用户名: 密码: 验证码:
抽油机井系统效率的数值模拟分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抽油机一抽油泵采油设备以其经久耐用的特性而被广泛应用,目前国内80%的油井采用这种设备进行采油。但抽油机井系统效率低下这一问题一直未得到很好解决,这也严重影响着油田开采的综合经济效益。据统计,国外抽油机井平均系统效率为32%,而国内仅为25.96%,因此,如何有效提高抽油机井系统效率,是各大油田保证原油生产和提高油田开发经济效益的当务之急。目前,人们提高抽油机井系统效率的方法多是建立在单一因素分析基础之上,不能系统的提出有效的改进措施,特别是随着油田的深入开发,采油方案的调整以及采油条件的变化,抽油机效率分布规律都发生了变化,因此,从系统的角度出发,研究从地面到井下各部分的效率分布以及敏感影响因素,是提高抽油机井系统效率的关键,也为提高抽油机井的系统效率提供理论依据,对油田的节能降耗具有重要意义。
     抽油机井系统的能量传递过程较为复杂,涉及到固体力学、流体力学及采油工程等多个学科,是一个多物理场耦合问题,为此将其分解为地面传动系统和井下系统进行研究。通过力学分析,建立带传动机构效率计算的数学模型以及齿轮传动机构、四连杆机构、井下杆柱系统和抽油泵的力学模型及有限元模型,采用数值求解技术,形成抽油机井各子系统的数值模拟方法,获得了各子系统的运行效率。
     在抽油机试验井的电机输出轴、减速箱输入轴、减速箱输出轴及驴头悬点安装测试仪,实现了地面传动系统各节点能耗参数的同步录取,在井下抽油泵柱塞上部的抽油杆上安装示功仪,获取了抽油泵示功图。通过试验测试与分析,找出了井口盘根盒摩擦阻力的变化规律,为定量计算杆柱效率奠定了基础;找出了地面传动各子系统及井下各子系统的效率分布规律。并将测试结果与理论计算得到的各子系统效率进行对比,误差均小于10%,吻合程度较好,证明了理论分析方法的正确性与可行性。
     以形成的抽油机井各子系统效率计算的数值模拟方法为基础,分析了影响各子系统效率的主要因素(冲程、冲次、载荷、平衡度、动液面、泵径及含气量),并采用敏感性分析技术,分析了各影响因素对各子系统效率影响的敏感程度,从系统的角度,提出了提高抽油机井系统效率的关键环节以及主要措施,这为提高系统效率提供了新的思路。
     通过理论计算与试验研究,得到了系统效率的分布规律及变化规律,针对系统效率较低的现状,提出了提高效率的关键途径及主要参数,所提出的改进措施将为提高原油产量和降低生产成本有所启迪,对提高油田开发的技术水平和经济效益具有一定的现实意义和实用价值。
Pumping unit and pump equipment is widely used with its shaky and durable characteristics,80% domestic wells use this equipment to exploit oil. But the problem of pumping wells system's low efficiency has not been solved well which is also seriously affect overall economic efficiency. According to statistics, the average system efficiency of pumping wells abroad is 32%, while only 25.96% of domestic. Therefore, how to greatly improve the system efficiency of pumping wells is urgent for major oil fields to ensure the development of crude oil production and improve the economic efficiency of oilfield development. Method to improve the system efficiency of pumping wells is built on the basis of a single factor analysis which can't comprehensively propose effective improvement measures. Especially the adjustment of oil solution, oil condition and distribution of pumping efficiency changed with the further development of oil fields. Therefore, from the system point of view, the study of the distribution of the efficiency of various parts from the ground to the underground and sensitive factors is the key to improve the efficiency of the pumping wells system, it also provide a theoretical basis for improving the efficiency of the pumping wells system, it is important for energy saving of oilfield.
     Pumping well system's energy transfer process is complex, it involved solid Mechanics, hydromechanics and production engineering and other disciplines which is a multi-physics coupling problem, so broken it down into the ground transmission system and the underground system to study. Established mathematical model of belt drive mechanism's efficiency calculation, mechanical model and finite element model of gear transmission, four-bar linkage, underground rod system, and pump through mechanical analysis. Formed numerical simulation method of subsystem of pumping wells and obtained the operating efficiency of the subsystems.
