用户名: 密码: 验证码:
中国汉赛巴尔通体的分子分型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汉赛巴尔通体是巴尔通体属中重要的人兽共患病病原菌,具有广泛的致病性,可累及全身各组织和器官。猫抓病是其主要致病种类,一般表现为良性自限性。但是一旦机体免疫功能降低,则可能发生严重的全身病症,极个别还会导致死亡。研究认为汉赛巴尔通体某些亚型的分布具有地理特异性,并与其所致疾病的种类和强度有关,其他国家的研究者已将多种分子方法应用于汉赛巴尔通体的亚型分析,而在中国,目前还没有关于汉赛巴尔通体种类多样性的报道,我们对该病原体在中国的基因型别差异、群体结构特征和分布情况还缺乏了解,对国内外同类分离株的差异还不清楚。为回答上述问题,本研究通过多位点序列分型(MLST)、多位点可变数目串联重复序列分析(MLVA)和基因组单核苷酸多态性(SNP)分析等方法,并结合实验室前期的脉冲场凝胶电泳(PFGE)分型数据对中国汉赛巴尔通体作了全面的分子分型分析。
     应用MLST方法将近几年实验室保藏的80株汉赛巴尔通体分为3个序列型(ST),其中ST1占分离株总数的90%(72/80),ST9和ST30分别占8.25%(7/80)和1.25%(1/80)。系统发育分析表明,3个序列型来自一个克隆群,一方面提示中国汉赛巴尔通体由高度克隆化的菌株进化演变而来,并随着时间的变迁,积累一些散在变异;另一方面,提示目前的MLST方案不适合于中国汉赛巴尔通体菌的流行情况调查,广泛存在的ST1菌株间的变异需要分辨能力更强的方法来发现。
     同时,我们在实验室建立了分辨力更高的MLVA方法,用以比较中国和英国汉赛巴尔通体分离株的基因型别差异。在选用的6个VNTR位点中,各自的分辨力Nei's指数在0.54~0.90间,位点联合之后将84株菌分为53种不同的MLVA型(MT),总的分辨力指数达到0.98。聚类分析显示该MLVA方法能将参与分析的菌株分为Group A和Group B两个类群,其中Group A包含的7株菌全部来自英国,余下所有菌株属于Group B。Group B又可被分为Group B1和Group B2两个业群及B2中的5个小类。不同的业群和小类表现出菌株不同的地理分布特征。最小生成树图将参与分析的62株ST1汉赛巴尔通体分为6个类群,提示ST1菌株内部的复杂多样性。7株ST9细菌也有1株分到ST1所在类群中,反映出菌株可能的进化演变途径。
     为进一步了解ST1菌株间的变异情况,我们用应用生物系统公司的SOLiD测序仪对分离自中国不同地点和时间的4株ST1细菌进行重测序,做基因组水平的SNP分析,4株细菌的MT和PFGE结果也互不相同,同时参与分析比较的还有8株分离自英国的不同ST菌株。结果显示,一共有9566个SNP位点分布于12个测序菌株,ST1的SNP数目范围在374-1932间。基于SNP的系统发育树能将所有ST1菌株分开,显示出基因组SNP分析的强大分辨力。同时发现一个有趣的现象,中国的4株ST1细菌被分为2个分支,其中一株与作为参考菌株的ST1聚到一起,而其余3株自成一支。提示ST1内部存在变异体,但变异有限,可能形成另一个亚克隆群,而当前的MLST方案未能发现。
     通过基因组SNP数据对MLST方案进行改进,应用于分离菌株,我们找出了隐藏于ST1中的亚型,使MLST结果与SNP分析一致。同其它两种分型方法比较,发现改进后的MLST方案与MLVA聚类结果部分吻合,而完全对应于PFGE分出的2大类群,综合各方法的分型能力,推荐使用MLST与PFGE联合使用的办法调查汉赛巴尔通体的流行病学特征。同时,基因组测序数据提供了关于汉赛巴尔通体菌株内部的基因表达和蛋白编码方面的变异特征,还需要进一步分析。
Bartonella henselae is an important zoonosis pathogen in Bartonella, which can affect the whole body tissues and organs with a wide range of pathogenicity. Cat scratch disease is the main pathogenic species, usually expressed as a benign self-limiting. But once the body's immune function was limited, it would became serious systemic disease, even lead to death. Some studies suggest that geographic distribution of B.henselae is subtype-specific, and some subtypes have a relation to the disease and the intensity. Some attemps of molecular methods have been used to analysis B.henselae subtype in many countries. But in China, there were no reports on intra-species diversity of B.henselae. Also, it is not clear about the pathogen in intra-genotype situation, population structure and geographic distribution. To answer these questions, in this research we used molecular typing analysis such as multilocus sequence typing (MLST), multilocus variable-number tandem repeat analysis (MLVA) and genomeic single nucleotide polymorphism (SNP) analysis for B.henselae intra-species typing.
