用户名: 密码: 验证码:
多级门限服务轮询系统理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮询系统理论是排队论中多队列顾客共享服务资源的理论。早期的工业过程控制中的指令传输、计算机通信网络中的信道资源分配、公共交通的车辆调度等,无不采用高可靠性的轮询控制策略。相关学者将设备故障检测、工业过程控制、多址接入控制、资源分配调度等采用轮询系统模型进行表征,并利用概率论、排队论、随机过程理论等加以研究,使其成为实际应用分析和研究的一类重要模型。随着信息网络技术的快速发展,轮询系统有了更广泛的应用,轮询系统理论早已成为网络资源分配和MAC控制协议中重要的控制理论。在轮询技术不断发展的今天,轮询排队理论研究也获得更新的成果,这对通信网络系统、计算机系统、交通运输、物流系统和工业过程控制等产生了较大的技术推动作用。轮询系统分析的目标是要建立起与轮询控制机制相吻合的数学模型及其函数关系式,精确解析出系统平均排队队长、平均循环周期、吞吐量、平均等待时延等特性参数的表达式。在这些参数中,平均等待时延是分析特定轮询系统时最为关键的特性参数。
     轮询系统模型由1个服务台(器)和N个排队队列(终端)组成,服务台依次轮询系统中的各队列,并为队列提供服务。模型中的排队顾客的到达过程、服务台提供服务的时间、服务台轮询转移时间都是随机过程,此数学模型表征出一个N维概率随机过程的复杂系统。基本轮询系统大致包括门限(Gated)服务型、完全(Exhaustive)服务型和限定(Limited- K)服务型三种类型。限定服务(K=1)轮询系统有较好的公平服务特性,但信息分组的等待时延较长。完全服务轮询系统中信息分组的等待时延最短,但服务的公平性较差。门限服务轮询系统的等待时延介于两者之间。在实际的通信网络MAC控制协议中,大部分采用多种轮询系统的混合控制系统。近年来,轮询模型已广泛用于多种系统的性能分析;在通信与计算机领域,它还专门作为诸如按需分配、多址接入控制等性能评价的准则。长达六十多年的轮询系统研究与探索实践表明:轮询系统模型是一种有效的分析工具,轮询系统理论是一种重要的资源分配和共享理论;轮询系统因其控制方式具有公平性、灵活性和实用性而得到了广泛的应用,使此项工作得以不断充实、完善和发展。
     本学位文针对通信网络中信息分组业务的平衡性和突发性,提出了一种多级门限服务的轮询系统控制模型。该系统在服务的公平性和信息分组时延性方面都有较好的特性,同时也能较好处理突发性业务,为其提供优质的QoS服务。本学位论文在构建多级门限服务轮询系统的分析模型的基础上,获得系统的平均排队队长、平均轮询周期和信息分组的平均等待时延等性能指标的精确解析结果,并通过计算机仿真实验验证了理论分析的正确性。
     轮询系统的应用由早期的设备故障检修逐渐拓展到交通运输调度、物流控制管理、通信网络、计算机网络、无线传感器网络、Ad Hoc网络以及社会资源配置等领域,并产生了积极有效的技术推动作用。迄今为止,对轮询系统理论的研究还在深入持续地开展和进行,一些新的系统模型不断出现,一些新的解析方法不断更新,一些新的应用领域不断拓展。进入二十一世纪以来,无线通信网络中的移动性、自组织性、高效性、节能性成为研究的热点。在上述研究工作中,先进的、性能优越的多业务MAC控制协议成为学科研究工作中的重要课题。
     本学位论文由六章组成,各章具体内容如下:
     第一章为绪论,主要介绍了轮询系统的概念、轮询系统的演进过程、轮询系统研究现状以及论文研究的背景情况。
     第二章详细地介绍了轮询系统中完全服务、门限服务和限定服务三种服务策略,并采用嵌入式马尔可夫链和多维概率母函数分析方法对三种轮询系统的性能进行了分析比较。
     第三章主要介绍了离散时间多级门限服务的轮询系统模型,并采用嵌入式马尔可夫链、概率母函数以及系统状态方程求解方法对该模型进行了精确解析;获得了系统的平均循环周期、平均排队队长、信息分组的平均等待时延的精确解析结果。在运行环境和初始参数相同的情况下建立仿真实验平台,用仿真实验结果与理论分析结果一致,说明了理论分析的正确性;将多级门限服务的轮询系统模型与普通门限服务轮询系统及完全服务轮询系统进行比较分析。
     第四章主要介绍了连续时间多级门限服务的轮询系统模型,采用嵌入Markov链理论对此轮询系统进行了分析,获得了轮询时刻系统队长的概率母函数,和信息分组等待时延变量的LST式,获得了系统的平均循环周期、平均排队队长、信息分组的平均等待时延的精确解析结果。在运行环境和初始参数相同的情况下进行计算仿真实验,计算机仿真实验结果说明了理论分析的正确性。
     第五章在介绍无线计算机网络(WBAN、WPAN、WLAN、WMAN、WWAN以及Ad Hoc)发展情况基础上,介绍了IEEE 802.11 PCF控制协议进行分析,把离散时间多级门限服务的轮询系统模型用于IEEE 802.11 PCF轮询调度机制,使其MAC控制协议的性能得到改进。介绍了无线传感器网络发展历史和其体系结构,介绍了WSN中PCF控制协议,对WSN中的MAC控制协议进行分析,把连续时间多级门限服务的轮询系统模型用于WSN分簇轮询控制,使得其MAC控制协议的性能得到改进。对Ad Hoc网络的起源和定义做了介绍,介绍了Ad Hoc网络中PCF控制协议,对Ad Hoc网络中的MAC控制协议进行分析,把离散时间多级门限服务的轮询系统模型用于Ad Hoc网络分簇轮询控制,得到了改进的MAC控制协议的性能指标。
     第六章对全文进行总结,包括本学位论文的主要研究成果和存在的问题做出了说明,今后的发展方向和今后课题的研究工作做了展望。
Polling system theory is the theory of multi-queue customer service resources sharing in queuing theory. Early industrial process control instruction transmission, computer communication network channel resource allocation, scheduling and other public transport vehicles, etc. use the high reliability polling control strategy. Relevant scholars expressed that of equipment fault detection, industrial process control, multiple access control, resource allocation scheduling system by the polling system model, and using probability theory, queuing theory, stochastic processes theory to study, making it an important class of model for the practical application of analysis and study. With the rapid development of information network technology, polling system with a wider range of applications, polling systems theory has become an important control theory of the network resource allocation and MAC control protocol. Today, polling technology development, polling queuing theory obtains more new research results; this creates a larger role in promoting to communication network systems, computer systems, transportation, logistics systems and industrial process control techniques. Analyzing polling system goal is to establish the mathematical model and its functional relation that consistent with the polling control mechanism, solved exactly the expression of the mean queue length, the mean cycle time, throughput, mean waiting time delay (MWT) and other parameters of the system. In these parameters, the mean waiting delay(MWT) of a specific polling system is the most critical parameters. Among them, the MWT is the most important performance measure for analyzing the underlying system.
