用户名: 密码: 验证码:
磷酸化调控蛋白质构象变化的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质的磷酸化和去磷酸化过程是生物体内普遍存在的信息传导调节方式,几乎涉及所有的生理及病理过程,如糖代谢、细胞的生长发育、基因表达、神经递质的合成与释放,甚至癌变等,在信号传导过程中占有极其重要的地位。信号传导是维系外部刺激与细胞反应的桥梁。蛋白质在体内可逆的磷酸化和去磷酸化过程通过调节蛋白质构象的变化或蛋白之间相互作用,对生理过程起到类似“开关”的调节作用。
     从20世纪90年代以来,随着计算机科学的发展,生物信息学得到了迅猛的发展,而蛋白质作为生物信息学研究的一个重要对象,有关蛋白质的理论模拟已经成为一个重要的研究领域。应用分子模拟的方法构建蛋白质三维模型,研究生物大分子的结构特点,分析蛋白质与底物相互作用,描述蛋白质的生化机理已经成为进行生物学和医学研究的一个主要手段。除了常规分子动力学模拟外,近年发展起来的拉伸分子动力学模拟通过引入外加力(势场)和减少蛋白质构象空间自由度等策略,使分子动力学应用范围更广。自由能计算方法为蛋白质构象变化提供定量的描述,对反应发生的路线和机理提供依据。
     本论文选取两个磷酸化调控蛋白质构象变化和功能的体系作为研究对象,通过常规分子动力学模拟、拉伸分子动力学模拟和自由能计算三种方法相结合的手段,研究在蛋白质特定位点进行磷酸化以后,对蛋白质构象变化以及蛋白质之间结合情况带来的影响,及调控蛋白功能的分子机制。
     1.Ser88位磷酸化调控LC8解离机理的理论研究
     动力蛋白轻链是一类序列高度保守的蛋白质,在生理条件下以二聚体形式存在,参与一系列细胞内重要的生理过程。有实验证明,在细胞内动力蛋白轻链LC8的二聚体结构可以被蛋白激酶在Ser88位点磷酸化,导致二聚体解离,对哺乳细胞凋亡过程起到抑制作用。但从生化实验里面无法得到磷酸化的细节和对二聚体结构的影响,以及引起二聚体解离的机理。我们采用分子动力学模拟和自由能计算相结合的方法,为磷酸化导致LC8解离的机理提供了原子尺度的解释。
     10 ns常规分子动力学模拟结果表明当在Ser88发生突变或磷酸化(S88E/pSer88)时,Ser88附近的残基和一些相互作用受到扰动。突变使原本紧密结合的Ser88和Ser88’由于同性负电荷的引入而互相排斥,原有的较为牢固的氢键作用被打破。同时,由于位于二聚体结合界面负电荷的引入,使蛋白局部极性增加,从而吸引周围溶剂中的水分子靠近表面,为水分子进入疏水结合界面打开了一个通道。从模拟的结果很清晰的看到,在突变体中水分子由C-端Glu88/pS88位置进入结合界面,通过与His55的侧链相互作用,干扰围绕His55周围的氢键网络。由于His55不再包埋在疏水界而内,而是更多的暴露在水环境中,从而导致其侧链pKa值增大,增加它的质子化几率。而以往的研究已经表明His55的质子化能够使二聚体结构失去稳定性。因此我们的研究表明,LC8在Ser88磷酸化导致二聚体结构解离的过程是通过间接调节His55的质子化状态来实现的。
     自由能计算给出了由Ser88磷酸化引起二聚体结构稳定性下降的能量数据。S88E体系的⊿⊿GDisso是-6.6kcal/mol,与实验测得的结果(-8.1kcal/mol)符合的较好。我们的计算还给出了实验中难以检测到的pSer88体系的⊿⊿GDisso为-50.8kcal/mol。通过对自由能结果的进一步分析,发现自由能变化主要是由带负电的pSer88静电排斥作用引起,静电自由能变化项占主导作用,与实验结果吻合较好。以上结果都说明,对Ser88进行磷酸化确实会影响LC8二聚体的稳定性,使其更易发生解离。
     2.磷酸化调控ZO-1 PDZ2与Cx43结合机理的研究
     ZO-1 PDZ2结构域与连接蛋白(Connexin43, Cx43)的相互作用近年来广受关注,因为它们的相互作用在诸如心肌细胞、成纤维细胞和神经元细胞等诸多细胞中起到调节相邻细胞间隙联结(Gapjunction, GJ)的位置、移动和动念连接模式的作用。有研究发现在Cx43靠近C-端的S(-9)位被激酶磷酸化以后,Cx43与ZO-1PDZ2结构域的结合被打断,PDZ2组装Cx43形成六聚体GJ的功能消失,但是机理尚不明确。
     我们采用分子动力学模拟的方法对ZO-1 PDZ2结合Cx43体系进行系统的研究,共研究了包括Free From(PDZ2未结合Cx43)、Short Form(PDZ2结合Cx43靠近C-端的9个残基的肽段体系)、Long Form(PDZ2结合Cx43靠近C-端的12个残基的肽段体系)、Long S(-9)(在Long Form基础上对S(-9)进行磷酸化的体系)和Long S(-9,-10)(在Long Form基础上同时对S(-9,-10)进行磷酸化的体系)。
     研究结果表明,无论是否结合Cx43肽段以及肽段长短、是否被磷酸化,ZO-1PDZ2二聚体结构都具有较大的柔性,两个单体以两条反平行的β-链相互作用的结合中心为中点,两个单体的相对位置在模拟过程中在一定幅度内振动,单体本身不发生大的构象变化。四个结合肽段体系中,Cx43肽段与PDZ2二聚体有不同的结合强度和结合模式。通过比较X-ray晶体结构(ZO-1 PDZ2结合9个氨基酸Cx43肽段体系,Short Form)和ZO-1 PDZ2结合12个氨基酸Cx43肽段(Long Form)结合情况发现,Short Form体系中,Cx43肽段N-端脱离于PDZ2表面的结合,向自身C-端折叠形成发卡状构象,而Long Form体系中肽段则与PDZ2形成稳定的结合,说明在Short Form中Cx43的N-端增加的三个氨基酸ASS对于稳定Cx43在PDZ2上的结合有不可忽略的重要性。对Long Form体系的S(-9)做磷酸化突变,或者同时磷酸化S(-9)和S(-10)以后,磷酸根的引入使Cx43与PDZ2的结合作用被削弱,在20 ns动力学模拟过程中,肽段与PDZ2没有在固定的结合位点形成稳定的结合作用。我们的模拟结果证明磷酸化确实对Cx43与ZO-1 PDZ2的相互作用起到调节作用,且调节机制主要是缘于磷酸根基团负电荷的引入带来的静电扰动,破坏了Cx43与PDZ2之间原有的氢键和盐桥相互作用导致的。
The reversible phosphorylation of proteins regulates almost all aspects of cell life, and provides a fast and efficient way to regulate protein functions, and it is used to control all basic cellular processes, including metabolism, signaling, motility, growth, proliferation, differentiation, organelle trafficking and membrane transport. Abnormal phosphorylation is a cause or consequence of many diseases. In many cases, phosphorylation regulates conformation changes of proteins and results in switch-like changes in protein function.
     From the nineties of the 20th century, with the development of computer science as well as the human genome project implementation, bioinformatics has been developed rapidly. Protein is an indispensable research object in bioinformatics, therefore, computer simulation of proteins has become a well-established and important research area. Via molecular modeling can build the three-dimensional model of proteins, to research the structure characteristics of the macromolecules, analyze the interaction between the protein and substrate, and describe protein biochemistry functions, thus molecular simulation has already become a powerful tool for biology experiments and drug design. Besides the conventional molecular dynamics simulation, the steered molecular dynamics simulation method became a good complement to it through modifying the energy function to effectively reduce the height of barriers separating low-energy states. In this thesis, we have carried out molecular simulation technology combined with steered molecular dynamics simulation and free energy calculations to study protein conformation changes and protein-inhibitor interactions induced by phosphorylation. The computer simulations of the protein and substrate interactions may understand some problems that can not been solved in the experiment. The simulation results can support the further studies on them and direct the design of new inhibitors and drugs. The main results are summarized as follows:
     1. Mechanism of Ser88 phosphorylation induced dimer dissociation in dynein light chain LC8.
     Dynein light chain LC8 is a highly conserved, dimeric protein involving in a variety of essential cellular events. Phosphorylation at Ser88 was found to promote mammalian cell survival and regulate the dimer to monomer transition at physiological pH condition. Combining molecular dynamics (MD) simulation and free energy calculation methods, we explored the atomistic mechanism of the phosphorylation induced dimer dissociation. The MD simulation revealed that phosphorylation/phosphomimetic mutation at Ser88 opens an entrance into the dimer interface for water molecules, which disturbs the hydrogen bond network around His55 and is expected to raise the pKa value and protonation ratio of His55 as well. The free energy calculations showed that S88E mutation destabilized the dimer by 6.6 kcal/mol, in good agreement with the experimental value of 8.1 kcal/mol. The calculated destabilization upon phosphorylation is 50.8 kcal/mol, showing that phosphorylation definitely prevents dimer formation at physiological condition. Further analysis of the calculated free energy changes demonstrated that the electrostatic contribution dominates the impact of phosphorylation on dimer dissociation.