     Using MLST method, we divided 80 isolates into three sequence types (ST), in which the total number of ST1 accounted for 90%(72/80), ST9, and ST30, respectively,8.25%(7/80) and 1.25%(1/80). Phylogenetic analysis showed that the three sequence types come from a same clonal complex, suggesting Chinese isolates evovled from a single clonal complex and had little mutation, indicating the established MLST scheme is not suitable for the prevalent investigation of B.henselae in China. And a widespread variation of ST1 strains need to be distinguished using more discrimination approach.
     At the same time, we established MLVA, a more powerful method in our lab to compare the difference between Chinese and British B.henselae isolates. For the 6 selected VNTR loci, the Nei's index is from 0.54 to 0.90 respectively, and the discrimination index is up to 0.98 while combine them together which could divided 84 isolates into 53 different MLVA types (MTs). Cluster analysis showed that the MLVA method can devided the strains into Group A and Group B.7 isolates contented in Group A which are from the United Kingdom, and all remaining strains belonging to Group B. Group B can be divided into Group B1 and Group B2, and B2 contains 5 small subsets. Different groups and subsets show different geographic distribution. Minimum spanning tree diagram divided 62 ST1 into six groups, suggesting the intra-ST diversity among ST1 isolates.6 of 7 ST9 were from one group while the remaining one have grouped to ST1, suggesting the evolution posibility routine of B.henselae isolates.
     To further understand the diversity among the ST1 strains, we resequenced four ST1 strains isolated from different loci and time to analysis the genomic SNPs using the next-genaration sequence ehchnology-SOLiDTM sequencer of Apply Biosystem. An additional eight strains from UK were included for sequencing and comparative analysis. Result showed a total 9566 SNPs loci were distributed during 12 isoaltes and for ST1 strain, the SNP range from 374 to 1932. Phylogenetic tree besed on SNP concatenation could separate all ST1 strains but formed two branches, one clustered with reference strain and the other just including Chinese ST1, indicating diversity existed in ST1 strains, and the variant could form another cluster but the diversity is limited, and the established MLST scheme failed to describe it.
     The MLST scheme has been improved according to genomic SNP data and applied in isolates. In the improved MLST scheme, we identified the subtype hidden in ST1, and make the cluster result consistent with SNP-based phylogenetic tree. Comparing with the other two methods, we found that the improved MLST scheme was partly congruous with MLVA clustering, and completely congruous with the PFGE main groups. Considring all the result in this study, we recommended a combination of MLST and pulsed-field gel electrophoresis (PFGE) method to investigate the epidemiological characteristics of B.henselae. Genome analysis including the protein coding and variation information in the B.henselae would proceed in the futhur research.
引文
[1]Jones PD. Cat scratch disease and Rochalimaea henselae [J]. Med J Aust,1993, 159(3):211.
    [2]Margileth AM, Hayden GF. Cat scratch disease. From feline affection to human infection [J]. N Engl J Med,1993,329(1):53-54.
    [3]Margileth AM. Cat scratch disease [J]. Adv Pediatr Infect Dis,1993,8:1-21.
    [4]Koehler JE, Quinn FD, Berger TG, et al. Isolation of Rochalimaea species from cutaneous and osseous lesions of bacillary angiomatosis [J]. N Engl J Med,1992,327(23):1625-1631.