     Polling system model consists of a server and N queues, the server polls all queues in turn in the polling system, and provides services for the queue. The customer arrival process, the service time of the server, the server transfer time is random process in queuing model. The mathematical model expressed a complex system of N-dimensional probability random process. The basic polling system includes three types of service, that are gated service, exhaustive service and limited (k=1) service, limited (k=1) service polling system has more equitable service features, but the information packet waiting delay is longer. Gated service polling system has moderate features. Exhaustive service polling system has the shortest information packet waiting delay, but fairness of service is poor. In the actual communication network control protocol, most of the polling systems use a variety of hybrid control system. In recent years, polling model has been widely used in a variety of system performance analysis. In the communication and computer field, it is specifically performance evaluation criteria such as on demand, multiple access control. In the last 60 years, research indicates that polling system model has become an effective tool for analyzing system performance, and it provides a theoretical framework for resource allocation and assignment. Thanks to its impartiality, flexibility and practicality, polling systems have been widely used to analyze the performance of a variety of systems, enable this research to enrich, improve and develop.
     In this dissertation, M-gated service polling system control model are proposed in communication network for the balance and sudden of information packet service. The fairness of the system and information packet delay characteristics are better, but also to better handle sudden service, providing QoS guarantee. Analyzing polling system models is to set up, and derive closed form expressions to obtain the system parameters, such as the mean queue length (MQL), the mean cyclic period (MCP) and the mean waiting time (MWT). And the polling system performance results are verified through extensive simulations. Polling system gradually extended to other fields by the early equipment fault detection, that includes transportation scheduling, logistics control and management, communication networks, computer networks, wireless sensor networks, Ad Hoc networks, and social resources, etc. and it produces a positive and effective techniques promote effect. So far, the theoretical study of the polling system is still continuing to carry out and conduct in-depth some of the new model emerging, some new analytical method for constantly updated, new applications continue to expand. With coming of 21st century, the research of mobility, self-organization, high efficiency and energy saving for wireless communication becomes hot area, and the up-to-date as well efficient MAC protocol becomes an important subject.
     The dissertation consists of 6 parts, and it is organized as follows:
     Chapter 1 introduces the concept and the evolution of the polling system, the current research and the background of the dissertation.
     Chapter 2 introduces in detail the exhaustive service, gated service and limited (K=1) service polling systems, using the embedded Markov chain theory, the probability generating function and system state equations methodology, and gives performance evaluation. The performance of the three polling system are analyzed and compared.
     Chapter 3 introduces mainly the discrete-time M-gated service polling system model. Using the embedded Markov chain theory, the probability generating function and system state equations methodology, obtains the probability generating function of the queue length system and LST expression of variable waiting delay information packet. And obtains the accurate expression of mean cycle time, mean queue length, mean waiting time delay of the system. The initial parameters in the operational environment and create under the same simulation platform, using simulation results to verify the correctness of theoretical analysis; and the performance of the M-gated service polling system are analyzed and compared with gated service polling system and exhaustive service.
     Chapter 4 introduces mainly the continuous-time M-gated service polling system model. Using the embedded Markov chain theory, the probability generating function and system state equations methodology, obtains the probability generating function of the queue length system and LST expression of variable waiting delay information packet. And obtains the accurate expression of mean cycle time, mean queue length, mean waiting time delay of the system. The initial parameters in the operational environment and create under the same simulation platform, using simulation results to verify the correctness of theoretical analysis.