     Installed in the tester on motor output shaft, gear box input shaft, gear box output shaft and head hanging point of test well pumping unit which achieved admission sync of ground power transmission parameters of each node. Installed dynamometer on sucker of underground pump plunger's top and got pump dynamometer. Got variation of friction of wellhead packing boxes through test measurement and analysis which apply basis for quantitative calculation of the efficiency of rod. Got efficient distribution of ground drive subsystems and underground subsystems. Compared efficiency of the subsystems from test results and theoretical calculations and the deviation are all less than 10%, it have a good degree of agreement,so it proved that theoretical analysis is right and possible.
     Analyzed main factors of efficiency of the subsystems (stroke, strokes, load, balance, dynamic surface, pump diameter and gas content) based on the formed numerical simulation of efficiency calculation of each pumping wells' subsystem. Analyzed sensitivity of every factor affects the efficiency of each subsystem. Proposed key link and main measures to improve the efficiency of pumping wells system which provides a new way to improve the efficiency of the system.
     Obtained the distribution and variation of system efficiency by theoretical calculations and experimental research. Proposed critical path and the main parameters to improve efficiency for the lower efficiency of the system. The proposed improvements will enlighten to increase crude oil production and reduce production costs, and it has a certain relevance and practical value to improve the technological level of oilfield development and economic benefits.
引文
[1]胡征钦.21世纪的世界石油工业[J].世界石油工业.2000,4(1):43-46.
    [2]李炳超.抽油机井系统效率简析[J].石油矿场机械,2006,35(4):76-77.
    [3]万立民,班文华,赵刚.抽油机系统效率测试在油田的应用和推广[J].科技创新导报,2007,35:104.
    [4]张阳春.国内外石油钻采设备技术水平分析[M].北京:石油工业出版社,2002,125~147.
    [5]赵树洋.有杆抽油泵使用与研究现状以及发展展望[J].设计与制造,2003,(3):14~16.
    [6]Y. Mo. Design and Optimization for Sucker Rod Pumping System in Deviated Wells[A]. The 2000 SPE/AAPG Western Regional Meeting, Long Beach, California,2000:19-23.
    [7]罗辉.抽油机井系统效率的影响因素及提高讨论[J].内蒙古石油化工,2010,6:51-52.
    [8]J N McCoy,D J Becker.How to Maintain High Producing Efficiency in Sucker Rod Lift Operations[C].SPE 80924,2003.
    [9]J N McCoy,A L Podio.Modern Total Well Management-Sucker Rod Lift Case Study[C].SPE 68864,2001.
    [10]J N McCoy,A L Podio.Rotaflex Efficiency and Balancing[C].SPE67275,2001.
    [11]周超,徐兴平,孙耀国.抽油机井系统效率分析及提高对策[J].石油矿场机械,2009,38(1):17-21.
    [12]郭小哲,刘跃忠,孙宝龙,等,抽油机井系统效率方案优选及因素分析[J].钻采工艺,2008,31(3):92-96.
    [13]陈兴元.提高有杆泵采油系统效率方法的探讨[J].节能,2005,3:12-14
    [14]S. D. Oklahoma. An Improved Technique for the Evaluation of Performance Characteristics and Optimum Selection of Sucker-Rod Pumping Well Systems[C]. SPE: 18548,2005-03.
    [15]De Almeida AT,Fonseca P,Bertoldi P.Energy-efficient motor systems in the industrial and in the services sectors in the European Union:characterisation, potentials,barriers and policies[J].Energy,2003;28:673-90.
    [16]王钊,秦英,李权,等.抽油机节能电机的应用分析[J].石油矿场机械,2007,36(8):59-61.
    [17]殷雷.抽油机用节能电机评价及改造方式的探讨[J].应用能源技术,2008,9:29-34.
    [18]许士真,白连平,隋娜.关于游梁抽油机合理驱动和电机节能的讨论[J].石油矿场机械,2005,34(2):85-87.
    [19]杨盛福,许立忠,程绍辉.带传动效率计算方法的研究[J].机械工程师,1997,1:52~53.
