Mohit Jain, Ganesh Skandan, Amit Singhal, Dinesh Agrawal, Processing of nanopowdersinto transparent ceramics for infrared windows, Proceeding of SPIE, Vol. 5078, 2003,189-198.
    [17] Yi Fang, Dinesh Agrawal, Ganesh Skandan, Mohit Jain, Fabrication of translucent MgOceramics using nanopowders, Materials Letters, 2004, 58:551-554.
    [18] Jiping Cheng, Dinesh Agrawal, Yunjin Zhang, Rustum Roy, Microwave sintering oftransparent alumina, Materials Letters 56, 587-592, 2002.
    [19] Jiping Cheng, Dinesh Agrawal, Yunjin Zhang and Rustum Roy, Development oftranslucent aluminum nitride (AlN) using microwave sintering process, Journal ofElectroceramics, 9,67-71, 2002.
    [20] Ramesh Peelamedu, Sintering ofzirconia nanopowderbymicrowave-laser hybrid process,J.Am. Ceram. Soc., 87[9] 1806-1809, 2004.
    [21] S. Egorov, A. Eremeev, A. Sorokin, and A. Rachkovskii,“Experimental study of thepossibility of microstructure control in the microwave sintering of nanostructuredalumina,”in Abstr. 3rd World Congr. Microwave and Radio Frequency Applications,Sydney,Australia, 2002, pp. 109–110.
    [22] V. P. Paranosenkov, I. Yu. Kelina, L. A. Plyasunkova, and Yu. V. Bykov, PREPARATIONOF DENSE CERAMICS BASED ON SILICON NITRIDE NANOPOWDERS, 2003,44(4):223-226.
    [23] Ki-Yong Lee, Paul H. Dearhouse, and Eldon D. Case, Microwave Sintering of AluminaUsing Four Single-Cavity Modes, Journal of Materials Synthesis and Processing, 1999,7(3):159-166.
    [24] Masatoshi Mizuno, Seizo Obata, Sadatsugu Takayama, Sadataka Ito,Nobuhisa Kato,Toshio Hirai, Motoyasu Sato, Sintering of alumina by 2.45 GHz microwave heating,Journal of the European Ceramic Society, 2004, 24:387-391.
    [25] M. Panneerselvam and K. J. Rao, Novel microwave method for the synthesis andsintering of mullite fromkaolinite, Chem. Mater. 2003, 15, 2247-2232.
    [26] M. Panneerselvam and K. J. Rao, A microwave method for the preparation and sinteringof ?’-SiAlON, Materials Research Bulletin, 38, 2003, 663-674.
    [27]潘伟,彭虎,张晓东,黄朝晖,齐龙浩,用微波技术快速烧结氮化硅结合碳化硅耐火材料的方法,中国发明专利, 200410009794.4。
    [28] J.G. Fisher,S.K. Woo,K. Bai,I.S. Han,K.S. Lee,K.S. Hong, D.W. Seo, Microwavereaction bonding of silicon nitride using an inverse temperature gradient and ZrO2 andAl2O3 sintering additives, Journal of the European Ceramic Society 23 (2003) 791–799.
    [29] M. Sato, T. Shimotsuma, So Ito, T. Inoue, K. Esaki, O. Motojima, M. Fumjiwara, SoTakayama, M. Mizuno, S. Obata, T. Shimada, K. Satake, Insulation blankets formicrowave sintering of traditional ceramics, Ceram. Trans., 2001, 111, 277-285.
    [30] S. Takayama, M. Mizuno, S. Obata, T. Shimada, K. Sato, M. Shimotsuma, S. Ito, T.Inoue, K. Esaki, O. Motojima, M. Fujiwara, Sintering of traditional ceramics bymicrowaves (84GHz and 2.45GHz). Ceram. Trans., 2001, 111, 305-312.
    [31]夏广斌,韦国锡,尹彦征,彭虎,微波烧成高温大红釉的初步研究,中国硅酸盐学会陶瓷分会色釉料暨原辅料专业委员会第一届第三次会议论文集,南昌:2005, 66-69.
    [32] R. Roy, D.K. Agrawal, S. Gedevanishvili, J. Cheng, Microwave sintering of powderedmetals, Nature, 1999, 399, 668.
    [33] R. Roy, J. Cheng, and D. K. Agrawal, US Patent No. 6365885B2, April, 2, 2002.
    [34] E. Breval, J.P. Cheng, D.K. Agrawal, P. Gigl, M. Dennis, R. Roy, A.J. Papworth,Comparison between microwave and conventional sintering of WC/Co composites,Materials Science and Engineering, A 291, 2005, 285-295.