     Chapter 5 introduces the wireless computer networks development. Describes the IEEE 802.11 PCF control protocol analysis, the discrete-time M-gated service polling system model for the IEEE 802.11 PCF polling scheduling, improves performance of MAC control protocol. Describes the history and development of wireless sensor networks, its architecture, introduces the PCF control protocol in WSN, analyzing MAC control protocol in WSN, the continuous-time M-gated service polling system model is used to the WSN cluster polling control, and improves performance of MAC control protocol. Introduces the PCF control protocol in Ad Hoc Networks, analyzing MAC control protocol in Ad Hoc Network, the discrete-time M-gated service polling system model is used to Ad Hoc network clustering polling control, has been improved in the MAC control protocol performance.
     Chapter 6 draws the conclusion of the dissertation, including the main thesis of research results and make a description of the problems, and it also points out the future trends of the polling systems and puts forward some challenges.
引文
[1]Eldad P. IEEE 802.1 In development:History, process and technology[J]. IEEE Communication Magzine.2008,46(7):48-55.
    [2]D.V. Lindley. The theory of queues with a single server[J]. In Proc. Cambridge Phil. Soc, 1952,48:277-289.
    [3]H. Takagi. Queuing analysis of polling models. ACM Computing Surveys,1988,20(1):1-28
    [4]H. Levy, M. Sidi. Polling systems:applications, modeling and optimization[J]. IEEE Transactions on Communications,1990,38(10):1750-1759.
    [5]H. Takagi. Application of polling models to computer networks[J]. Computer Networks, 1991,22(3):193-211.
    [6]Tao Li, Logothetis D. Analysis of a polling system for telephony traffic with application to wireless LANs. IEEE Transactions on Wireless Communications,2006,5(6):1284-1293.
    [7]YANG Zhijun, ZHAO Dongfeng. QoS support polling scheme for multimedia traffic in wireless LAN MAC protocol. Tsinghua Science and Technology,2008,13(6):754-758.
    [8]Onno Boxma, Josine Bruin, Brian Fralix. Sojourn times in polling systems with various service disciplines[J]. Performance Evaluation,2009,66 (5):621-639
    [9]M.A.A.Boon, I.J.B.F.Adan, O.J.Boxma. A polling model with multiple priority levels[J]. Performance Evaluation 2010,67(1):468-484.
    [10]赵东风,丁洪伟,赵一帆等.多级门限服务轮询系统MAC离散时间控制协议模型分析[J].电子学报,2010,38(7):1495-1499.
    [11]Ding Hongwei, Zhao Dongfeng, Zhao Yifan. Packet delay analysis of continuous-time polling system with M-gated services[A]. In:Proceedings of International Conference On Computer and Communication Technologies in Agriculture Engineering[C]. Chengdu, P.R.China, August,2010, Page(s):408-411.
    [12]Ding Hongwei; Zhao Dongfeng; Zhao Yifan; Liu Zhenggang.Application of WSN of Polling System with Vacations and Using Gated Services in Forest Fire Prevention[A]. In:Proceedings of International Conference on Internet Technology and Applications, November,2010, Page(s):1-4.
    [13]柳虔林,赵东风.优先级服务两级轮询系统性能分析[J].解放军理工大学学报(自然科学版),2011,12(2):23.29.
    [14]LIU Qianlin, ZHAO Dongfeng, ZHAO Yifan. An efficient priority service model with two-level-polling scheme[J]. High Technology Letters,2011,17(2):126-132.
    [15]LIU Qianlin, ZHAO Dongfeng, Zhou Dongming. An analytic model for enhancing IEEE 802.11 PCF MAC protocol[J]. European Transactions on Telecommunications,2011, 22(5):88-92.
    [16]LePocher H, Leung V C M, Gillies D W. An efficient ATM voice service with flexible jitter and delay guarantees. IEEE Journal on Selected Areas in Communications,1999,17(1):51-62.
    [17]R. B. Cooper, G. Murray. Queues served in cyclic order [J]. The Bell System Technical Journal,1970,49(3):675-689.
    [18]R. B. Cooper. Queues served in cyclic order:waiting times[J]. The Bell System Technical Journal,1970,49(3):399-413.
    [19]Wesley W. Chu, Alan G. Konheim. On the analysis of a class of computer communication Systems [J]. IEEE Transactions on Communications,1972,20(3):645-660.
    [20]Martin Eisenberg. Two queues with changeover times[J]. Operations Research.1971,19(2): 386-401.
    [21]Alan G. Konheim, Bernd Meister. Service in a loop system[J]. Journal of the Association for Computing Machinery.1972,19(1):92-108.
    [22]Hashida O. Analysis of multiqueue[J]. Rev. Elect. Commun. Lab,1972,20(3-4):189-199.
    [23]G. Boyd Swartz. Polling in a loop system[J]. Journal of the Association for Computing Machinery.1980,27(1):42-59.
    [24]Rubin I, De Moraes L F. Message delay analysis for polling and token multiple-access schemes for local communication networks[J]. IEEE Journal on Selected Areas in Communications,1983, 1(3):935-947.
    [25]Hideaki Takagi. Mean message waiting times in symmetric multiqueue systems with cyclic service[J]. Performance Evaluation,1985,5(4):271-277.