    [20]王俊佳,王忠,夏静波.带传动的效率计算[J].西南工学院学报,1995,10(3):29~31.
    [21]汪诤.带传动弹性滑动对效率的积极影响和计算[J].机械传动,2009,33(2):63-65.
    [22]郜云飞,吴晓东,金朝苏.游梁式抽油机皮带传动效率分析[J].石油钻采技术,2002,30(2):45~47.
    [23]S Luol,Y Wu,D Zhang,Y Yul. An experimental study on magnetic belt drive[J]. Mechanical Engineering Science,2007,221:579-587.
    [24]Shirong Zhang,Xiaohua Xia.Optimal control of operation efficiency of belt conveyor systems[J]. Applied Energy,2010,87:1929-1937.
    [25]Jansen M.The development of energy-optimized conveyor belts-a jointproject of the conveyor belt group of ContiTech AG and RWE power AG[J].World Min 2008;60(2):83-97.
    [26]张文祥,陶升元.减速器效率极其测算[J].机械传动,1994,18(3):30~33.
    [27]朱俊平,梁兆兰.一种新的齿轮啮合效率计算方法探讨[J].机械科学与技术,1996,15(1):97~100.
    [28]杨武山,廖汉元.直齿圆柱齿轮传动的啮合效率[J].武汉交通科技大学学报,1998,22(6):617~619.
    [29]徐辅仁.机械传动中齿轮副机械效率计算方法的研究[J].机电设备,2000,6:30~35.
    [30]A.Kahraman, N.E.Anderson, D.R.Chase.An Experimental Investigation of Spur Gear Efficiency[J]. Mechanical Design,2008,130:0626011-626019.
    [31]R.Martinsa,R.Amaro,J.Seabra.Influence of low friction coatings on the scuffing load capacity and efficiency of gears[J]. Tribology International,2008,41:234-243.
    [32]韩幼祥.齿轮传动系统动力学的研究方向[J].煤矿机械,2005,7:61~62.
    [33]A.Bajer, L.Demkowicz. Dynamic contact/impact problems, energy conservation, and planetary gear trains[J]. Computer Methods in Applied Mechanics and Engineering,2002, 191(38):4159-4191.
    [34]林腾蛟,李润方,陶泽光.齿轮传动三维间隙非线性冲击-动力接触特性数值仿真[J].机械工程学报,2000,36(6):55~58.
    [35]林腾蛟,李润方,郭晓东等.准双曲面齿轮三维间隙非线性冲击特性分析[J].中国机械工程,2003,14(9):727~730.
    [36]李呼斯勒.基于ANSYS的齿轮运动副有限元结构分析研究[D].内蒙古工业大学,2005.
    [37]T. A.Harris. An Analytical Method to Predict Skidding in Thrust Loaded Angular Contact Bearings[J]. Trans. ASME, Journal Lubrication Technology,1971,93:17-24.
    [38]T.A.Harris. Rolling Element Bearing Dynamics[J]. Wear,1973,3:311-337.
    [39]R. J. Boness. Minimum Load Requirement for the Prevention of Skidding in High Speed Thrust Loased Ball Bearings[J], Trans. ASME, Jorunal of Lubrication Technology,1981,103: 35-39.
    [40]P.K.Gupta. Dynamics of Rolling-Element Bearings, Part I-IV, Trans. ASME, Journal of Lubrication Technology [J],1979,101:298-326.
    [41]C.R.Meck, L.Tran. Ball Bearing Dynamic Analysis Using Computer Methods[J]. Part Ⅰ: Analysis, Journal of Tribology,1996,118:52-58.
    [42]P.Castle, D.Dowson. A Theoretical Analysis of the Starved Elastohydrodynamic Lubrication Problem for Cylinders in Line Contacts, Elastohydrodynamic Lubrication Symposium[J]. Proc.Inst.Mech.Eng.1972,131:131-137.
    [43]B.Hamrock, D.Donson.Isothermal Elastohydrodynamic Lubrication of Point Contact, Part IV:Starvation Results. ASME J.Lub.Technol[M],1977,99:15-23.
    [44]L.Chang. Analysis of High Speed Cylindrical Roller Bearings Using a Full EHD Lubrication Model, Part,1.2, STLE[M],1990,274-291.