     2. Mechanism of phosphorylation regulated interaction between ZO-1 PDZ2 and Cx43.
     The interactions of connexins (especially connexin43, Cx43), the most abundant connexin in mammals) with the second PDZ domain of ZO-1 received particular attention in recent years in the context of GJ formation and regulation. Accumulating evidence indicates that ZO-1 actively participates in the dynamic remodeling of GJs in a number of cellular systems, including cardiomyocytes, fibroblasts and neurons. There are evidences that the phosphorylation of connexin on the carboxyl terminal domain may regulate, or are correlated, with gap junction turnover, but the regulating mechanism is not clear yet. With molecular dynamics simulation, we explore the atomics mechanism of S(-9)/S(-10) phosphorylation regulated Cx43 binding with ZO-1 PDZ2 domain. The MD simulation shows that two monomers of PDZ2 domain have good flexibility and fluctuates toward each other during simulation whether binding with Cx43 or not. Cx43 with 12 residues shows better binding affinity than 9 residues peptide with PDZ2, while the latter forms 'hair-pin' during simulations. While S(-9) or S(-9,-10) was phosphorylated, the interaction between Cx43 peptide and PDZ2 was interrupted or weakened. Because the phosphate carries a -2 charge and the resulting large electrostatic perturbation modulates the energy landscapes governing protein-protein interaction. Hydrogen bonds formed by S(-9), S(-10) from Cx43 and E210, E238 from PDZ2 were disrupted because of phosphorylation. Long-Form Cx43 (with 12 residues) has the best binding affinity with PDZ2, in good agreement with experiment data.
引文
[1]Ladbury, J.E., Measurement of the formation of complexes in tyrosine kinase-mediated signal transduction, Acta Crystallographica Section D-Biological Crystallography,2007,63,26-31.
    [2]Kreegipuu, A., N. Blom, and S. Brunak, PhosphoBase, a database of phosphorylation sites:release 2.0, Nucleic Acids Research,1999,27(1), 237-239.
    [3]Cohen, P., The role of protein phosphorylation in human health and disease-Delivered on June 30th 2001 at the FEBS Meeting in Lisbon, European Journal of Biochemistry,2001,268(19),5001-5010.
    [4]Guan, K.L. and J.E. Dixon, Protein Tyrosine Phosphatase-Activity of an Essential Virulence Determinant in Yersinia, Science,1990,249(4968), 553-556.
    [5]Cohen, P., C.F.B. Holmes, and Y. Tsukitani, Okadaic Acid-a New Probe for the Study of Cellular-Regulation, Trends in Biochemical Sciences,1990,15(3), 98-102.
    [6]Mackintosh, C., K.A. Beattie, S. Klumpp, P. Cohen, and G.A. Codd, Cyanobacterial Microcystin-Lr Is a Potent and Specific Inhibitor of Protein Phosphatase-1 and Phosphatase-2a from Both Mammals and Higher-Plants, Febs Letters,1990,264(2),187-192.
    [7]Pouria, S., A. de Andrade, J. Barbosa, R.L. Cavalcanti, V.T.S. Barreto, C.J. Ward, W. Preiser, G.K. Poon, G.H. Neild, and G.A. Codd, Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil, Lancet,1998,352(9121), 21-26.
    [8]Carmichael, W.W., Toxins of Cyanobacteria, Scientific American,1994,270(1), 78-86.
    [9]Blume-Jensen, P. and T. Hunter, Oncogenic kinase signalling, Nature,2001, 411(6835),355-365.
    [10]Ostman, A., C. Hellberg, and F.D. Bohmer, Protein-tyrosine phosphatases and cancer, Nature Reviews Cancer,2006,6(4),307-320.
    [11]Johnson, L.N. and D. Barford, The Effects of Phosphorylation on the Structure and Function of Proteins, Annual Review of Biophysics and Biomolecular Structure,1993,22,199-232.
    [12]Hurley, J.H., A.M. Dean, D.E. Koshland, and R.M. Stroud, Catalytic Mechanism of Nadp+-Dependent Isocitrate Dehydrogenase - Implications from the Structures of Magnesium Isocitrate and Nadp+Complexes, Biochemistry,1991,30(35),8671-8678.
    [13]Sprang, S.R., K.R. Acharya, E.J. Goldsmith, D.I. Stuart, K. Varvill, R.J. Fletterick, N.B. Madsen, and L.N. Johnson, Structural-Changes in Glycogen-Phosphorylase Induced by Phosphorylation, Nature,1988, 336(6196),215-221.
    [14]Barford, D. and L.N. Johnson, The Allosteric Transition of Glycogen-Phosphorylase, Nature,1989,340(6235),609-616.
    [15]Barford, D. and L.N. Johnson, The Molecular Mechanism for the Tetrameric Association of Glycogen-Phosphorylase Promoted by Protein-Phosphorylation, Protein Science,1992,1(4),472-493.
    [16]Barford, D., S.H. Hu, and L.N. Johnson, Structural Mechanism for Glycogen-Phosphorylase Control by Phosphorylation and Amp, Journal of Molecular Biology,1991,218(1),233-260.
    [17]Rajagopal, P., E.B. Waygood, and R.E. Klevit, Structural Consequences of Histidine Phosphorylation-Nmr Characterization of the Phosphohistidine Form of Histidine-Containing Protein from Bacillus-Subtilis and Escherichia-Coli, Biochemistry,1994,33(51),15271-15282.
    [18]Kubler, D., D. Reinhardt, J. Reed, W. Pyerin, and V. Kinzel, Atrial-Natriuretic-Peptide Is Phosphorylated by Intact-Cells through Camp-Dependent Ectoprotein Kinase, European Journal of Biochemistry, 1992,206(1),179-186.
    [19]Mortishiresmith, R.J., S.M. Pitzenberger, C.J. Burke, C.R. Middaugh, V.M. Garsky, and R.G. Johnson, Solution Structure of the Cytoplasmic Domain of Phospholamban-Phosphorylation Leads to a Local Perturbation in Secondary Structure, Biochemistry,1995,34(23),7603-7613.
    [20]Quirk, P.G., V.B. Patchell, J. Colyer, G.A. Drago, and Y. Gao, Conformational effects of serine phosphorylation in phospholamban peptides, European Journal of Biochemistry,1996,236(1),85-91.
    [21]Granot, J., A.S. Mildvan, H.N. Bramson, N. Thomas, and E.T. Kaiser, Nuclear Magnetic-Resonance Studies of the Conformation and Kinetics of the Peptide-Substrate at the Active-Site of Bovine Heart Protein-Kinase, Biochemistry,1981,20(3),602-610.
    [22]Kemp, B.E., D.J. Graves, E. Benjamini, and E.G. Krebs, Role of Multiple Basic Residues in Determining Substrate-Specificity of Cyc?e Amp-Dependent Protein-Kinase, Journal of Biological Chemistry,1977, 252(14),4888-4894.
    [23]Rath, V.L., C.B. Newgard, S.R. Sprang, E.J. Goldsmith, and R.J. Fletterick, Modeling the Biochemical Differences between Rabbit Muscle and Human-Liver Phosphorylase, Proteins-Structure Function and Genetics,1987, 2(3),225-235.
    [24]Sprang, S.R., S.G. Withers, E.J. Goldsmith, R.J. Fletterick, and N.B. Madsen, Structural Basis for the Activation of Glycogen Phosphorylase-B by Adenosine-Monophosphate, Science,1991,254(5036),1367-1371.
    [25]Larsson, E., B. Luning, J. Reed, and C. KrogJensen, Solid phase synthesis of two phosphorylated peptides related to casein using allyl phosphate protection, and their CD spectra, Acta Chemica Scandinavica,1996,50(11),1009-1012.
    [26]Henry, H., D. George, and Bachand, Biomolecular Motors, Nanotoday,2005, 12,22-29.
    [27]King, S.M., The dynein microtubule motor, Biochimica Et Biophysica Acta-Molecular Cell Research,2000,1496(1),60-75.
    [28]Pollock, N., M.P. Koonce, E. De Hostos, and R.D. Vale, Overexpression of the globular head of cytoplasmic dynein specifically inhibits minus-end directed vesicle motility in extracts of Dictyostelium, Molecular Biology of the Cell, 1996,7(SUPPL.),225A.
    [29]Goodenough, U. and J. Heuser, Structural Comparison of Purified Dynein Proteins with Insitu Dynein Arms, Journal of Molecular Biology,1984,180(4), 1083-1118.
    [30]Goodenough, U.W., B. Gebhart, V. Mermall, D.R. Mitchell, and J.E. Heuser, High-Pressure Liquid-Chromatography Fractionation of Chlamydomonas Dynein Extracts and Characterization of Inner-Arm Dynein Subunits, Journal of Molecular Biology,1987,194(3),481-494.
    [31]King, S.M., AAA domains and organization of the dynein motor unit, Journal of Cell Science,2000,113(14),2521-2526.
    [32]Asai, D.J. and M.F. Koonce, The dynein heavy chain:structure, mechanics and evolution, Trends in Cell Biology,2001,11(5),196-202.