    [5]Koehler JE, Cederberg L. Intra-abdominal mass associated with gastrointestinal hemorrhage:a new manifestation of bacillary angiomatosis [J]. Gastroenterology,1995,109(6):2011-2014.
    [6]Tappero JW, Mohle-Boetani J, Koehler JE, et al. The epidemiology of bacillary angiomatosis and bacillary peliosis [J]. JAMA,1993,269(6):770-775.
    [7]Koehler JE. Bartonella-associated infections in HIV-infected patients [J]. AIDS Clin Care,1995,7(12):97-102.
    [8]Bookman I, Scholey JW, Jassal SV, et al. Necrotizing glomerulonephritis caused by Bartonella henselae endocarditis [J]. Am J Kidney Dis,2004,43(2): e25-30.
    [9]Depeyre C, Mancel E, Besson-Leaud L, et al. [Abrupt visual loss in children. Three case studies of ocular bartonellosis] [J]. J Fr Ophtalmol,2005,28(9): 968-975.
    [10]Jackson LA, Perkins BA, Wenger JD. Cat scratch disease in the United States: an analysis of three national databases [J]. Am J Public Health,1993,83(12): 1707-1711.
    [11]Carithers HA. Cat-scratch disease. An overview based on a study of 1,200 patients [J]. Am J Dis Child,1985,139(11):1124-1133.
    [12]Chomel BB, Kasten RW, Floyd-Hawkins K, et al. Experimental transmission of Bartonella henselae by the cat flea [J]. J Clin Microbiol,1996,34(8):1952-1956.
    [13]Kim YS, Seo KW, Lee JH, et al. Prevalence of Bartonella henselae and Bartonella clarridgeiae in cats and dogs in Korea [J]. J Vet Sci,2009,10(1): 85-87.
    [14]Chomel BB, Abbott RC, Kasten RW, et al. Bartonella henselae prevalence in domestic cats in California:risk factors and association between bacteremia and antibody titers [J]. J Clin Microbiol,1995,33(9):2445-2450.
    [15]Guptill L, Wu CC, HogenEsch H, et al. Prevalence, risk factors, and genetic diversity of Bartonella henselae infections in pet cats in four regions of the United States [J].J Clin Microbiol,2004,42(2):652-659.
    [16]Bergmans AM, de Jong CM, van Amerongen G, et al. Prevalence of Bartonella species in domestic cats in The Netherlands [J]. J Clin Microbiol, 1997,35(9):2256-2261.
    [17]Barnes A, Bell SC, Isherwood DR, et al. Evidence of Bartonella henselae infection in cats and dogs in the United Kingdom [J]. Vet Rec,2000,147(24): 673-677.
    [18]Ueno H, Muramatsu Y, Chomel BB, et al. Seroepidemiological survey of Bartonella (Rochalimaea) henselae in domestic cats in Japan [J]. Microbiol Immunol,1995,39(5):339-341.
    [19]Al-Majali AM. Seroprevalence of and risk factors for Bartonella henselae and Bartonella quintana infections among pet cats in Jordan [J]. Prev Vet Med, 2004,64(1):63-71.
    [20]Baneth G, Kordick DL, Hegarty BC, et al. Comparative seroreactivity to Bartonella henselae and Bartonella quintana among cats from Israel and North Carolina [J]. Vet Microbiol,1996,50(1-2):95-103.
    [21]Dolan MJ, Wong MT, Regnery RL, et al. Syndrome of Rochalimaea henselae adenitis suggesting cat scratch disease [J]. Ann Intern Med,1993,118(5):331-336.
    [22]Welch DF, Pickett DA, Slater LN, et al. Rochalimaea henselae sp. nov., a cause of septicemia, bacillary angiomatosis, and parenchymal bacillary peliosis [J]. J Clin Microbiol,1992,30(2):275-280.
    [23]Drancourt M, Birtles R, Chaumentin G, et al. New serotype of Bartonella henselae in endocarditis and cat-scratch disease [J]. Lancet,1996,347(8999): 441-443.
    [24]Mainardi JL, Figliolini C, Goldstein FW, et al. Cat scratch disease due to Bartonella henselae serotype Marseille (Swiss cat) in a seronegative patient [J]. J Clin Microbiol,1998,36(9):2800.