    [26]Oliver C I, Cheng X. Stability condition for multi-queue systems with cyclic serve[J].IEEE Trans on Automatic Control,1988,33(1):102-103.
    [27]H. Levy, M. Sidi. Polling systems with simutaneous arrivals[J]. IEEE Transactions on Communications,1991,39(6):823-827.
    [28]Konheim A. G. Descendent set:an efficient approach for analysis of polling systems[J]. IEEE Transactions on Communications,1994,42(8):1245-1253.
    [29]Hwang L C. An exact analysis of an asymmetric polling system with mixed service discipline and general service order[J].Computer Communications,1997,20(10):1293-1299.
    [30]Romano Fantacci, Luca Zoppi. Performance evaluation of polling systems for Wireless Local Communication Networks[J]. IEEE Transactions on Vehicular Technology,2000, 49(6):2148-2157.
    [31]LO Shouchin, LEE Guanglin, CHEN Wentsuen. An efficient multipolling mechanism for IEEE 802.11 Wireless LANs[J]. IEEE Transactions on Computers,2003,52(6):764-778.
    [32]Daniele Miorandi, Andrea Zanella. Performance analysis of limited-1 polling in a blue tooth piconet. In:Proceeding of the 11th International Conference on Information Systems Analysis and Synthesis(CITSA2005), July 2005, Florida, USA.
    [33]Jane Y. Y., Peter H. J. Chong. A survey of clustering schemes for mobile Ad Hoc networks[J]. IEEE Communications Surveys & Tutorials,2005,7 (1):32-48.
    [34]E.M.M.Winands, I.J.B.F.Adan and G.J.van. Houtum. A two queue model with alternating limited service and state-dependent setups[A]. In:Proceedings of Analysis of Manufacturing Systems Production Management[C].2005, Zakynthos,Page(s):200-208.
    [35]V M Vishnevskii, O V Semenova. Mathematical methods to study the polling systems[J]. Automation and Remote Control,2006,67(2):173-220.
    [36]B. Sikdar. An analytic model for the delay in IEEE 802.11 PCF MAC based wireless networks. IEEE Transactions on Wireless Communications.2007,6(4):1542-1560.
    [37]Ben-Jye Chang,Yan-Ling Chen. Adaptive hierarchical polling and Markov decision process based CAC for increasing network reward and reducing average delay in IEEE 802.16 WiMAX networks[J]. Computer Communications,2008,31(10):2280-2292.
    [38]S.C. Horng, S.Y. Lin. Ordinal optimization of G/G/1/K polling systems with k-limited service discipline[J]. Journal of Optimization Theory and Applications,2009,140(2):213-231.
    [39]Boxma O J, Wal J van der, and Yechiali U. Polling with batch service. Stochastic Models, 2008,24(4):604-625.
    [40]Cheolhyo Lee; Hyung-Soo Lee; Sangsung Choi. An enhanced MAC protocol of IEEE 802.15.4 for wireless body area networks[A]. In:IEEE Conference on Computer Sciences and Convergence Information Technology (ICCIT 2010)[C]. December,2010, Page(s):916-919.
    [41]Ching-Fang Hsu Chien-Yu Liu. An Adaptive Traffic-Aware Polling and Scheduling Algorithm for Bluetooth Piconets[J]. IEEE Transactions on Vehicular Technology,2010, 59(3):1402-1411.
    [42]Sung-Min Oh; Jae-Hyun Kim. Application-Aware Design to Enhance System Efficiency for VoIP Services in BWA Networks[J]. IEEE Transactions on Multimedia,2011,13(1):143-154.
    [43]Alcaraz, J.J.; Vales-Alonso, J.; Garcia-Haro, J.. Link-Layer Scheduling in Vehicle to Infrastructure Networks:An Optimal Control Approach[J]. IEEE Journal on Selected Areas in Communications,2011,29(1):103-112.
    [44]Maheshwari, H. K., Kemp, A. H.. On the Enhanced Ranging Performance for IEEE 802.15.4 Compliant WSN Devices[A]. In:IEEE Conference on New Technologies, Mobility and Security (NTMS 2011)[C]. Febuary,2011, Page(s):1-5.
    [45]王光兴,刘书生,赵海.无线介质计算机通信网络中周期优先轮询服务策略的研究[J].通信学报,1989,10(4):68-73.
    [46]赵东风.门限式令牌总线局部网协议性能分析[J].云南大学学报,1990,12(2):146-152.
    [47]ZHAO Dongfeng, ZHENG Sumin. Waiting Time Analysis for Polling and Token Passing Scheme for Computer and Communication Systems[C]. In:Proceeding of International Conference on Communication Technology(ICCT'92), Beijing, China, Sep.1992,15.04.1-15.04.3.
    [48]ZHAO Dongfen, ZHENG Sumin. Message waiting time analysis for polling model for computer communication networks[J]云南大学学报(自然科学版),1993,15(1):78-86.
    [49]赵东风,郑苏民.周期查询式门限服务排队系统中信息分组的延迟分析[J].通信学报,1994,15(2):18-23.
    [50]赵东风,郑苏民.查询式完全服务排队模型分析[J].电子学报,1994,22(5):102-107.