    [33]Gee, M.A., J.E. Heuser, and R.B. Vallee, An extended microtubule-binding structure within the dynein motor domain, Nature,1997,390(6660),636-639.
    [34]Vallee, R.B. and M.A. Gee, Make room for dynein, Trends in Cell Biology, 1998,8(12),490-494.
    [35]Koonce, M.P. and I. Tikhonenko, Functional elements within the dynein microtubule-binding domain, Molecular Biology of the Cell,2000,11(2), 523-529.
    [36]Samso, M., M. Radermacher, J. Frank, and M.P. Koonce, Structural characterization of a dynein motor domain, Journal of Molecular Biology, 1998,276(5),927-937.
    [37]Gibbons, I.R., B.H. Gibbons, G. Mocz, and D.J. Asai, Multiple Nucleotide-Binding Sites in the Sequence of Dynein Beta-Heavy Chain, Nature,1991,352(6336),640-643.
    [38]Ogawa, K.,4 Atp-Binding Sites in the Midregion of the Beta-Heavy Chain of Dynein, Nature,1991,352(6336),643-645.
    [39]Yamamoto, T., N. Harada, K. Kano, S. Taya, E. Canaani, Y. Matsuura, A. Mizoguchi, C. Ide, and K. Kaibuchi, The Ras target AF-6 interacts with ZO-1 and serves as a peripheral component of tight junctions in epithelial cells, Journal of Cell Biology,1997,139(3),785-795.
    [40]Zhadanov, A.B., D.W. Provance, C.A. Speer, J.D. Coffin, D. Goss, J.A. Blixt, C.M. Reichert, and J.A. Mercer, Absence of the tight junctional protein AF-6 disrupts epithelial cell-cell junctions and cell polarity during mouse development, Current Biology,1999,9(16),880-888.
    [41]Jaffrey, S.R. and S.H. Snyder, PIN:An associated protein inhibitor of neuronal nitric oxide synthase, Science,1996,274(5288),774-777.
    [42]Liang, J., S.R. Jaffrey, W. Guo, S.H. Snyder, and J. Clardy, Structure of the PIN/LC8 dimer with a bound peptide, Nature Structural Biology,1999,6(8), 735-740.
    [43]Tochio, H., S. Ohki, Q. Zhang, M. Li, and M.J. Zhang, Solution structure of a protein inhibitor of neuronal nitric oxide synthase, Nature Structural Biology, 1998,5(11),965-969.
    [44]Fan, J.S., Q. Zhang, H. Tochio, M. Li, and M.J. Zhang, Structural basis of diverse sequence-dependent target recognition by the 8 kDa dynein light chain, Journal of Molecular Biology,2001,306(1),97-108.
    [45]Ponting, C.P., Evidence for PDZ domains in bacteria, yeast, and plants, Protein Science,1997,6(2),464-468.
    [46]Zimmermann, P., The prevalence and significance of PDZ domain-phosphoinositide interactions, Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids,2006,1761(8),947-956.
    [47]van Ham, M. and W. Hendriks, PDZ domains-glue and guide, Molecular Biology Reports,2003,30(2),69-82.
    [48]Walma, T., C. Spronk, M. Tessari, J. Aelen, J. Schepens, W. Hendriks, and G.W. Vuister, Structure, dynamics and binding characteristics of the second PDZ domain of PTP-BL, Journal of Molecular Biology,2002,316(5),1101-1110.
    [49]Niethammer, M., J.G. Valtschanoff, T.M. Kapoor, D.W. Allison, R.J. Weinberg, A.M. Craig, and M. Sheng, CRIPT, a novel postsynaptic protein that binds to the third PDZ domain of PSD-95/SAP90, Neuron,1998,20(4),693-707.
    [50]Songyang, Z., A.S. Fanning, C. Fu, J. Xu, S.M. Marfatia, A.H. Chishti, A. Crompton, A.C. Chan, J.M. Anderson, and L.C. Cantley, Recognition of unique carboxyl-terminal motifs by distinct PDZ domains, Science,1997, 275(5296),73-77.
    [51]Karthikeyan, S., T. Leung, G. Birrane, G. Webster, and J.A.A. Ladias, Crystal structure of the PDZ1 domain of human Na+/H+exchanger regulatory factor provides insights into the mechanism of carboxyl-terminal leucine recognition by class IPDZ domains, Journal of Molecular Biology,2001,308(5),963-973.
    [52]Tochio, H., Q. Zhang, P. Mandal, M. Li, and M.J. Zhang, Solution structure of the extended neuronal nitric oxide synthase PDZ domain complexed with an associated peptide, Nature Structural Biology,1999,6(5),417-421.
    [53]wilson, S., Chemistry by Computer.1986, New York:Plenum Pres.
    [54]MULLIKEN, R.S., Life of a Scientist.1989, Berlin:Springer Verlag.
    [55]Brooks, B.R., R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, and M. Karplus, Charmm-a Program for Macromolecular Energy, Minimization, and Dynamics Calculations, Journal of Computational Chemistry,1983,4(2), 187-217.
    [56]Weiner, P.K. and P.A. Kollman, Amber-Assisted Model-Building with Energy Refinement - a General Program for Modeling Molecules and Their Interactions, Journal of Computational Chemistry,1981,2(3),287-303.
    [57]Scott, W.R.P., P.H. Hunenberger, I.G. Tironi, A.E. Mark, S.R. Billeter, J. Fennen, A.E. Torda, T. Huber, P. Kruger, and W.F. van Gunsteren, The GROMOS biomolecular simulation program package, Journal of Physical Chemistry A,1999,103(19),3596-3607.
    [58]Van der Spoel, D., E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, and H.J.C. Berendsen, GROMACS:Fast, flexible, and free, Journal of Computational Chemistry,2005,26(16),1701-1718.
    [59]Mohamadi, F., N.G.J. Richards, W.C. Guida, R. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson, and W.C. Still, Macromodel - an Integrated Software System for Modeling Organic and Bioorganic Molecules Using Molecular Mechanics, Journal of Computational Chemistry,1990, 11(4),440-467.
    [60]BECKER O M, M.A.D.J., ROUX B,et al, Computational Biochemistry and Biophysics, Marcel Dekker,New York,2001.
    [61]Gao, J.L. and D.G. Truhlar, Quantum mechanical methods for enzyme kinetics, Annual Review of Physical Chemistry,2002,53,467-505.
    [62]Hayward, S., A. Kitao, and N. Go, Harmonicity and Anharmonicity in Protein Dynamics-a Normal-Mode Analysis and Principal Component Analysis, Proteins-Structure Function and Genetics,1995,23(2),177-186.
    [63]Kollman, P., Free-Energy Calculations-Applications to Chemical and Biochemical Phenomena, Chemical Reviews,1993,93(7),2395-2417.
    [64]Lamb, M.L. and W.L. Jorgensen, Computational approaches to molecular recognition, Current Opinion in Chemical Biology,1997,1(4),449-457.
    [65]Tuckerman, M.E. and G.J. Martyna, Understanding modern molecular dynamics:Techniques and applications, Journal of Physical Chemistry B, 2000,104(2),159-178.
    [66]VAN GUNSTEREN W F, W.P.K., WILKINSON A J, Computational Simulation of Biomolecular Systems:Theoretical and Experimental Applications, ESCOM,Leiden,1993.
    [67]Zaloj, V. and R. Elber, Parallel computations of molecular dynamics trajectories using the stochastic path approach, Computer Physics Communications,2000,128(1-2),118-127.
    [68]Sayle, R.A. and E.J. Milnerwhite, Rasmol-Biomolecular Graphics for All, Trends in Biochemical Sciences,1995,20(9),374-376.
    [69]Humphrey, W., A. Dalke, and K. Schulten, VMD:Visual molecular dynamics, Journal of Molecular Graphics,1996,14(1),33-&.
    [70]Town, W.G., Isis Draw for the Macintosh, Journal of Chemical Information and Computer Sciences,1992,32(4),393-394.
    [71]Gustiananda, M., J.R. Liggins, P.L. Cummins, and J.E. Gready, Conformation of prion protein repeat peptides probed by FRET measurements and molecular dynamics simulations, Biophysical Journal,2004,86(4),2467-2483.
    [72]Jorgensen, W.L., Quantum and Statistical Mechanical Studies of Liquids.24. Revised Tips for Simulations of Liquid Water and Aqueous-Solutions, Journal of Chemical Physics,1982,77(8),4156-4163.
    [73]Banavali, N.K. and B. Roux, Anatomy of a structural pathway for activation of the catalytic domain of Src kinase Hck, Proteins-Structure Function and Bioinformatics,2007,67(4),1096-1112.
    [74]Ozkirimli, E. and C.B. Post, Src kinase activation:A switched electrostatic network, Protein Science,2006,15(5),1051-1062.
    [75]Zou, J., Y.D. Wang, F.X. Ma, M.L. Xiang, B. Shi, Y.Q. Wei, and S.Y. Yang, Detailed conformational dynamics of juxtamembrane region and activation loop in c-Kit kinase activation process, Proteins-Structure Function and Bioinformatics,2008,72(1),323-332.