    [35] J. Ramkumar, S. Aravindan, S.K. Malhotra, R. Krishnamurthy, Enhancing themetallurgical properties of WC insert K-20 cutting tool through microwave treatment,Materials Letters, 2002, 53:200-204.
    [36] S. Leparoux, S. Vaucher, and O. Beffort, Assessment of microwave heating for sinteringof Al/SiC and for in-situ synthesis ofTiC, Adv. Engi. Mater., 2003, 5, No. 6, 449-453.
    [37] W.L.E. Wong, S. Karthik, M. Gupta, Development of hybrid Mg/Al2O3 composites withimproved properties using microwave assisted rapid sintering route, J. of Mater. Sci., 40,2005, 3395-3402.
    [38] E.J. Minay, A.R. Boccaccini, P. Veronesi, V. Cannillo, C. Leonelli, Processing of novelglass matrix composites by microwave heating, Journal of Materials ProcessingTechnology,2004, 155-156:1749-1755.
    [39] M.Panneerselvam, Ankur Agrawal, K.J.Rao, Microwave sintering of MoSi2-SiCcomposites, Materials Science and Engineering, A356, 267-273, 2003.
    [40]李俊,罗柳娟,彭虎,微波碳热还原法制备氮化钒的研究和实践,Ferro-alloys, 2005,No. 3, 1001-1943.
    [41] Amri A and Saidane A., TLM simulation of microwave hybrid sintering of multiplesamples in a multimode cavity. Int. J. Numer. Model. 2003; 16:271-285
    [42] A. Amri and A. Saidane, TLM modeling of microwave sintering of multiple aluminasamples, Proc.-Sci. Meas. Technol., Vol. 151, No. 4, July 2004.
    [43] K. Darcovicha, P.S. Whitfield, G. Amow, K. Shinagawa, R.Y. Miyahara, Amicrostructure based numerical simulation of microwave sintering of specialized SOFCmaterials. Journal of the European Ceramic Society 2005,25: 2235–2240.
    [44] Pedro Plaza-González, Juan Monzó-Cabrera, JoséM. Catalá-Civera, DavidSánchez-Hernández, Effect of Mode-Stirrer Configurations on Dielectric HeatingPerformance in Multimode Microwave Applicators. IEEE Transactions on microwavetheory and techniques. 2005; 53(5):1699-1706.
    [45] Domenico Acierno, Anna Angela Barba, Matteo d_Amore, Heat transfer phenomenaduring processing materials with microwave energy, Heat and Mass Transfer, 2004,40:413-420.
    [46] A.G.Whittaker, Difusion in Microwave-Heated Ceramics, Chem. Mater. 2005, 17,3426-3432.
    [47] Yi Fang, Jiping Cheng, D. K. Agrawal, Effect of Powder Reactivity on MicrowaveSintering ofAlumina, Materials Letters, 58, 2004, 498-501.
    [48] Yu.V.Bykov, A. G. Eremeev, N. A. Zharova, I. V. Plotnikov, K. I. Rybakov,M.N.Drozdov, Yu.N.Drozdov, and V.D. Skupov, DIFFUSION PROCESSES INSEMICONDUCTOR STRUCTURES DURING MICROWAVE ANNEALING,Radiophysics and QuantumElectronics, 2003, 46(8-9):749-755.
    [49]彭虎李俊微波高温加热技术进展《材料导报》2005 10 121-125
    [50]孙红.微波快速烧结精细陶瓷技术[J].材料导报,1993,(1):34-36
    [51]朱建华,梁飞,汪小红,等.微波介质陶瓷材料介电性能间的制约关系[J].电子元件与材料,2005,25(3):33
    [52]方俊鑫,殷之文.电介质物理学[M].第一版.北京:科学出版社,1989,1-2
    [53]张道礼,曹明贺,周东祥.微波场中烧结BaTiO3系半导体陶瓷的研究[J].压电与声光, 2000,22(2):108
    [54]刘平安,王慧,程小苏,等.陶瓷的微波烧结及研究现状[J].中国陶瓷,2005,41(4):5-6
    [55]王念,周健.陶瓷材料的微波烧结特性及应用[J].武汉理工大学学报,2002,24(5):43-47
    [56]周健,董学斌,程吉平,等.微波烧结Al2O3陶瓷的研究[J ].武汉大学学报(自然科学版),1999,45(4):452-454
    [57] Janney M A,Kimrey H D.Diffusion-controlled processes in microwave-fired oxideceramics[J].MaterialsResearch SocietySymposiumProceedings,1991,189:215-227.