    [45]沈成武,叶碧泉,冯振兴,等.滚动轴承接触问题的有限元分析[J].固体力学学报,1982,1:106-111.
    [46]李元科,胡子进.滚动轴承空间有限元分析的子结构法[J].轴承,1992,3:2-7.
    [47]杨咸启.轴承系统温度场分析[J].轴承,1997,3:2-5.
    [48]辜志宏,彭慧琴,耿会英.气体对抽油泵泵效的影响及对策[J].石油机械,2006,34(2):64-68.
    [49]James F L, HeraldW W, RobertE S.What's new in artificial lift[J].World Oil,2003,224 (4):59-75.
    [50]朱杰,张秋雁,王瑞霞,等.活塞对泵腔内气体的压缩效应是有杆抽油井系统效率较低的原因[J].内蒙古石油化工,2006,4:133-134.
    [51]全明军,马合卯,吴慧群,等.有杆抽油泵气体压缩效应对系统效率的影响[J].河南石油,2003,17(5):57-59.
    [52]王琦龙.石油套管柱塞式抽气泵技术的应用[J].油气田地面工程,2003,22(12):62.
    [53]S.D.Oklahoma. An Improved Technique for the Evaluation of Performance Characteristics and Optimum Selection of Sucker-Rod Pumping Well Systems[C]. SPE: 18548,2005-03.
    [54]鹿胜玉.基于FLUENT的抽油泵泵效的仿真研究与优化[J].山东大学硕士学位论文,2008.
    [55]刘庆全,邵俊鹏,李波.基于Fluent油井合理沉没度的研究[J].哈尔滨理工大学学报,2005.10(1):39-40.
    [56]朱杰,张秋雁,王瑞霞,等.冲次对有杆抽油井开采效果影响评价及减速装置的应用[J].内蒙古石油化工,2006,3:143-144.
    [57]周文跃.冲次对有杆抽油系统的影响分析及抽油机节能减速装置的应用[J].石油天然气学报,2005,27(6):944-945.
    [58]余国安等.粘度、凡尔孔径及冲次对抽油系统泵效影响的室内试验[J].西安石油学院学报,1996,11(4):51~56.
    [59]赵来军,徐波,倪振文,等.上下冲程速比对泵效影响的实验研究[J].石油机械,1998,26(4):16-18.
    [60]白家祉.应用纵横弯曲连续梁理论求解钻具组合的受力与变形[C].国际石油工程会议论文集,1982.
    [61]苏义脑,张国红.纵横弯曲法对变截面钻具组合的受力变形分析[J].钻采工艺,1996,33(2):15-18.
    [62]唐俊才,窦益华.加权残数法分析钻柱的受力与变形[J].西南石油学院学报,1986,6(3):44-49.
    [63]Dareing D. W. Ahlers C. A.. Tubular Bending and Pull-out Forecs in High-Curvature Well Bores[J]. J. of Energy Res. Tech,1991,20(6):55-60.
    [64]杨姝,高德利,徐秉业.定向井钻柱摩阻问题的有限差分解[J].石油钻探技术,1992,18(9):33-36.
    [65]Y. Mo. Design and Optimization for Sucker Rod Pumping System in Deviated Wells[A]. The 2000 SPE/AAPG Western Regional Meeting, Long Beach, California,2000:19-23.
    [66]张学鸿.整体钻柱力学接触有限元分析[J].石油学报,1992,22(3):61-66.
    [67]邹佑学,匡文起,龙驭球.有间隙多层板接触分析的广义协调元法[J].工程力学,2005,22(5):14-19.
    [68]刘合,王素玲.用有限元法预测抽油杆柱与油管柱偏磨点位置[J].石油学报,2008,29(1):149-152.
    [69]朱君,辛曼,秦庆忠.用于聚合物驱油的抽油杆动力学分析[J].力学与实践,2009,31(3):52-56.
    [70]朱君,史海峰,周瑞芬,等.,基于瞬态动力学分析的抽油杆柱动态特性研究[J].系统仿真学报,2008,20(16):4261-4268.
    [71]S. Miska. A Simple for Predicting the Performance of a Sucker-Rod Pumping System[C]. SPE:23429,1991-05.