    [76]Hamelberg, D., T. Shen, and J.A. McCammon, Phosphorylation effects on cis/trans isomerization and the backbone conformation of serine-proline motifs: Accelerated molecular dynamics analysis, Journal of the American Chemical Society,2005,127(6),1969-1974.
    [77]Hamelberg, D., T.Y. Shen, and J.A. McCammon, A proposed signaling motif for nuclear import in mRNA processing via the formation of arginine claw, Proceedings of the National Academy of Sciences of the United States of America,2007,104(38),14947-14951.
    [78]Groban, E.S., A. Narayanan, and M.P. Jacobson, Conformational changes in protein loops and helices induced by post-translational phosphorylation, Plos Computational Biology,2006,2(4),238-250.
    [79]Cheng, Y.H., Y.K. Zhang, and J.A. McCammon, How does activation loop phosphorylation modulate catalytic activity in the cAMP-dependent protein kinase:A theoretical study, Protein Science,2006,15(4),672-683.
    [80]Cheng, Y.H., Y.K. Zhang, and J.A. McCammon, How does the cAMP-dependent protein kinase catalyze the phosphorylation reaction:An ab initio QM/MM study, Journal of the American Chemical Society,2005,127(5), 1553-1562.
    [81]Huse, M. and J. Kuriyan, The conformational plasticity of protein kinases, Cell,2002,109(3),275-282.
    [82]Johnson, L.N. and R.J. Lewis, Structural basis for control by phosphorylation, Chemical Reviews,2001,101(8),2209-2242.
    [83]Nolen, B., S. Taylor, and G. Ghosh, Regulation of protein kinases:Controlling activity through activation segment conformation, Molecular Cell,2004,15(5), 661-675.
    [84]Adams, J.A., M.L. McGlone, R. Gibson, and S.S. Taylor, Phosphorylation Modulates Catalytic Function and Regulation in the Camp-Dependent Protein-Kinase, Biochemistry,1995,34(8),2447-2454.
    [85]De Vivo, M., A. Cavalli, G. Bottegoni, P. Carloni, and M. Recanatini, Role of phosphorylated Thr160 for the activation of the CDK2/Cyclin a comple? Proteins-Structure Function and Bioinformatics,2006,62(1),89-98.
    [86]Lu, K.P. and X.Z. Zhou, The prolyl isomerase PIN 1:a pivotal new twist in phosphorylation signalling and disease, Nature Reviews Molecular Cell Biology,2007,8(11),904-916.
    [87]Lindahl, E. and M.S.P. Sansom, Membrane proteins:molecular dynamics simulations, Current Opinion in Structural Biology,2008,18(4),425-431.
    [88]Chen, J., L.F. Pan, Z.Y. Wei, Y.X. Zhao, and M.J. Zhang, Domain-swapped dimerization of ZO-1 PDZ2 generates specific and regulatory connexin43-binding sites, Embo Journal,2008,27(15),2113-2123.
    [1]Malherbe, P., N. Kratochwil, M.T. Zenner, J. Piussi, C. Diener, C. Kratzeisen, C. Fischer, and R.H.P. Porter, Mutational analysis and molecular modeling of the binding pocket of the metabotropic glutamate 5 receptor negative modulator 2-methyl-6-(phenylethynyl)-pyridine, Molecular Pharmacology, 2003,64(4),823-832.
    [2]Yasar, F., S. Celik, and H. Koksel, Molecular modeling of various peptide sequences of gliadins and low-molecular-weight glutenin subunits, Nahrung-Food,2003,47(4),238-242.
    [3]Takeda-Shitaka, M., D. Takaya, C. Chiba, H. Tanaka, and H. Umeyama, Protein structure prediction in structure based drug design, Current Medicinal Chemistry,2004,11(5),551-558.
    [4]Bakhrat, A., M.S. Jurica, B.L. Stoddard, and D. Raveh, Homology modeling and mutational analysis of Ho endonuclease of yeast, Genetics,2004,166(2), 721-728.
    [5]Andreini, C., L. Banci, I. Bertini, C. Luchinat, and A. Rosato, Bioinformatic comparison of structures and homology-models of matrix metalloproteinases, Journal of Proteome Research,2004,3(1),21-31.
    [6]Lee, K.W. and J.M. Briggs, Molecular Modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase:Two amino acid binding sites in the editing domain, Proteins-Structure Function and Bioinformatics,2004, 54(4),693-704.
    [7]Kubala, M., T. Obsil, V. Obsilova, Z. Lansky, and E. Amler, Protein modeling combined with spectroscopic techniques:An attractive quick alternative to obtain structural information, Physiological Research,2004,53, S187-S197.
    [8]Rohl, C.A., C.E.M. Strauss, D. Chivian, and D. Baker, Modeling structurally variable regions in homologous proteins with rosetta, Proteins-Structure Function and Bioinformatics,2004,55(3),656-677.
    [9]Foloppe, N. and A.D. MacKerell, All-atom empirical force field for nucleic acids:I. Parameter optimization based on small molecule and condensed phase macromolecular target data, Journal of Computational Chemistry,2000,21(2), 86-104.
    [10]Lee, S.C., A.F. Russell, and W.D. Laidig,3-Dimensional Structure of Bradykinin in Sds Micelles-Study Using Nuclear-Magnetic-Resonance, Distance Geometry, and Restrained Molecular Mechanics and Dynamics, International Journal of Peptide and Protein Research,1990,35(5),367-377.
    [11]Pellegrini, M. and D.F. Mierke, Threonine(6)-bradykinin:Molecular dynamics simulations in a biphasic membrane mimetic, Journal of Medicinal Chemistry, 1997,40(1),99-104.
    [12]Hockney, R.W., E., J.W., Computer simulation using particles, New York:McGraw-Hill,1981.
    [13]Darden, T., D. York, and L. Pedersen, Particle Mesh Ewald-an N.Log(N) Method for Ewald Sums in Large Systems, Journal of Chemical Physics,1993, 98(12),10089-10092.
    [14]Brunger, A.T., J. Kuriyan, and M. Karplus, Crystallographic R-Factor Refinement by Molecular-Dynamics, Science,1987,235(4787),458-460.
    [15]Cornell, W.D., P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, and P.A. Kollman, A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (vol 117, pg 5179,1995), Journal of the American Chemical Society, 1996,118(9),2309-2309.
    [16]Cheatham, T.E., P. Cieplak, and P.A. Kollman, A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeal, Journal of Biomolecular Structure & Dynamics,1999,16(4),845-862.
    [17]Brooks, B.R., R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, and M. Karplus, Charmm - a Program for Macromolecular Energy, Minimization, and Dynamics Calculations, Journal of Computational Chemistry,1983,4(2), 187-217.
    [18]MacKerell, A.D., Developments in the CHARMM all-atom empirical energy function for biological molecules. Abstracts of Papers of the American Chemical Society,1998,216,042-COMP.
    [19]Ewig, C.S., T.S. Thacher, and A.T. Hagler, Derivation of class Ⅱ force fields.7. Nonbonded force field parameters for organic compounds, Journal of Physical Chemistry B,1999,103(33),6998-7014.
    [20]van Gunsteren, W.F., Billeter,S.R.,Eising,A.A., Hunenberger, P.H., et al, Biomolecular Simulation:The GROMOS96 Manual and User Guide, Vdf Hochschulverlag AG an der ETH Zurich, Zurich, Switzerland.1996,1-1042.
    [21]Halgren, T.A., Merck molecular force field.1. Basis, form, scope, parameterization, and performance of MMFF94, Journal of Computational Chemistry,1996,17(5-6),490-519.
    [22]Halgren, T.A., Merck molecular force field.2. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions, Journal of Computational Chemistry,1996,17(5-6),520-552.
    [23]Roterman, I.K., K.D. Gibson, and H.A. Scheraga, A Comparison of the Charmm, Amber and Ecepp Potentials for Peptides.1. Conformational Predictions for the Tandemly Repeated Peptide (Asn-Ala-Asn-Pro)9, Journal of Biomolecular Structure & Dynamics,1989,7(3),391-419.
    [24]Jorgensen, W.L. and J. Tiradorives, The Opls Potential Functions for Proteins-Energy Minimizations for Crystals of Cyclic-Peptides and Crambin, Journal of the American Chemical Society,1988,110(6),1657-1666.
    [25]Mackerell, A.D., M. Feig, and C.L. Brooks, Extending the treatment of backbone energetics in protein force fields:Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations, Journal of Computational Chemistry,2004,25(11), 1400-1415.
    [26]van Gunsteren, W.F., D. Bakowies, R. Baron, I. Chandrasekhar, M. Christen, X. Daura, P. Gee, D.P. Geerke, A. Glattli, P.H. Hunenberger, M.A. Kastenholz, C. Ostenbrink, M. Schenk, D. Trzesniak, N.F.A. van der Vegt, and H.B. Yu, Biomolecular modeling:Goals, problems, perspectives, Angewandte Chemie-International Edition,2006,45(25),4064-4092.
    [27]Berman, H.M., T.N. Bhat, P.E. Bourne, Z.K. Feng, G. Gilliland, H. Weissig, and J. Westbrook, The Protein Data Bank and the challenge of structural genomics, Nature Structural Biology,2000,7,957-959.