    [25]La Scola B, Liang Z, Zeaiter Z, et al. Genotypic characteristics of two serotypes of Bartonella henselae [J]. J Clin Microbiol,2002,40(6):2002-2008.
    [26]Bereswill S, Hinkelmann S, Kist M, et al. Molecular analysis of riboflavin synthesis genes in Bartonella henselae and use of the ribC gene for differentiation of Bartonella species by PCR [J]. J Clin Microbiol,1999, 37(10):3159-3166.
    [27]Ehrenborg C, Wesslen L, Jakobson A, et al. Sequence variation in the ftsZ gene of Bartonella henselae isolates and clinical samples [J]. J Clin Microbiol, 2000,38(2):682-687.
    [28]Birtles RJ, Raoult D. Comparison of partial citrate synthase gene (gltA) sequences for phylogenetic analysis of Bartonella species [J]. Int J Syst Bacteriol,1996,46(4):891-897.
    [29]Zeaiter Z, Fournier PE, Ogata H, et al. Phylogenetic classification of Bartonella species by comparing groEL sequences [J]. Int J Syst Evol Microbiol,2002,52(Pt 1):165-171.
    [30]Renesto P, Gautheret D, Drancourt M, et al. Determination of the rpoB gene sequences of Bartonella henselae and Bartonella quintana for phylogenic analysis [J]. Res Microbiol,2000,151(10):831-836.
    [31]Maiden MC, By graves JA, Feil E, et al. Multilocus sequence typing:a portable approach to the identification of clones within populations of pathogenic microorganisms [J]. Proc Natl Acad Sci U S A,1998,95(6):3140-3145.
    [32]Enright MC, Spratt BG. A multilocus sequence typing scheme for Streptococcus pneumoniae:identification of clones associated with serious invasive disease [J]. Microbiology,1998,144 (Pt 11):3049-3060.
    [33]Iredell J, Blanckenberg D, Arvand M, et al. Characterization of the natural population of Bartonella henselae by multilocus sequence typing [J]. J Clin Microbiol,2003,41(11):5071-5079.
    [34]Arvand M, Feil EJ, Giladi M, et al. Multi-locus sequence typing of Bartonella henselae isolates from three continents reveals hypervirulent and feline-associated clones [J]. PLoS One,2007,2(12):e1346.
    [35]Schwartz DC, Cantor CR. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis [J]. Cell,1984,37(1):67-75.
    [36]Roux V, Raoult D. Inter- and intraspecies identification of Bartonella (Rochalimaea) species [J]. J Clin Microbiol,1995,33(6):1573-1579.
    [37]Sander A, Ruess M, Bereswill S, et al. Comparison of different DNA fingerprinting techniques for molecular typing of Bartonella henselae isolates [J]. J Clin Microbiol,1998,36(10):2973-2981.
    [38]Arvand M, Viezens J. Evaluation of pulsed-field gel electrophoresis and multi-locus sequence typing for the analysis of clonal relatedness among Bartonella henselae isolates [J]. Int J Med Microbiol,2007,297(4):255-262.
    [39]Xu C, Liu Q, Diao B, et al. Optimization of pulse-field gel electrophoresis for Bartonella subtyping [J]. J Microbiol Methods,2009,76(1):6-11.
    [40]Monteil M, Durand B, Bouchouicha R, et al. Development of discriminatory multiple-locus variable number tandem repeat analysis for Bartonella henselae [J]. Microbiology,2007,153(Pt 4):1141-1148.
    [41]Holt KE, Parkhill J, Mazzoni CJ, et al. High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi [J]. Nat Genet,2008,40(8):987-993.
    [42]Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 [J]. Mol Biol Evol,2007,24(8):1596-1599.
    [43]Feil EJ, Li BC, Aanensen DM, et al. eBURST:inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data [J]. JBacteriol,2004,186(5):1518-1530.
    [44]Spratt BG, Hanage WP, Li B, et al. Displaying the relatedness among isolates of bacterial species--the eBURST approach [J]. FEMS Microbiol Lett,2004, 241(2):129-134.