    [58]周健,程吉平,袁润章,等.WC-Co细晶硬质合金的工艺与性能[J].中国有色金属学报,1999,9 (3):465-468
    [59]BlackR D,MeekT T.Microwave processed composite materials[J].Journal of MaterialsScience Letters,1986,5:1097-1098
    [60]周健,程吉平,袁润章,等.微波准静态连续化烧结Al2O3/莫来石陶瓷辊棒的研究[J].硅酸盐学报,1999,2 7 (5):540-544
    [61]牟群英,李贤军.微波加热技术的应用与研究进展[J].物理,2004,33(6):439-442
    [62]朱文玄,吴一平.微波烧结技术及其进展[J].材料科学与工程,1998,16(2):61-64
    [63]刘继胜.微波烧结工作原理及工业应用研究[J].机电产品开发与创新,2007,20(2):20-21
    [64]阮海鹰.直线加速器磁控管的工作原理及其使用维护方案[J].医用放射技术杂志,2005,3:50
    [65]龚克.矩形波导微波化学反应系统的研究[D].南京:东南大学,2005,5:23-25
    [66]张晓彤,李孝国,兰立柱.微波多相催化反应系统的设计研究[J].现代仪器,2004,6:38
    [67]白向钰,吴苏,鹿安理,郭文,陶瓷材料微波加工用高均匀度多模谐振腔的研究,1998,38(2):37-39
    [68]丁力,曾令可,刘平安.微波合成纳米TiC超微粉体的原理及设备[J].陶瓷,2007,2:5-6
    [69] Dennis , Mahlon Denton , Roy , et al , Method and appa2ratus for transporting greenwork pieces through a mi2crowave sintering system , US Patent , 6 , 066 , 290 ,19991
    [70]吴群.利用ANSOFT HFSS仿真设计微波谐振腔[C].第十届全国微波能应用学术会议论文集,2001 56-58
    [71]任家烈,吴爱萍.先进材料的连接[M].北京:机械工业出版社,2000:120-125
    [72]周健,章桥新,刘桂珍,梅炳初,程吉平.微波焊接陶瓷辊棒[J].武汉工业大学学报,1999,21(3):1-2
    [73]章桥新,张东明,周键.氧化铝陶瓷的微波焊接特性研究[J].硅酸盐学报,1998,26(3):369-372
    [74]吕明,陈凯.氧化物陶瓷的微波烧结机理[M].中国陶瓷,1999,35(4):26-29
    [75]李小路,周健.微波焊接进展[J].中国有色金属学报,2001,11(2):16-20
    [76] Meek T T,Blake R D.Ceramic-ceramic seals by microwave heating [J].J Mat SciLet,1986(5):270-274
    [77] Fukushima H,Yamanaka T, Matsui M.Microwave heating of ceramics and it,sapplication to joining [J].J Mat Res,1990,5(2):397-405
    [78] Binner J G P,Fernie J A,Whitaker P A.An investigation into microwave bondingmechanisms via a study of silicon carbide and zirconia [J].J Mat Sci1998,33(12):3009-3015
    [79] CozziA D,Clark D E,Ferber M K.Microwave joining of high-purityalumina [J].Cera Engand SciProc,1996,17 (3):7-11
    [80] ZHOU Jian,ZHANG Qiaoxin,MEI Bingchu,et al.Microwave joining of alu-mina ceramicand hydroxylapatite bioceramic [J]. J Wuhan Univ of Tech Mater Sci,1999, 14(2):46-49
    [81]蔡杰,田永赉,施剑林.氧化铝陶瓷的微波焊接研究[J].微波学报,1992,2:50-53
    [82] Aravindan S,Krishnamurthy R.Microwave joining of alumina-using sodium sili -categlass as a bonding agent [J].Ind Ceram( Italy),1998,18(3):173-176
    [83]彭金辉.微波焊接陶瓷材料[J].稀有金属,1998,22(6):444-446
    [84] Sato T, Seki M,Shimakage K.Microwave joining of magnesia [J].J ceram SocJap,1996,104(2):155-157
    [85] Sato T,Takahashi N,Shimakage K.Microwave joining of alumina to magnesia [J] .JCeramSoc Jap,1996,104(10):900-902
    [86]白向钰,鹿安理,吴苏等.微波加热实现陶瓷材料同时烧结与连接的研究[J].航空材料学报,1998,18(4):26-30
    [87] Aravindan S, Krishnamurthy R.Joining of ceramic composites by microwave heating [J].Materials Letters,1999,38(4):245-249
    [88]陈新谋,刘悟日.高频介质加热技术[M].北京:科学出版社,1979:1-30
    [89] ZHOU Jian,ZHANG Qiaoxin,MEI Bingchu,et al.Microwave joining of alu-mina ceramicand hydroxylapatite bioceramic [J]. J Wuhan Univ of Tech Mater Sci,1999, 14(2):46-49
    [90]张劲松,曹丽华等.微波烧结关键技术进展[J].材料导报,1994(2):34-37