    [28]MacKerell, A.D., B. Brooks, C.L. Brooks, L. Nilsson, B. Roux, Y. Won, and M. Karplus, CHARMM:The Energy Function and Its Parameterization with an Overview of the Program, The Encyclopedia of Computational Chemistry, 1998,1,271-277.
    [29]Feller, S.E., D.X. Yin, R.W. Pastor, and A.D. MacKerell, Molecular dynamics simulation of unsaturated lipid bilayers at low hydration:Parameterization and comparison with diffraction studies, Biophysical Journal,1997,73(5), 2269-2279.
    [30]Vanommeslaeghe, K., E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, and A.D. MacKerell, CHARMM General Force Field:A Force Field for Drug-Like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Fields, Journal of Computational Chemistry,2010,31(4),671-690.
    [31]Guvench, O., S.N. Greene, G. Kamath, J.W. Brady, R.M. Venable, R.W. Pastor, and A.D. Mackerell, Additive Empirical Force Field for Hexopyranose Monosaccharides, Journal of Computational Chemistry,2008,29(15), 2543-2564.
    [32]Guvench, O., E. Hatcher, R.M. Venable, R.W. Pastor, and A.D. MacKerell, CHARMM Additive All-Atom Force Field for Glycosidic Linkages between Hexopyranoses, Journal of Chemical Theory and Computation,2009,5(9), 2353-2370.
    [33]Hatcher, E.R., O. Guvench, and A.D. MacKerell, CHARMM Additive All-Atom Force Field for Acyclic Polyalcohols, Acyclic Carbohydrates, and Inositol, Journal of Chemical Theory and Computation,2009,5(5), 1315-1327.
    [34]Jorgensen, W.L., J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein, Comparison of simple potential functions for simulating liquid water, Journal of Chemical Physics,1983,79,926-935.
    [35]Andrews, D.H., The relation between the Raman spectra and the structure of organic molecules, Physical Review,1930,36(3),0544-0554.
    [36]Westheimer, F.H. and J.E. Mayer, The Theory of the Racemization of Optically Active Derivatives of Diphenyl, Journal of Chemical Physics,1946, 14(12),733-738.
    [37]Brown, H.C., A New Steric Effect in Organic Chemistry, Science,1946, 103(2674),385-387.
    [38]Hendrick.J, Molecular Geometry.1. Machine Computation of Common Rings, Journal of the American Chemical Society,1961,83(22),4537-&.
    [39]Allinger, N.L., M.A. Miller, Vancatle.Fa, and J.A. Hirsch, Conformational Analysis.57. Calculation of Conformational Structures of Hydrocarbons by Westheimer-Hendrickson-Wiberg Method, Journal of the American Chemical Society,1967,89(17),4345-&.
    [40]Lifson, S. and A. Warshel, Consistent Force Field for Calculations of Conformations Vibrational Spectra and Enthalpies of Cycloalkane and N-Alkane Molecules, Journal of Chemical Physics,1968,49(11),5116-&.
    [41]BURKERT U, A.N.L.M., Molecular Mechanics.1982, Washington DC: American Chemical Society.
    [42]ANDREW, R.L., Molecular Modelling:Principles and Application. 1996, London:Addison Wesley Longman.
    [43]Levitt, M. and S. Lifson, Refinement of Protein Conformations Using a Macromolecular Energy Minimization Procedure, Journal of Molecular Biology,1969,46(2),269-&.
    [44]Willough.Jk and B.L. Pierson, Constraint-Space Conjugate Gradient Method for Function Minimization and Optimal Control Problems, International Journal of Control,1971,14(6),1121-&.
    [45]FLECHER, R., Practical Methods of Optimizatio.1980. New York:John Wiley & Son.
    [46]Powell, M.J.D., Restart Procedures for Conjugate Gradient Method, Mathematical Programming,1977,12(2),241-254.
    [47]Vangunsteren, W.F. and M. Karplus, A Method for Constrained Energy Minimization of Macromolecules, Journal of Computational Chemistry,1980, 1(3),266-274.
    [48]Shanno, D.F., Conditioning of Quasi-Newton Methods for Function Minimization, Mathematics of Computation,1970,24(111),647-&.
    [49]Goldfarb, D., A Family of Variable-Metric Methods Derived by Variational Means, Mathematics of Computation,1970,24(109),23-&.
    [50]Fletcher, R., A New Approach to Variable Metric Algorithms, Computer Journal,1970,13(3),317-&.
    [51]Broyden, C.G., Convergence of Single-Rank Quasi-Newton Methods, Mathematics of Computation,1970,24(110),365-&.
    [52]Daggett, V., Long timescale simulations, Current Opinion in Structural Biology,2000,10(2),160-164.
    [53]van Gunsteren, W., D. Bakowies, R. Burgi, I. Chandrasekhar, M. Christen, X. Daura, P. Gee, A. Glattli, T. Hansson, C. Oostenbrink, C. Peter, J. Pitera, L. Schuler, T. Soares, and H.B. Yu, Molecular dynamics simulation of biomolecular systems, Chimia,2001,55(10),856-860.
    [54]Karplus, M., Molecular dynamics of biological macromolecules:A brief history and perspective, Biopolymers,2003,68(3),350-358.
    [55]Karplus, M. and J.A. McCammon, Molecular dynamics simulations of biomolecules, Nature Structural Biology,2002,9(9),646-652.
    [56]Karplus, M. and G.A. Petsko, Molecular-Dynamics Simulations in Biology, Nature,1990,347(6294),631-639.
    [57]Rueda, M., C. Ferrer-Costa, T. Meyer, A. Perez, J. Camps, A. Hospital, J.L. Gelpi, and M. Orozco, A consensus view of protein dynamics, Proceedings of the National Academy of Sciences of the United States of America,2007, 104(3),796-801.
    [58]van Gunsteren, W.F. and J. Dolenc, Biomolecular simulation:historical picture and future perspectives, Biochemical Society Transactions,2008,36,11-15.
    [59]McCammon, J.A., B.R. Gelin, and M. Karplus, Dynamics of Folded Proteins, Nature,1977,267(5612),585-590.
    [60]Lindahl, E.R., Molecular dynamics simulations, in Methods in Molecular Biology.2008, Humana Press Inc. p.3-23.
    [61]Beeman, D., Some Multistep Methods for Use in Molecular-Dynamics Calculations, Journal of Computational Physics,1976,20(2),130-139.
    [62]Verlet, L., Computer Experiments on Classical Fluids.1. Thermodynamical Properties of Lennard-Jones Molecules, Physical Review,1967,159(1),98-&.
    [63]Ryckaert, J.P., G. Ciccotti, and H.J.C. Berendsen, Numerical-Integration of Cartesian Equations of Motion of a System with Constraints Molecular-Dynamics of N-Alkanes, Journal of Computational Physics,1977, 23(3),327-341.
    [64]Vangunsteren, W.F. and H.J.C. Berendsen, Algorithms for Macromolecular Dynamics and Constraint Dynamics, Molecular Physics,1977,34(5), 1311-1327.
    [65]Vangunsteren, W.F. and M. Karplus, Effect of Constraints, Solvent and Crystal Environment on Protein Dynamics, Nature,1981,293(5834),677-678.
    [66]Pillardy, A., C. Czaplewski, A. Liwo, J. Lee, D.R. Ripoll, R. Kazmierkiewicz, S. Oldziej, W.J. Wedemeyer, K.D. Gibson, Y.A. Arnautova, J. Saunders, Y.J. Ye, and H.A. Scheraga, Recent improvements in prediction of protein structure by global optimization of a potential energy function, Proceedings of the National Academy of Sciences of the United States of America,2001,98(5), 2329-2333.
    [67]Roos, D.S., Computational biology-Bioinformatics-Trying to swim in a sea of data, Science,2001,291(5507),1260-+.
    [68]Spengler, S.J., Computers and biology-Bioinformatics in the information age, Science,2000,287(5456),1221-+.
    [69]Weiner, P.K. and P.A. Kollman, Amber-Assisted Model-Building with Energy Refinement-a General Program for Modeling Molecules and Their Interactions, Journal of Computational Chemistry,1981,2(3),287-303.
    [70]Gao, M., H. Lu, and K. Schulten, Unfolding of titin domains studied by molecular dynamics simulations, Journal of Muscle Research and Cell Motility,2002,23(5-6),513-521.
    [71]Izrailev, S., S. Stepaniants, and K. Schulten, Applications of steered molecular dynamics to protein-ligand/membrane binding, Biophysical Journal,1998, 74(2),A177-A177.
    [72]Searle, M.S., D.H. Williams, and U. Gerhard, Partitioning of Free-Energy Contributions in the Estimation of Binding Constants-Residual Motions and Consequences for Amide-Amide Hydrogen-Bond Strengths, Journal of the American Chemical Society,1992,114(27),10697-10704.
    [73]Williams, D.H., M.S. Searle, J.P. Mackay, U. Gerhard, and R.A. Maplestone, Toward an Estimation of Binding Constants in Aqueous-Solution-Studies of Associations of Vancomycin Group Antibiotics, Proceedings of the National Academy of Sciences of the United States of America,1993,90(4),1172-1178.