    [51]ZHAO Dongfeng, SHI Jinlin, LI Bihai. Analysis of integrated voice/data in communication systems[C]. In:Proceeding of International Symposium on IN & ISDN(ISIB'95), Beijing, China, April 1995,page(s):3.6.1-3.6.4.
    [52]赵东风,李必海,郑苏民.查询式限定服务排队系统研究[J].电子科学学刊,1997,19(1):44-49.
    [53]赵东风.令牌网络中非对称性问题研究[J]_通信学报,1998,19(1):75-80.
    [54]赵东风.物流加工优先级控制过程研究[J].信息与控制,1998,27(5):365-368.
    [55]李俊生,彭兵,赵东风.ATM接入网络中非对称性周期传输过程分析[J].电子科技大学学报,1999,28(5):550-553.
    [56]李俊生,彭兵,赵东风,石晶林.环形LAN多业务模型解析[J].通信学报,1999,20(11):1.6.
    [57]王思明,逯昭义.带有优先级的令牌环行LAN守恒定律的探讨[J].计算机学报1991,16(8):862-866.
    [58]王思明,汪虹.资源共享方式若干问题的研讨[J].运筹与管理,1998,7(3):83-89.
    [59]李福建,陈廷槐,康泰.容错轮询系统分析模型[J].电子学报,1992,20(5):88-91.
    [60]李福建.服务器个数随机可变的轮询系统分析[J].通信学报,1995,16(1):88-95.
    [61]刘强,张中兆,张乃通.排队优先权站点轮询系统的平均周期时间[J].通信学报,1999,20(2):86-91.
    [62]SUN Ronghen. Asymmetric exhaustive service polling system with Bernoulli feedback[J].重庆大学学报(自然科学版),2001,24(2):127-131.
    [63]韩国栋,张兴明.邓勇,邬江兴.一种基于优先级的综合接人系统自适应I/O调度方案[J].电子与信息学报,2004,26(1):131-136.
    [64]王智,申兴发,于海斌等.两类服务对象轮询模型的平均运行周期[J].计算机学报,2004,27(9):1213-1220.
    [65]苟定勇,刘刚,吴诗其.IEEE802.11中基于传输时间的接纳控制算法研究[J].电子与信息学报,2004,26(12):1972-1977.
    [66]刘静,李建东,周雷,张光辉.有效提高吞吐量的UPMA++协议[J].电子学报,2005,33(4):683-687.
    [67]李剑,胡波,赵东风.一种提供时延QOS保障的无线网络MAC协议[J].电子学报,2005,33(7):1168-1172.
    [68]彭艺,赵东风,查光明,周正中.一种适用于自组网的多信道轮询多址MAC协议[J].计算机科学,2005,32(12):41-43.
    [69]刘凯,李汉涛,张军.移动Ad Hoc网络中的公平按需多址接入协议[J].电子学报,2006,33(10):130-134.
    [70]何敏,刘心松,赵东风.移动Ad Hoc网络MAC协议研究[J].计算机科学,2006,33(5):35-38.
    [71]CAO Chunsheng, YIN Rupo, ZHANG Weidong.Mean waiting time approximation for a real time polling system[J]. High Technology Letters,2007,13(2):136-139.
    [72]张宇眉,张欣,杨大成,赵东风.基于等待时间和信道状态的轮询多址协议[J].北京邮电大学学报,2008,31(4):126-129.
    [73]周晓波,卢汉成,李津生,洪佩琳.一种基于预测式公平队列调度算法的802.11e MAC层机制[J].电子与信息学报,2008,30(3):681-684.
    [74]张红霞,戴居丰.基于IEEE 802.16e协议的公平调度算法[J].计算机应用,2009,29(5):1204-1207.
    [75]Chenyu Zhang; Kai Liu. Collision-free on-demand multiple access protocol for mobile Ad Hoc networks[A]. In:The 5th International ICST Conference on Communications and Networking[C]. September,2010, Page(s):1-5.
    [76]Yunbo Wu; Gan Feng; Yongdong Wang; Xiaopin Xue. A Scheme with Queuing Priority for Real-Time Streaming Media in 4G Scenarios[A]. In:IEEE Conference on Wireless Communications Networking and Mobile Computing (WiCOM 2010)[C], October,2010, Page(s):1-5.
    [77]Shuai Xiao-ying; Huang Hai-sheng; Lian Dong-ben. Research of Real-Time WLAN MAC Protocol [A]. In:Proceeding of IEEE International Conference on Internet Technology and Applications[C]. December,2010, Page(s):1-4.
    [78]P. Humblet. Source coding for communication concentrators[J]. Electron. Syst. Lab., Massachusetts Inst. Technol., Cambridge, ESL-R-798, Jan.1978.
    [79]M.J. Ferguson and Y. J. Aminetzah, Exact Results for Nonsymmetric Token Ring Systems[J], IEEE Trans. Commun., Mar.1985, COM-33:223-231.
    [80]李俊生,彭兵,赵东风.非对称周期查询限定服务系统解析[J].电子学报,2001.29(4):1-3.
    [81]Munir B. Sayyad, Abhik Chatterjee, S. L. Nalbalwar, et al. Novel approach to improve QoS of a multiple server queue. International Journal of Communication, Network and System Sciences,2010, (3):83-86.