    [91] Kenkre V M,Skala L,Weiser M.M.Theory of microwave interactions in ceramicmaterials:the phenomenon of thermal runaway [J].J Mater Sci,1991,26: 2483-2489
    [92] BealeGuy O,Arteaga Francisco J,Murray Black W.Design and evaluation of a Controllerfor the process of microwave joining of ceramics. IEEE Trans on IndustrialElectronics,1992,39(4):301-312
    [93]冯士明,LJ.Mccolm.陶瓷微波烧结技术及其进[J].陶瓷研究,1995,1 (2):80-83
    [94]胡晓力.陶瓷烧结新技术——微波烧结[M].中国陶瓷,1995,31(1):29-32
    [95] Yarlagadda K D V Prasad,Raymond Chong Tai Soon.Characterisation of materialsbehaviour in microwave joining of ceramics.J MaterProce Tech,1998,84(13):162-174
    [96]吴晓红.微波炉内电磁波能量分布的研究[J],电机电器技术.2005,(2):57-58
    [97]巨汉基,赵青,孙旭,等.利用HFSS软件仿真设计微波炉[J].材料导报,2007,21(11):237-239
    [98]郑事隽,姚萌.HFSS环境下乳腺肿瘤微波近场仿真[J].仪器仪表学报,2005,26(8):97-99
    [99] Dincov D D,Parrott K A.Computational analysis of microwave heating patterns inresonant multimode cavities[C].ACM Symposium on Applied Computing,2004:215-219
    [100]GeedipalliS S R,Rakesh V,Datta A K.Modeling the heating uniformity contributedbya rotating turntable in microwave ovens[J].Journalof FoodEngineering,2007,(82):359-368
    [101] Grosglik U,Dikhtyar V,Jerby E.Coupled thermal-electromagnetic model formicrowave drilling[C] . European Symposium on Numerical Methods inElectromagnetics,2002:146-151
    [102]谢德馨,唐任远.计算电磁学近年来的若干重要成果—第15届COMPUMAG会议概述[J].电工技术学报,2005,20 (9):1-6.
    [103] Sun S H,Wang B ZH.Parameter optimization based on GA and HFSS[J].Journal ofElectronic Science and Technology of China.2005,3(1):45
    [104]魏宏亮,段文涛,李思敏.运用Ansoft HFSS设计圆极化微带天线阵[J].现代电子技术,2008,(1):71-72
    [105]周献庭,周健,刘伟波,等.TEl03单模微波谐振腔的有限元数值模拟[J].辽宁石油化工大学学报,2006,26(4):35-37
    [106]谢拥军,王鹏,李磊,等.Ansoft HFSS基础及应用[M].第一版.西安:西安西安电子科技大学出版社,2007:36-80
    [107]蔡杰,张留琬.TE103单模谐振腔品质因数Q值的测量[J].中国科学院研究生院学报,1995,12(2):119-125
    [108]车磊,杨林,肖德满.多模腔双频微波烧结炉的设计[J].大连轻工业学院学报,2003,22(4):277-280
    [109] Luo J R,Hunyar C,Feher L,et al.Theory and experiments of electromagnetic lossmechanism for microwave heating of powdered metals[J].Applied Physics Letters,2004,84(25):5076-5078
    [110] Fang C Y,RandalC A,Lanagan MT,etal.Microwave processing ofelectroceramicmaterials and devices[J].Journal of Electroceramics,2009,22:125-130
    [111] Domenico Acierno, Anna Angela Barba, Matteo d_Amore, Heat transfer phenomenaduring processing materials with microwave energy, Heat and Mass Transfer, 2004,40:413-420.
    [112]周献庭.单模微波谐振腔内电磁场有限元分析与可视化研究[D].武汉:武汉理工大学,2007,67-69
    [113]周健,程吉平,傅文斌,等.2450MHz/5kW改进的单模腔型微波烧结系统研制[J].武汉工业大学学报,1999,21(4):4-6
    [114] Sarabjit Singh, O.P. Thakur, D.S. Rawal, Chandra Prakash, K.K. Raina, Improvedproperties of Sm substituted PCT ceramics using microwave sintering, Materials Letters,59, 2005, 768-772.
    [115]刘一声氧化铝和氧化锆陶瓷的微波焊接[J]电子材料1992.7 9-16
    [116] Prasad S. Apte and William D. MacDonald,“Microwave Sintering Kilogram Batches ofSilicon Nitride”, Microwaves: Theory and Application in Materials Processing III,1995 .55-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700