    [74]Head, R.D., M.L. Smythe, T.I. Oprea, C.L. Waller, S.M. Green, and G.R. Marshall, VALIDATE:A new method for the receptor-based prediction of binding affinities of novel ligands, Journal of the American Chemical Society, 1996,118(16),3959-3969.
    [75]Krystek, S., T. Stouch, and J. Novotny, Affinity and Specificity of Serine Endopeptidase Protein Inhibitor Interactions-Empirical Free-Energy Calculations Based on X-Ray Crystallographic Structures, Journal of Molecular Biology,1993.234(3),661-679.
    [76]Shoichet, B.K. and I.D. Kuntz, Protein Docking and Complementarity, Journal of Molecular Biology,1991,221(1),327-346.
    [77]Vangunsteren, W.F., The Role of Computer-Simulation Techniques in Protein Engineering, Protein Engineering,1988.2(1),5-13.
    [78]Jorgensen, W.L., Free-Energy Calculations - a Breakthrough for Modeling Organic-Chemistry in Solution, Accounts of Chemical Research,1989,22(5), 184-189.
    [79]Pearlman, D.A. and P.A. Kollman, The Lag between the Hamiltonian and the System Configuration in Free-Energy Perturbation Calculations, Journal of Chemical Physics,1989,91(12),7831-7839.
    [80]Pearlman, D.A. and P.A. Kollman, The Overlooked Bond-Stretching Contribution in Free-Energy Perturbation Calculations, Journal of Chemical Physics,1991,94(6),4532-4545.
    [81]Kollman, P., Free-Energy Calculations - Applications to Chemical and Biochemical Phenomena, Chemical Reviews,1993,93(7),2395-2417.
    [82]Pearlman, D.A., Free-Energy Derivatives-a New Method for Probing the Convergence Problem in Free-Energy Calculations, Journal of Computational Chemistry,1994,15(1),105-123.
    [83]Radmer, R.J. and P.A. Kollman, Free energy calculation methods:A theoretical and empirical comparison of numerical errors and a new method for qualitative estimates of free energy changes, Journal of Computational Chemistry,1997,18(7),902-919.
    [84]Stjernschantz, E., J. Marelius, C. Medina, M. Jacobsson, N.P.E. Vermeulen, and C. Oostenbrink, Are automated molecular dynamics simulations and binding free energy calculations realistic tools in lead optimization? An evaluation of the linear interaction energy (LIE) method, Journal of Chemical Information and Modeling,2006,46(5),1972-1983.
    [85]Wall, I.D., A.R. Leach, D.W. Salt, M.G. Ford, and J.W. Essex, Binding constants of neuraminidase inhibitors:An investigation of the linear interaction energy method, Journal of Medicinal Chemistry,1999,42(25), 5142-5152.
    [86]Hansson, T., J. Marelius, and J. Aqvist, Ligand binding affinity prediction by linear interaction energy methods, Journal of Computer-Aided Molecular Design,1998,12(1),27-35.
    [87]de Amorim, H.L.N., R.A. Caceres, and P.A. Netz, Linear Interaction Energy (LIE) Method in Lead Discovery and Optimization, Current Drug Targets, 2008,9(12),1100-1105.
    [88]Neubauer de Amorim, H.L., R.A. Caceres, and P.A. Netz, Linear Interaction Energy (LIE) Method in Lead Discovery and Optimization, Current Drug Targets,2008,9(12),1100-1105.
    [89]Wang, W., J. Wang, and P.A. Kollman, What determines the van der Waals coefficient beta in the LIE (linear interaction energy) method to estimate binding free energies using molecular dynamics simulations?, Proteins-Structure Function and Genetics,1999,34(3),395-402.
    [90]Srinivasan, J., T.E. Cheatham, P. Cieplak, P.A. Kollman, and D.A. Case, Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices, Journal of the American Chemical Society, 1998,120(37),9401-9409.
    [91]Vorobjev, Y.N., J.C. Almagro, and J. Hermans, Discrimination between native and intentionally misfolded conformations of proteins:ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model, Proteins-Structure Function and Genetics,1998,32(4),399-413.
    [92]Jayaram, B., D. Sprous, M.A. Young, and D.L. Beveridge, Free energy analysis of the conformational preferences of A and B forms of DNA in solution, Journal of the American Chemical Society,1998,120(41), 10629-10633.
    [1]Piperno, G. and D.J.L. Luck, Axonemal Adenosine Triphosphatases from Flagella of Chlamydomonas-Reinhardtii-Purification of 2 Dyneins, Journal of Biological Chemistry,1979,254(8),3084-3090.
    [2]Dick, T., K. Ray, H.K. Salz, and W. Chia, Cytoplasmic dynein (ddlc1) mutations cause morphogenetic defects and apoptotic cell death in Drosophila melanogaster, Molecular and Cellular Biology,1996,16(5),1966-1977.
    [3]Lo, K.W.H., H.M. Kan, and K.K. Pfister, Identification of a novel region of the cytoplasmic dynein intermediate chain important for dimerization in the absence of the light chains, Journal of Biological Chemistry,2006,281, 9552-9559.
    [4]Benashski, S.E., A. Harrison, R.S. PatelKing, and S.M. King, Dimerization of the highly conserved light chain shared by dynein and myosin V, Journal of Biological Chemistry,1997,272(33),20929-20935.
    [5]Vallee, R.B., J.C. Williams, D. Varma, and L.E. Barnhart, Dynein:An ancient motor protein involved in multiple modes of transport, Journal of Neurobiology,2004,58(2),189-200.
    [6]Espindola, F.S., D.M. Suter, L.B.E. Partata, T. Cao, J.S. Wolenski, R.E. Cheney, S.M. King, and M.S. Mooseker, The light chain composition of chicken brain myosin-Va:Calmodulin, myosin-II essential light chains, and 8-kDa dynein light chain/PIN, Cell Motility and the Cytoskeleton,2000,47(4), 269-281.
    [7]Makokha, M., M. Hare, M.G. Li, T. Hays, and E. Barbar, Interactions of cytoplasmic dynein light chains Tctex-1 and LC8 with the intermediate chain IC74, Biochemistry,2002,41(13),4302-4311.
    [8]Lo, K.W.H., S. Naisbitt, J.S. Fan, M. Sheng, and M.J. Zhang, The 8-kDa dynein light chain binds to its targets via a conserved (K/R)XTQT motif, Journal of Biological Chemistry,2001,276(17),14059-14066.
    [9]King, S.M., E. Barbarese, J.F. Dillman, R.S. PatelKing, J.H. Carson, and K.K. Pfister, Brain cytoplasmic and flagellar outer arm dyneins share a highly conserved M(r) 8,000 light chain, Journal of Biological Chemistry,1996, 271(32),19358-19366.
    [10]Jaffrey, S.R. and S.H. Snyder, PIN:An associated protein inhibitor of neuronal nitric oxide synthase, Science,1996,274(5288),774-777.
    [11]Puthalakath, H., D.C.S. Huang, L.A. O'Reilly, S.M. King, and A. Strasser, The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex, Molecular Cell,1999,3(3), 287-296.
    [12]Crepieux, P., H. Kwon, N. Leclerc, W. Spencer, S. Richard, R.T. Lin, and J. Hiscott, I kappa B alpha physically interacts with a cytoskeleton-associated protein through its signal response domain, Molecular and Cellular Biology, 1997,17(12),7375-7385.
    [13]Vadlamudi, R.K., R. Bagheri-Yarmand, Z. Yang, S. Balasenthil, D. Nguyen, A.A. Sahin, P. den Hollander, and R. Kumar, Dynein light chain 1, a p21-activated kinase 1-interacting substrate, promotes cancerous phenotypes Cancer Cell,2004,5(6),575-585.
    [14]Lo, K.W.H., H.M. Kan, L.N. Chan, W.G. Xu, K.P. Wang, Z.G Wu, M. Sheng, and M.J. Zhang, The 8-kDa dynein light chain binds to p53-binding protein 1 and mediates DNA damage-induced p53 nuclear accumulation, Journal of Biological Chemistry,2005,280(9),8172-8179.
    [15]King, S.M. and R.S. Patelking, The M(R)=8,000 and 11,000 Outer Arm Dynein Light-Chains from Chlamydomonas Flagella Have Cytoplasmic Homologs, Journal of Biological Chemistry,1995,270(19),11445-11452.
    [16]Liang, J., S.R. Jaffrey, W. Guo, S.H. Snyder, and J. Clardy, Structure of the PIN/LC8 dimer with a bound peptide, Nature Structural Biology,1999,6(8), 735-740.
    [17]Fan, J.S., Q. Zhang, H. Tochio, M. Li, and M.J. Zhang, Structural basis of diverse sequence-dependent target recognition by the 8 kDa dynein light chain, Journal of Molecular Biology,2001,306(1),97-108.
    [18]Barbar, E., B. Kleinman, D. Imhoff, M.G Li, T.S. Hays, and M. Hare, Dimerization and folding of LC8, a highly conserved light chain of cytoplasmic dynein, Biochemistry,2001,40(6),1596-1605.