    [82]M.J. Ferguson and Y. J. Aminetzah, Exact Results for Nonsymmetric Token Ring Systems[J], IEEE Trans. Commun., Mar.1985, COM-33:223-231.
    [83]Munir B. Sayyad, Abhik Chatterjee, S. L. Nalbalwar, et al. Novel approach to improve QoS of a multiple server queue. International Journal of Communication, Network and System Sciences,2010,(3):83-86.
    [84]T.Takine,Y.Takahashi and T.Hasegawa. Exact analysis of asymmetric polling systems with single buffers[J]. IEEE Transactions on Communications, Oct.1988, COM-36(10):1119-1127.
    [85]柳虔林,赵东风.轮询系统研究及其发展概述[A].中国电子学会电子系统工程分会第六届军队信息化工程与技术研讨会[c].广西南宁,2010年11月,Page(s):206-210.
    [86]LIU Qianlin, ZHAO Dongfeng, ZHAO Yifan. An efficient priority service model with two-level-polling scheme[J]. High Technology Letters, 已录用(2011年第2期)
    [87]ZHAO Dongfeng, LIU Qianlin, YANG Zhijun, ZHAO Yifan. Performance evaluation of polling system with mixed services and two-level-polling scheme[J]. IEEE Transactions on Wireless Communications, 正在审稿
    [88]LIU Qianlin, ZHAO Dongfeng, Zhou Dongming. An improved polling scheme for IEEE 802.11 PCF MAC protocol[J]. European Transactions on Telecommunications, 修改稿在审.
    [89]Tsuyoshi Katayama,Kaori Kobayashi. A pseudo-conservation law for a time-limited service polling system with structured batch poisson arrivals. Computers and Mathematics with Applications,2006,51:171-178.
    [90]M.vanVuuren, E.Winands. Iterative approximation of k-limited polling systems[J]. Queueing Systems,2007,55(3):161-178.
    [91]R.D. van der Mei, E.M.M. Winands. Heavy trafic analysis of polling models by mean value analysis[J]. Performance Evaluation,2008,65 (12):400-416.
    [92]陈希孺,郑忠国.现代数学手册(随机数学卷)[M].华中科技大学出版社,2000年12月.
    [93]O.Kella,U.Yechiali. Priorities in M/G/1 queue with server vacations[J]. Naval Research Logistics,1988,35(5)23-34.
    [94]Yoshitaka Takahashi, B. Krishna Kumar. Pseudo-conservation law for a priority polling system with mixed service strategies[J]. Performance Evaluation,1995,23(2):107-120.
    [95]Lee, D.S. A two-queue model with exhaustive and limited service disciplines[J]. Stochastic Models,1996,12(2):285-305.
    [96]S.C.Borst, O.J.Boxma. Polling models with and without switchover times.[J]. Operations Research,1997,45(4):536-543.
    [97]Ozawa, T. Waiting time distribution in a two-queue model with mixed exhaustive and gated-type K-limited services[A]. In:Proceedings of International Conference on the Performance and Management of Complex Communication Networks[C]. Dec.1997, Tsukuba, Page(s):231-250.
    [98]JIANG Yuming, Chen-Khong Tham and Chi-Chung Ko. Delay analysis of a probabilistic priority discipline[J]. European Transactions on Telecommunications 2002,13(6):563-577.
    [99]Joris Walraevens, Bart Steyaert, Herwig Bruneel. Performance analysis of a single server ATM queue with a priority scheduling[J]. Computers & Operations Research,2003, 30(6):1807-1829.
    [100]F.Avrama, A.Gomez-Corral. On the optimal control of a two-queue polling model[J]. Operations Research Letters,2006,34(5):339-348.
    [101]A.D.Banik, U.C.Gupta, S.S.Pathak. BMAP/G/1 N queue with vacations and limited service discipline[J]. Applied Mathematics and Computation,2006,180(3):707-721.
    [102]Adam Wierman, Erik M.M.Winands, Onno J.Boxma. Scheduling in polling systems[J]. Performance Evaluation,2007,64(6):1009-1102.
    [103]M.A.A.Boon,IJ.B.F.Adan,O.J.Boxma.A two-queue polling model with two priority levels in the first queue[J]. Discrete Event Dynamic Systems,2009,22(1):1-22.
    [104]唐应辉,黄蜀娟,云曦.离散时间多重休假的Geomx/G/1排队系统的队长分布[J].电子学报,2009,37(7):1407-1411.
    [105]DZahedi A, Pahlavan K. Voice and data integration on TCP/IP wireless networks[A]. In: Proceeding of PIMRC'97[C]. Helsinki, Finland, June 1997, Page(s):678-682.
    [106]Alberto Leon Garcia, Indra Widjaja. Communication Networks:Fundermental Concepts and Key Architectures[M]. McGraw Hill Companies Inc.,1999
    [107]秦宜学,王建坤,黄廷忠,聂兵.现代通信技术与信息网概论[M].香港:科华图书出版公司,1999年12月
    [108]IEEE Std 802.11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification[S].1999.
    [109]IEEE 802.15, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification[S].2002.
    [110]IEEE Std.802.16-2004, IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems[S].2004.
    [111]IEEE 802.20, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification[S].2006.
    [112]Abramson. N. The throughput of packets broadcasting channels[J]. IEEE Transactions on Communications,1977,25(1):117-128.