    [45]Yanagihara M, Tsuneoka H, Hoshide S, et al. Molecular typing of Bartonella henselae DNA extracted from human clinical specimens and cat isolates in Japan [J]. FEMS Immunol Med Microbiol,60(1):44-48.
    [46]Mietze A, Morick D, Kohler H, et al. Combined MLST and AFLP typing of Bartonella henselae isolated from cats reveals new sequence types and suggests clonal evolution [J]. Vet Microbiol,2011,148(2-4):238-245.
    [47]Chaloner GL, Harrison TG, Coyne KP, et al. Multilocus sequence typing of Bartonella henselae in the United Kingdom indicates only a few, uncommon sequence types are associated with zoonotic disease [J]. J Clin Microbiol.
    [48]Fournier PE, Robson J, Zeaiter Z, et al. Improved culture from lymph nodes of patients with cat scratch disease and genotypic characterization of Bartonella henselae isolates in Australia [J].J Clin Microbiol,2002,40(10):3620-3624.
    [49]Denoeud F, Vergnaud G. Identification of polymorphic tandem repeats by direct comparison of genome sequence from different bacterial strains:a web-based resource [J]. BMC Bioinformatics,2004,5:4.
    [50]Grissa I, Bouchon P, Pourcel C, et al. On-line resources for bacterial micro-evolution studies using MLVA or CRISPR typing [J]. Biochimie,2008,90(4): 660-668.
    [51]Le Fleche P, Hauck Y, Onteniente L, et al. A tandem repeats database for bacterial genomes:application to the genotyping of Yersinia pestis and Bacillus anthracis [J]. BMC Microbiol,2001,1:2.
    [52]Hoffmaster AR, Fitzgerald CC, Ribot E, et al. Molecular subtyping of Bacillus anthracis and the 2001 bioterrorism-associated anthrax outbreak, United States [J]. Emerg Infect Dis,2002,8(10):1111-1116.
    [53]Bouchouicha R, Durand B, Monteil M, et al. Molecular epidemiology of feline and human Bartonella henselae isolates [J]. Emerg Infect Dis,2009,15(5): 813-816.
    [54]Meyer E, Leonard NJ, Bhat B, et al. Purification and characterization of the purE, purK, and purC gene products:identification of a previously unrecognized energy requirement in the purine biosynthetic pathway [J]. Biochemistry,1992,31(21):5022-5032.
    [1]Regnery RL, Olson JG, Perkins BA, et al. Serological response to "Rochalimaea henselae" antigen in suspected cat-scratch disease [J]. Lancet,1992,339(8807):1443-1445.
    [2]Regnery R, Martin M, Olson J. Naturally occurring "Rochalimaea henselae" infection in domestic cat [J]. Lancet,1992,340(8818):557-558.
    [3]McGrath N, Wallis W, Ellis-Pegler R, et al. Neuroretinitis and encephalopathy due to Bartonella henselae infection [J]. Aust N Z J Med,1997,27(4):454.
    [4]Reed JA, Brigati DJ, Flynn SD, et al. Immunocytochemical identification of Rochalimaea henselae in bacillary (epithelioid) angiomatosis, parenchymal bacillary peliosis, and persistent fever with bacteremia [J]. Am J Surg Pathol,1992,16(7):650-657.
    [5]Koehler JE, Quinn FD, Berger TG, et al. Isolation of Rochalimaea species from cutaneous and osseous lesions of bacillary angiomatosis [J]. N Engl J Med,1992,327(23):1625-1631.
    [6]Marullo S, Jaccard A, Roulot D, et al. Identification of the Rochalimaea henselae 16S rRNA sequence in the liver of a French patient with bacillary peliosis hepatis [J]. J Infect Dis,1992,166(6): 1462.
    [7]Hadfield TL, Warren R, Kass M, et al. Endocarditis caused by Rochalimaea henselae [J]. Hum Pathol,1993,24(10):1140-1141.
    [8]Bergmans AM, Groothedde JW, Schellekens JF, et al. Etiology of cat scratch disease:comparison of polymerase chain reaction detection of Bartonella (formerly Rochalimaea) and Afipia felis DNA with serology and skin tests [J]. J Infect Dis,1995,171(4):916-923.