    [19]Rodriguez-Crespo, I., B. Yelamos, F. Roncal, J.P. Albar, P.R.O. de Montellano, and F. Gavilanes, Identification of novel cellular proteins that bind to the LC8 dynein light chain using a pepscan technique, Febs Letters,2001,503(2-3), 135-141.
    [20]Mohan, P.M.K., M. Barve, A. Chatterjee, and R.V. Hosur, PH driven conformational dynamics and dimer-to-monomer transition in DLC8, Protein Science,2006,15(2),335-342.
    [21]Chipot, C. and A. Pohorille, Free Energy Calculations. chemical physics, ed. T.J.J.P. Castleman A.W., Yamanouch K., Zinth W..2007, New York: Springer Berlin Heidelberg.69.
    [22]Makokha, M., Y.P.J. Huang, G. Montelione, A.S. Edison, and E. Barbar, The solution structure of the pH-induced monomer of dynein light-chain LC8 from Drosophila, Protein Science,2004,13(3),727-734.
    [23]Song, C.Y., W.Y. Wen, S.K. Rayala, M.Z. Chen, J.P. Ma, M.J. Zhang, and R. Kumar, Serine 88 phosphorylation of the 8-kDa dynein light chain 1 is a molecular switch for its dimerization status and functions, Journal of Biological Chemistry,2008,283(7),4004-4013.
    [24]Lightcap, C.M., S. Sun, J.D. Lear, U. Rodeck, T. Polenova, and J.C. Williams, Biochemical and structural characterization of the Pak1-LC8 interaction, Journal of Biological Chemistry,2008,283(40),27314-27324.
    [25]Benison, G., M. Chiodo, P.A. Karplus, and E. Barbar, Structural, Thermodynamic, and Kinetic Effects of a Phosphomimetic Mutation in Dynein Light Chain LC8, Biochemistry,2009,48(48),11381-11389.
    [26]Phillips, J.C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, and K. Schulten, Scalable molecular dynamics with N AMD, Journal of Computational Chemistry,2005,26(16),1781-1802.
    [27]MacKerell, A.D., M. Feig, and C.L. Brooks, Improved treatment of the protein backbone in empirical force fields, Journal of the American Chemical Society, 2004,126(3),698-699.
    [28]Guex, N. and M.C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer:An environment for comparative protein modeling, Electrophoresis,1997,18(15), 2714-2723.
    [29]Humphrey, W., A. Dalke, and K. Schulten, VMD:Visual molecular dynamics, Journal of Molecular Graphics,1996,14(1),33-&.
    [30]Jorgensen, W.L., J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein, Comparison of Simple Potential Functions for Simulating Liquid Water, Journal of Chemical Physics,1983,79(2),926-935.
    [31]Ryckaert, J.P., G. Ciccotti, and H.J.C. Berendsen, Numerical-Integration of Cartesian Equations of Motion of a System with Constraints-Molecular-Dynamics of N-Alkanes, Journal of Computational Physics,1977, 23(3),327-341.
    [32]Darden, T., D. York, and L. Pedersen, Particle Mesh Ewald - an N.Log(N) Method for Ewald Sums in Large Systems, Journal of Chemical Physics,1993, 98(12),10089-10092.
    [33]Darden, T., L. Perera, L.P. Li, and L. Pedersen, New tricks for modelers from the crystallography toolkit:the particle mesh Ewald algorithm and its use in nucleic acid simulations, Structure with Folding & Design,1999,7(3), R55-R60.
    [34]Feller, S.E., Y.H. Zhang, R.W. Pastor, and B.R. Brooks, Constant-Pressure Molecular-Dynamics Simulation-the Langevin Piston Method, Journal of Chemical Physics,1995,103(11),4613-4621.
    [35]Martyna, G.J., D.J. Tobias, and M.L. Klein, Constant-Pressure Molecular-Dynamics Algorithms, Journal of Chemical Physics,1994,101(5), 4177-4189.
    [36]Zwanzig, R.W., High-Temperature Equation of State by a Perturbation Method.1. Nonpolar Gases, Journal of Chemical Physics,1954,22(8), 1420-1426.
    [37]Pearlman, D.A., A Comparison of Alternative Approaches to Free-Energy Calculations, Journal of Physical Chemistry,1994,98(5),1487-1493.
    [38]Chipot, C., Milestones in the Activation of a G Protein-Coupled Receptor. Insights from Molecular-Dynamics Simulations into the Human Cholecystokinin Receptor-1, Journal of Chemical Theory and Computation, 2008,4(12),2150-2159.
    [39]Benison, G., P.A. Karplus, and E. Barbar, Structure and dynamics of LC8 complexes with KXTOT-motif peptides:Swallow and dynein intermediate chain compete for a common site, Journal of Molecular Biology,2007,371, 457-468.
    [40]Nyarko, A., L. Cochrun, S. Norwood, N. Pursifull, A. Voth, and E. Barbar, Ionization of His 55 at the dimer interface of dynein light-chain LC8 is coupled to dimer dissociation, Biochemistry,2005,44(43),14248-14255.
    [1]Craven, S.E. and D.S. Bredt, PDZ proteins organize synaptic signaling pathways, Cell,1998,93(4),495-498.
    [2]Zhang, M.J. and W.N. Wang, Organization of signaling complexes by PDZ-domain scaffold proteins, Accounts of Chemical Research,2003,36(7), 530-538.
    [3]Kim, E.J. and M. Sheng, PDZ domain proteins of synapses, Nature Reviews Neuroscience,2004,5(10),771-781.
    [4]Altschuler, Y., C. Hodson, and S.L. Milgram, The apical compartment: trafficking pathways, regulators and scaffolding proteins, Current Opinion in Cell Biology,2003,15(4),423-429.
    [5]Macara, I.G., Par proteins:partners in polarization, Curr Biol,2004,14(4), R160-2.
    [6]Day, P.J., W.V. Shaw, M.R. Gibbs, and A.G.W. Leslie, Acetyl Coenzyme-a Binding by Chloramphenicol Acetyltransferase-Long-Range Electrostatic Determinants of Coenzyme-a Recognition, Biochemistry,1992,31(17), 4198-4205.
    [7]Margolis, B. and J.P. Borg, Apicobasal polarity complexes, Journal of Cell Science,2005,118(22),5157-5159.
    [8]Suzuki, A. and S. Ohno, The PAR-aPKC system:lessons in polarity, Journal of Cell Science,2006,119(6),979-987.
    [9]Harris, B.Z. and W.A. Lim, Mechanism and role of PDZ domains in signaling complex assembly, Journal of Cell Science,2001,114(18),3219-3231.
    [10]Songyang, Z., A.S. Fanning, C. Fu, J. Xu, S.M. Marfatia, A.H. Chishti, A. Crompton, A.C. Chan, J.M. Anderson, and L.C. Cantley, Recognition of unique carboxyl-terminal motifs by distinct PDZ domains, Science,1997, 275(5296),73-77.
    [11]Zhang, Y.N., S. Yeh, B.A. Appleton, H.A. Held, P.J. Kausalya, D.C.Y. Phua, W.L. Wong, L.A. Lasky, C. Wiesmann, W. Hunziker, and S.S. Sidhu, Convergent and divergent ligand specificity among PDZ domains of the LAP and zonula occludens (ZO) families, Journal of Biological Chemistry,2006, 281(31),22299-22311.
    [12]Cho, K.O., C.A. Hunt, and M.B. Kennedy, The Rat-Brain Postsynaptic Density Fraction Contains a Homolog of the Drosophila Disks-Large Tumor Suppressor Protein, Neuron,1992,9(5),929-942.
    [13]Willott, E., M.S. Balda, A.S. Fanning, B. Jameson, C. Vanitallie, and J.M. Anderson, The Tight Junction Protein Zo-1 Is Homologous to the Drosophila Disks-Large Tumor-Suppressor Protein of Septate Junctions, Proceedings of the National Academy of Sciences of the United States of America,1993, 90(16),7834-7838.
    [14]Woods, D.F. and P.J. Bryant, Zo-1, Dlga and Psd-95/Sap90-Homologous Proteins in Tight, Septate and Synaptic Cell-Junctions, Mechanisms of Development,1993,44(2-3),85-89.
    [15]Itoh, M., M. Furuse, K. Morita, K. Kubota, M. Saitou, and S. Tsukita, Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2 and ZO-3, with the COOH termini of claudins, Journal of Cell Biology,1999,147(6), 1351-1363.
    [16]Mitic, L.L., E.E. Schneeberger, A.S. Fanning, and J.M. Anderson, Connexin-occludin chimeras containing the ZO-binding domain of occludin localize at MDCK tight junctions and NRK cell contacts, Journal of Cell Biology,1999,146(3),683-693.
    [17]Giepmans, B.N.G., Gap junctions and connexin-interacting proteins, Cardiovascular Research,2004,62(2),233-245.
    [18]Hunter, A.W., R.J. Barker, C. Zhu, and R.G. Gourdie, Zonula occludens-1 alters connexin43 gap junction size and organization by influencing channel accretion, Molecular Biology of the Cell,2005,16(12),5686-5698.