    [113]IEEE 802.11b, Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification:High-Speed Physical Layer Extension in the 2.4 GHz Band[S].1999.
    [114]IEEE 802.11 a, Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification:High-Speed Physical Layer Extension in the 5 GHz Band[S].1999.
    [115]IEEE 802.11g-2003, IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications - Amendment 4:Further Higher-Speed Physical Layer Extension in the 2.4 GHz Band[S].2003.
    [116]Eldad P. IEEE 802.1In development:History, process and technology[J]. IEEE Communication Magzine,2008,46(7):48-55.
    [117]IEEE Std.802.11h-2003, Amendment to IEEE Std.802.11[S].2003.
    [118]IEEE Std.802.11f-2003, IEEE Trial-use recommended practice for multi-vendor access point interoperability via an inter-access point protocol across distribution systems supporting IEEE 802.11 operation[S].2003.
    [119]IEEE 802.11 WG, Draft Supplement to STANDARD FOR Telecommunications and Information Exchange Between Systems-LAN/MAN Specific Requirements-Part 11:Wireless Medium Access Control (MAC) and physical layer (PHY) specifications:Medium Access Control (MAC) Enhancements for Quality of Service (QoS) [S]. IEEE 802.11e/D2.0, Nov.2005.
    [120]G. Bianchi. Performance analysis of the IEEE 802.11 Distributed Coordination Function[J]. IEEE Journal on Selected Areas in Communications,2000,18 (3):535-547.
    [121]Woo-Yong Choi. An efficient polling scheme for enhancing IEEE 802.11 PCF protocol[J]. Frequenz 2005, (59):268-271.
    [122]T.D.Lagkas, G.I. Papadimitrioua, A.S. Pomportsis et al. SQAP:A simple QoS supportive adaptive polling protocol for wireless LANs. Computer Communications 2006;29:934-937.
    [123]Taekon Kim, Hyungkeun Lee, Jinhwan Koh et al. A performance analysis of polling schemes for IEEE802.11 MAC over the Gilbert-Elliot channel[J]. Int. J. Electron. Commun.2009, 63:321-325.
    [124]I.F. Akyidiz, J. McNair. Mobility management in next-generation all-IP-based wireless systems[J]. IEEE Transactions on Wireless Communications,2004,11(4):16-28.
    [125]I. F. Akyidiz, WANG Xudong, WANG Weiling. Wireless mesh networks:A survey[J]. Computer Networks,2005,47(4):43-46.
    [126]Lawton G. What lies ahead for cellular technology?[J]. Computer,2005,38(6):14-17.
    [127]WU Xingfeng, LIU Yuanan. A survey of WLAN QoS systems based on IEEE 802.11 [J]. International Journal of Computer Science and Network Security,2007,7(3):565-571.
    [128]http://www.globalsecurity.org/intell/systems/sosus.htm
    [129]孙利民,李建中,陈渝,朱红松.无线传感器网络[M].北京:清华大学出版社,2005年5月.
    [130]James M. Gilbert, Farooq Balouchi. Comparison of energy harvesting systems for Wireless Sensor Networks[J]. International Journal of Automation and Computing,2008,5(4).334-347.
    [131]李建中,高宏.无线传感器网络的研究进展[J].计算机研究与发展,2008,45(1):1-15.
    [132]LIAO Wenhwa, WANG Hsiaohsien. An asynchronous MAC protocol for Wireless Sensor Networks[J]. Journal of Network and Computer Applications,2008,31:807-820.
    [133]孙岩,马华东.无线多媒体传感器网络QoS保障问题[J].电子学报,2008,36(7):1412-1420.
    [134]温家宝.让科技引领中国可持续发展[N].解放军报.2009年11月4日
    [135]LU Gang, Krishnamachari B, Raghavendra CS. An adaptive energy-efficient and low-latency MAC for data gathering in wireless sensor networks [A]. In:Proceeding of IEEE International Parallel and Distributed Processing Symposium(IPDPS) [C]. April 2004, Page(s):224-236.
    [136]Seongcheol Kim. An adaptive energy-efficient and low-delay MAC protocol for Wireless Sensor Networks[A]. In:Proceeding of ICIC 2005[C]. Berlin Heidelberg, May 2005, Page(s): 598-606.
    [137]Miguel A. Erazo, QIAN Yi. SEA-MAC:A simple energy aware MAC protocol for Wireless Sensor Networks for environmental monitoring applications[J]. ACM SenSys, May,2007.
    [138]Yongsub Nam, Taekyoung Kwon, Hojin Lee, et al. Guaranteeing the network lifetime in wireless sensor networks:A MAC layer approach[J].Computer Communications,2007,30(6): 2532-2545.
    [139]Hesham Abusaimeh, YANG Shuanghua. Balancing the Power Consumption Speed in Flat and Hierarchical WSN[J].International Journal of Automation and Computing,2008,5(4).366-375.
    [140]Hnin Yu Shwe, JIANG Xiaohong, Suslginu Horiguchi. Energy saving in wireless sensor networks[J]. Journal of Communication and Computer,2009,6(5):20-27.
    [141]任连生.基于信息系统的体系作战能力概论[M].北京:军事科学出版社,2010年4月.