    [72]Ardeshir Khodabandeh, Stefan Miska, New Mexico Inst. of Mining & Technology. A New Approach of Modeling Fluid Inertia Effects on Sucker-Rod Pump Performance and Design[C]. SPE:24329,1992-16.
    [73]H. J. Derek. Sucker Rod Pumping Unit Diagnostics Using an Expert System[C]. SPE: 17318,1988.
    [74]刘清友等.有杆抽油泵系统工作行为仿真研究[J].石油学报,2004,25(3):106~109.
    [75]余国安等.有杆泵抽油井的一种新的数学模型[J].石油机械,1988,16(3):24~31.
    [76]余国安等.有杆泵抽油井的三维振动[J].石油学报,1989,10(2):76-82.
    [77]余国安等.多级杆柱抽油机井的三维振动[J].石油机械,1989,17(6):16~21.
    [78]董世民,马德坤等.有杆抽油系统动态特性的计算机仿真[J].试验力学,1996,11(3):277~284.
    [79]董世民.抽油机井动态参数计算机仿真与系统优化[M].北京:石油工业出版社,2003,29~50.
    [80]李汉兴,贺麦红,刘旭辉,等.液压游梁式抽油机的三维动力学特性仿真[J].石油机械,2001,29(6):7-9.
    [81]昌锋等.抽油杆柱在粘性流体中阻力的实验研究[J].石油大学学报,1994,7(18): 37~42.
    [82]张祝新,程晓新,夏圣强.流体在同心环状空间中流动时的压力损失[J].长春地质学院学报,1997,27(2):221~225.
    [83]张琪.采油工程原理与设计[M].东营:石油大学出版社,2000,145~147.
    [84]郑海金,邓吉彬,唐东岳等.提高机械采油系统效率的理论研究及应用[J].石油学报,2004,25(1):93~96.
    [85]冯虎,吴晓东,张建军等.有杆抽油系统井下能耗研究[J].石油钻采工艺,2005,27(6):63~66.
    [86]刘柏希,刘宏昭.定向井有杆抽油系统井下耗能分析[J].西安理工大学学报,2007,23(4):337~341.
    [87]黄晓荣,姚新玲,潘国辉,等.抽油机电机扭矩测试系统的研制与应用[J].石油化工应用,2008,27(6):42-43.
    [88]张志远,古小红,王丽丽.提高抽油机井系统效率的方法[J].断块油气田,2008,7(4):59-61.
    [89]郭振东.抽油机井口密封装置能耗损失计算[J].机械工程师,2007,6:125.
    [90]张建中,李云鹏等.抽油机井口密封装置效率的研究[J].石油学报,1994,15(4):133~138.
    [91]闫爱慧.抽油机皮带和盘根松紧度对能耗影响[J].科技资讯,2008,9:20.
    [92]郭立晓等.抽油杆盘根密封机理研究[J].石油矿场机械,2008,37(3):29~32.
    [93]王寿梅.结构分析中的非线性有限元素法[M].北京:北京航空学院出版社,1986.
    [94]庄茁译.Ted Belytschko,Wing Kan Liu. Nonlinear Finite Elements for Continua and Structures.北京:清华大学出版社.2002:496-505.
    [95]杨庆生.现代计算固体力学[M].北京:科学出版社,2007.
    [96]郑海金,邓吉彬.抽油机井系统效率潜力评价与分布规律研究[J].节能技术,2008,26(148):116-119.
    [97]周超,徐兴平,孙耀国.抽油机井系统效率分析及提高对策[J].石油矿场机械,2009,38(1):17-21.
    [98]郭宏亮,宋学红,李忠.提高抽油机井系统效率的有效途径[J].油气田地面工程,2008,27(12):38-39.
    [99]归柯庭,汪军,王秋颖.工程流体力学[M].北京:科学出版社,2004.
    [100]林麒.可压缩湍流封闭模型初探——湍动能k方程[J].厦门大学学报(自然科学版),1996,35(1):16~20.
    [101]陈作斌,马明生,贺国宏.计算流体力学及应用[M].北京:国防工业出版社,2003:1-14,109~117,180~191.
    [102]王福军.计算流体力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004,144~147.