    [9]Bergmans AM, Schellekens JF, van Embden JD, et al. Predominance of two Bartonella henselae variants among cat-scratch disease patients in the Netherlands [J]. J Clin Microbiol,1996,34(2):254-260.
    [10]Alsmark CM, Frank AC, Karlberg EO, et al. The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae [J]. Proc Natl Acad Sci U S A, 2004,101(26):9716-9721.
    [11]Upholt WB. Estimation of DNA sequence divergence from comparison of restriction endonuclease digests [J]. Nucleic Acids Res,1977,4(5):1257-1265.
    [12]Matar GM, Swaminathan B, Hunter SB, et al. Polymerase chain reaction-based restriction fragment length polymorphism analysis of a fragment of the ribosomal operon from Rochalimaea species for subtyping [J]. J Clin Microbiol,1993,31(7):1730-1734.
    [13]Roux V, Raoult D. Inter- and intraspecies identification of Bartonella (Rochalimaea) species [J]. J Clin Microbiol,1995,33(6):1573-1579.
    [14]Schwartz DC, Cantor CR. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis [J]. Cell,1984,37(1):67-75.
    [15]Sander A, Ruess M, Bereswill S, et al. Comparison of different DNA fingerprinting techniques for molecular typing of Bartonella henselae isolates [J]. J Clin Microbiol,1998,36(10):2973-2981.
    [16]Arvand M, Viezens J. Evaluation of pulsed-field gel electrophoresis and multi-locus sequence typing for the analysis of clonal relatedness among Bartonella henselae isolates [J]. Int J Med Microbiol, 2007,297(4):255-262.
    [17]Xu C, Liu Q, Diao B, et al. Optimization of pulse-field gel electrophoresis for Bartonella subtyping [J].J Microbiol Methods,2009,76(1):6-11.
    [18]Maiden MC, Bygraves JA, Feil E, et al. Multilocus sequence typing:a portable approach to the identification of clones within populations of pathogenic microorganisms [J]. Proc Natl Acad Sci U S A,1998,95(6):3140-3145.
    [19]Enright MC, Spratt BG. A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease [J]. Microbiology,1998,144 (Pt 11): 3049-3060.
    [20]Iredell J, Blanckenberg D, Arvand M, et al. Characterization of the natural population of Bartonella henselae by multilocus sequence typing [J].J Clin Microbiol,2003,41(11):5071-5079.
    [21]Arvand M, Feil EJ, Giladi M, et al. Multi-locus sequence typing of Bartonella henselae isolates from three continents reveals hypervirulent and feline-associated clones [J]. PLoS One,2007,2(12):e1346.
    [22]Mietze A, Morick D, Kohler H, et al. Combined MLST and AFLP typing of Bartonella henselae isolated from cats reveals new sequence types and suggests clonal evolution [J]. Vet Microbiol,2011, 148(2-4):238-245.
    [23]Drancourt M, Roux V, Dang LV, et al. Genotyping, Orientalis-like Yersinia pestis, and plague pandemics [J]. Emerg Infect Dis,2004,10(9):1585-1592.
    [24]Li W, Chomel BB, Maruyama S, et al. Multispacer typing to study the genotypic distribution of Bartonella henselae populations [J]. J Clin Microbiol,2006,44(7):2499-2506.
    [25]Li W, Raoult D, Fournier PE. Genetic diversity of Bartonella henselae in human infection detected with multispacer typing [J]. Emerg Infect Dis,2007,13(8):1178-1183.
    [26]Monteil M, Durand B, Bouchouicha R, et al. Development of discriminatory multiple-locus variable number tandem repeat analysis for Bartonella henselae [J]. Microbiology,2007,153(Pt 4):1141-1148.
    [27]Bouchouicha R, Durand B, Monteil M, et al. Molecular epidemiology of feline and human Bartonella henselae isolates [J]. Emerg Infect Dis,2009,15(5):813-816.
    [28]Holt KE, Parkhill J, Mazzoni CJ, et al. High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi [J]. Nat Genet,2008,40(8):987-993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700