    [142]JI Wei,ZHEN Baoyu. A Novel Cooperative MAC Protocol for WSN Based on NDMA[A]. In:Proceeding of IEEE ICSP 2006[C]. May 2006, Page(s):2946-2949.
    [143]李云,周娴,尤肖虎,刘占军.IMECN:一种新的无线传感器网络拓扑控制算法[J].电子学报,2010,38(1):48-53.
    [144]陈颖文,徐明,虞万荣.无线传感器网络多频率查询的节能优化[J].电子学报,2008,36(4):701-708.
    [145]王绍青,聂景楠.一种无线传感器网络性能评估及优化方法[J].电子学报,2010,38(4):884-886.
    [146]刘亮,秦小麟,戴华,严伟中,潘锦基.能量高效的无线传感器网络时空查询处理算法[J].电子学报,2010,38(1):54-59.
    [147]蹇强,龚正虎,朱培栋,桂春梅.无线传感器网络MAC协议研究进展[J].软件学报,2008,19(2):389-403.
    [148]BAI Ronggang, QU Yugui, Ji Yusheng. A Reliable Collision—free TDMA MAC for Sensor Networks[J].Chinese Journal of Electronics,2009,18(4):708-712.
    [149]LIANG Zhuguan, ZHAO Dongfeng. A priority-based polling scheme for clustering wireless sensor network MAC protocols[A]. In:Proceeding of IEEE International Conference on Information Science and Engineering[C]. Dec.2009, Nanjing, China, Page(s):2488-2491.
    [150]丁洪伟,赵东风,黄毛毛.新型随机多址接入无线传感器网络MAC控制协议与能量有效性分析[J].通信学报,2010,31(2):51-57.
    [151]李怀义,赵东风,丁洪伟.双概率检测无线传感器网络MAC协议分析[J].云南大学学报(自然科学版),2010,32(3):280-287.
    [152]Jane Y. Yu and Peter H. J. Chong. A survey of clustering schemes for Mobile Ad Hoc Networks[J]. IEEE Communications Surveys & Tutorials. First Quarter 2005,7 (1):32-48.
    [153]Tashtarian F., Haghighat A.T., Honary M.T. et al. A new energy-efficient clustering algorithm for Wireless Sensor Networks[A]. In:Proceeding of The 15th International Conference on Software, Telecommunications and Computer Networks[C]. May 2007, Page(s):1-6.
    [154]Lehsaini M., Guyennet H., Feham M.. A novel cluster-based self-organization algorithm for wireless sensor networks[A]. In:Proceeding of International Symposium on Collaborative Technologies and Systems[C]. May 2008, Page(s):19-26.
    [155]Ishmanov, F., Sung Won Kim. Distributed clustering algorithm with load balancing in Wireless Sensor Network[A]. In:Proceeding of WRI World Congress on Computer Science and Information Engineering[C]. June 2009, Page(s):19-23.
    [156]Babaie Shahram, Ahmad Khadem Zadeh, Mehdi Golsorkhtabar Amiri. The new clustering algorithm with cluster members bounds for energy dissipation avoidance in Wireless Sensor Networks[A]. In:Proceeding of International Conference on Computer Design and Applications[C]. July 2010, Page(s):V2-613-617.
    [157]胡静,沈连丰,宋铁成,任德盛.新的无线传感器网络分簇算法[J].通信学报,2008,29(7):20-26.
    [158]林恺,赵海,尹震宇,罗玎玎.一种基于能量预测的无线传感器网络分簇算法[J].电子学报,2008,36(4):824-828.
    [159]李莉,温向明.无线传感器网络中分簇算法能量有效性分析[J].电子与信息学报,2008,30(4):966-969.
    [160]龚本灿,李腊元,蒋廷耀,汪祥莉.一种能量均衡的无线传感器网络分簇算法[J].计算机应用研究,2008,25(11):3424-3429.
    [161]张余,蔡跃明,潘成康,徐友云.wSN中一种能量有效的自适应协同节点选择方案[J].电子与信息学报,2009,31(9):2193-2198.
    [162]韩志杰,王汝传,凡高娟,肖甫.一种基于ARMA的WSN非均衡分簇路由算法[J].电子学报,2010,38(4):884-893.
    [163]赵志峰,郑少仁.Ad Hoc网络信道接入协议[J],电信科学,2003,25(1):443-449.
    [164]吴正宇,宋瀚涛,姜少峰,梁野.Ad-Hoc网络中一种可靠的节点不相交多路径路由算法[J].北京理工大学学报,2007,32(3):622-627.
    [165]高悦,唐碧华.Ad Hoc网络中的源宿双备份多路由协议[J].北京邮电大学学报,2008,35(1):755-759.
    [166]徐伟强,汪亚明,包晓安,陈积明.MPCC:一种用于Ad Hocl网络多径路由的优化拥塞控制算法[J].北京邮电大学学报,2007,35(5):533-538.
    [167]余敬东,张东.Ad-hoc MPLS协议体系及其性能分析[J].电子科技大学学报,2008,21(5):632-637.
    [168]姜海,程时昕,陈相宁.无线Ad Hoc网中的TCP SACK与TCP Vegas[J].电路与系统学报,2001,28(1):384-391.
    [169]舒炎泰,高德云,王雷.无线ad hoc网络中的多径源路由[J].电子学报,2002,21(2):289-295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700