    [103]J. N. McCoy, O. L. Rowlan, D. J. Becker, et al. How to Maintain High Efficiency in Sucker Rod Lift Operation[A]. The Production and Operations Symposium. Oklahoma City, Oklahoma,2003:22-25.
    [104]B.E. Launder, D.B. Spalding. Lectures in Mathematical Models of Turbulence[C]. Aeademic Press, London,1972.
    [105]V. Yakhot, S.A. Orszag. Renormalization Group Analysis of Turbulence[J]. Scientific Computing,1998,1(1):1-51.
    [106]P. Moin. Progress in Large Eddy Simulation of Turbulence Flows, AIAA paper,1997.
    [107]张德实.特高含水期水驱及聚驱抽油机井管流特性与泵特性研究[D].大庆石油学院,2007:15~16,34~35.
    [108]李润方,陈兵奎.冲击—动力接触问题有限元混合方法及其应用[J].非线性力学学报,1997,(3):236~242.
    [109]谢海东,周照耀,夏伟等.斜齿轮传动中啮合冲击数值研究[J].机械传动,2005,29(3):6-9.
    [110]马雪洁,谢刚,王小林.基于ANSYS/LS-DYNA的准双曲面齿轮动力学接触仿真分析[J].机械传动,2005,29(6):51~53.
    [111]W. Kozicki, P. O. Kuang. Linearized capillary hybrid model of viscoelastic flow in porous media[J]. Int.J.Eng.Fluid Mech.,1992,5(2):161-195
    [112]Wang Deming,etc, Study of the Mchanism of Polymer Solution With Visco-Elastic Behavior Increasing Microscopic Oil Displacement Efficiency and the Forming of Steady "Oil Thread" Flow Channels[C]. SPE 68723.2001.
    [113]Eberhard P, Jiang S. Collision detection using interpolation schemes[J]. Mathematical and Computer Modeling of Dynamical Systems,2000,6(3):309-322.
    [114]Eberhard P, Hu B, Li Z. Wavelet analysis of longitudinal impact responses[J]. Journal of Acoustics and Vibration,2002,7(1):39-44.
    [116]Hu B, Eberhard P, Schiehlen W. Comparison of analytical and experimental results for longitudinal impacts on elastics rods[J]. Journal of Vibration and Control,2003,9(1):157-174.
    [117]Wriggers P and Miehe C. Contact constraints within coupled thermomechanical analysis: a finite element model [J]. Computer Methods in Applied Mechanics and Engineering, 113,301-319.
    [118]刘富.有杆抽油泵系统工作行为仿真研究[D].西南石油学院博士学位论文,2003.
    [119]张建华.有杆泵井系统效率研究[D].西南石油学院硕士学位论文,2002.
    [120]崔学军,张永利,盛学方.提高抽油系统效率的研究与应用[J].新疆石油科技,2009,19(1):25-30.
    [121]姚春东.提高抽油机井系统效率的计算机仿真分析[J].石油学报,2005,26(4):106-110.
    [122]关晓晶,王志国,王忠东.抽油机系统效率测试的不确定度分析模型及应用[J].石油学报,2005,26(1):113-116.
    [123]姚静媛.双圆弧齿轮的啮合特性研究及仿真[D].太原理工大学硕士学位论文,2006.
    [124]冯保发.双圆弧齿轮参数化建模技术研究[D].武汉理工大学硕士论文,2006.
    [125]谭小红.双圆弧齿轮的建模与仿真[D].太原理工大学硕士学位论文,2004.
    [126]宋胜伟,李占奎,刘成柱.基于Pro/E的双圆弧齿轮参数化设计的研究[J].中国制造业信息化,2007,36(5):38-41.
    [127]K. L. Johnson, Contact mechanics[M].徐秉业译,北京:高等教育出版社,1992.
    [128]Bathe Klaus-Jurgen. Finite Element Procedures in Engineering Analysis[J]. Prentice-Hall, Inc,1982
    [129]Erubgeb. A. Cemal. Nonlinear Theory of Continuous Media[M]. Mc GRAW-HILL Book Company. Inc.1986
    [130]殷有泉.弹性大变形问题的有限元法[M].北京:北京大学力学系,1986:203-285

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700