    [19]McNeil, E., C.T. Capaldo, and I.G. Macara, Zonula occludens-1 function in the assembly of tight junctions in Madin-Darby canine kidney epithelial cells, Molecular Biology of the Cell,2006,17(4),1922-1932.
    [20]Umeda, K., J. Ikenouchi, S. Katahira-Tayama, K. Furuse, H. Sasaki, M. Nakayama, T. Matsui, S. Tsukita, M. Furuse, and S. Tsukita, ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation, Cell,2006,126(4),741-754.
    [21]Katsuno, T., K. Umeda, T. Matsui, M. Hata, A. Tamura, M. Itoh, K. Takeuchi, T. Fujimori, Y. Nabeshima, T. Noda, S. Tsukita, and S. Tsukita, Deficiency of zonula occludens-1 causes embryonic lethal phenotype associated with defected yolk sac angiogenesis and apoptosis of embryonic cells, Molecular Biology of the Cell,2008,19(6),2465-2475.
    [22]Bazzoni, G. and E. Dejana, Endothelial cell-to-cell junctions:Molecular organization and role in vascular homeostasis, Physiological Reviews,2004, 84(3),869-901.
    [23]Xu, J.L., P.J. Kausalya, D.C.Y. Phua, S.M. Ali, Z. Hossain, and W. Hunziker, Early embryonic lethality of mice lacking ZO-2, but not ZO-3, reveals critical and nonredundant roles for individual zonula occludens proteins in mammalian development, Molecular and Cellular Biology,2008,28(5), 1669-1678.
    [24]Adachi, M., A. Inoko, M. Hata, K. Furuse, K. Umeda, M. Itoh, and S. Tsukita, Normal establishment of epithelial tight junctions in mice and cultured cells lacking expression of ZO-3, a tight-junction MAGUK protein, Molecular and Cellular Biology,2006,26(23),9003-9015.
    [25]Bazzoni, G., O.M. Martinez-Estrada, F. Orsenigo, M. Cordenonsi, S. Citi, and E. Dejana, Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin, Journal of Biological Chemistry, 2000,275(27),20520-20526.
    [26]Itoh, M., A. Nagafuchi, S. Moroi, and S. Tsukita, Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to or catenin and actin filaments, Journal of Cell Biology,1997,138(1),181-192.
    [27]Muller, S.L., M. Portwich, A. Schmidt, D.I. Utepbergenov, O. Huber, I.E. Blasig, and G. Krause, The tight junction protein occludin and the adherens junction protein alpha-catenin share a common interaction mechanism with ZO-1, Journal of Biological Chemistry,2005,280(5),3747-3756.
    [28]Giepmans, B.N.G. and W.H. Moolenaar, The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein, Current Biology,1998,8(16),931-934.
    [29]Toyofuku, T., M. Yabuki, K. Otsu, T. Kuzuya, M. Hori, and M. Tada, Direct association of the gap junction protein connexin-43 with ZO-1 in cardiac myocytes, Journal of Biological Chemistry,1998,273(21),12725-12731.
    [30]Maass, K., J. Shibayama, S.E. Chase, K. Willecke, and M. Delmar, C-terminal truncation of connexin43 changes number, size, and localization of cardiac gap junction plaques, Circulation Research,2007,101(12),1283-1291.
    [31]Akoyev, V. and D.J. Takemoto, ZO-1 is required for protein kinase C gamma-driven disassembly of connexin 43, Cellular Signalling,2007,19(5), 958-967.
    [32]van Zeijl, L., B. Ponsioen, B.N.G. Giepmans, A. Ariaens, F.R. Postma, P. Varnai, T. Balla, N. Divecha, K. Jalink, and W.H. Moolenaar, Regulation of connexin43 gap junctional communication by phosphatidylinositol 4,5-bisphosphate, Journal of Cell Biology,2007,177(5),881-891
    [33]Hunter, A.W., J. Jourdan, and R.G. Gourdie. Fusion of GFP to the carboxyl terminus of connexin43 increases gap junction size in HeLa cells, Cell Communication and Adhesion,2003,10(4-6),211-214.
    [34]Lampe, P.D. and A.F. Lau, Regulation of gap junctions by phosphorylation of connexins, Archives of Biochemistry and Biophysics,2000,384(2),205-215.
    [35]Warn-Cramer, B.J., W.E. Kurata, and A.F. Lau, Biochemical analysis of connexin phosphorylation, Methods Mol Biol,2001,154,431-46.
    [36]Lampe, P.D. and A.F. Lau, The effects of connexin phosphorylation on gap junctional communication, International Journal of Biochemistry & Cell Biology,2004,36(7),1171-1186.
    [37]Lau, A.F., W.E. Kurata, M.Y. Kanemitsu, L.W.M. Loo, B.J. WarnCramer, W. Eckhart, and P.D. Lampe, Regulation of connexin43 function by activated tyrosine protein kinases, Journal of Bioenergetics and Biomembranes,1996, 28(4),359-368.
    [38]Goodall, H. and B. Maro, Major Loss of Junctional Coupling During Mitosis in Early Mouse Embryos, Journal of Cell Biology,1986,102(2),568-575.
    [39]Xie, H.Q., D.W. Laird, T.H. Chang, and V.W. Hu, A mitosis-specific phosphorylation of the gap junction protein connexin43 in human vascular cells:Biochemical characterization and localization, Journal of Cell Biology, 1997,137(1),203-210.
    [40]Kanemitsu, M.Y., W. Jiang, and W. Eckhart, Cdc2-mediated phosphorylation of the gap junction protein, connexin43, during mitosis, Cell Growth & Differentiation,1998,9(1),13-21.
    [41]Lampe, P.D., W.E. Kurata, B.J. Warn-Cramer, and A.F. Lau, Formation of a distinct connexin43 phosphoisoform in mitotic cells is dependent upon p34(cdc2) kinase, Journal of Cell Science,1998,111,833-841.
    [42]Lampe, P.D., E.M. TenBroek, J.M. Burt, W.E. Kurata, R.G. Johnson, and A.F. Lau, Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication, Journal of Cell Biology,2000,149(7), 1503-1512.
    [43]Solan, J.L., M.D. Fry, E.M. TenBroek, and P.D. Lampe, Connexin43 phosphorylation at S368 is acute during S and G(2)/M and in response to protein kinase C activation, Journal of Cell Science,2003,116(11), 2203-2211.
    [44]Fanning, A.S., M.F. Lye, J.M. Anderson, and A. Lavie, Domain swapping within PDZ2 is responsible for dimerization of ZO proteins, Journal of Biological Chemistry,2007,282(52),37710-37716.
    [45]Wu, J.W., Y.S. Yang, J.H. Zhang, P. Ji, W.J. Du, P. Jiang, D.H. Xie, H.D. Huang, M. Wu, G.Z. Zhang, J.H. Wu, and Y.Y. Shi, Domain-swapped dimerization of the second PDZ domain of ZO2 may provide a structural basis for the polymerization of claudins, Journal of Biological Chemistry,2007, 282(49),35988-35999.
    [46]Chen, J., L.F. Pan, Z.Y. Wei, Y.X. Zhao, and M.J. Zhang, Domain-swapped dimerization of ZO-1 PDZ2 generates specific and regulatory connexin43-binding sites, Embo Journal,2008,27(15),2113-2123.
    [47]Berendsen, H.J.C., D. Vanderspoel, and R. Vandrunen, Gromacs - a Message-Passing Parallel Molecular-Dynamics Implementation, Computer Physics Communications,1995,91(1-3),43-56.
    [48]Lindahl, E., B. Hess, and D. van der Spoel, GROMACS 3.0:a package for molecular simulation and trajectory analysis, Journal of Molecular Modeling, 2001,7(8),306-317.
    [49]VAN GUNSTEREN, W.F., S.R. BILLETER, A.A. EISING, and e. al., Biomolecular Simulation: The GROMOS96 Manual and User Guide.1996, Zurich, Groningen:Hochschulverlag AG an der ETH Zurich and BIOMOS b.v.
    [50]Hansson, T., P. Nordlund, and J. Aqvist, Energetics of nucleophile activation in a protein tyrosine phosphatase, Journal of Molecular Biology,1997,265(2), 118-127.
    [51]BERENDSEN, H.J.C., J.P.M. POSTMA, F. VAN GUNSTEREN W, and e. al, Interaction models for water in relation to protein hydration.1981, Reidel Publishing Company:Dordrech. p.331-342.
    [52]Darden, T., D. York, and L. Pedersen, Particle Mesh Ewald-an N.Log(N) Method for Ewald Sums in Large Systems, Journal of Chemical Physics,1993, 98(12),10089-10092.
    [53]Essmann, U., L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen, A Smooth Particle Mesh Ewald Method, Journal of Chemical Physics,1995,103(19),8577-8593.
    [54]Hess, B., H. Bekker, H.J.C. Berendsen, and J. Fraaije, LINCS:A linear constraint solver for molecular simulations, Journal of Computational Chemistry,1997,18(12),1463-1472.
    [55]Berendsen, H.J.C., J.P.M. Postma, W.F. Vangunsteren, A. Dinola, and J.R. Haak, Molecular-Dynamics with Coupling to an External Bath, Journal of Chemical Physics,1984,81(8),3684-3690.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700