用户名: 密码: 验证码:
光学区雷达目标散射中心提取及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着现代信号处理技术以及高分辨雷达技术的发展,雷达目标回波特性的研究与分析受到人们广泛的关注。其中,研究的重点之一是通过目标回波数据分析雷达目标强散射中心的物理位置、散射类型、散射强度以及极化信息,借以判断目标的状态、特性与类型。本文主要研究了光学区基于几何绕射理论(GTD)的雷达目标散射中心提取及其应用。主要研究内容如下:
     1基于GTD的雷达目标一维散射中心参数估计为了快速准确的估计基于一维GTD模型的散射中心参数,本文研究了两种方法:
     (1)将改进TLS-ESPRIT算法与特征分析法结合用于精确快速提取基于GTD模型的一维散射中心参数。其中,利用特征分析法的信号与噪声子空间正交特性估计散射中心的类型参数,提高了密集散射点的类型判断正确率。仿真实验中,通过比较信噪比、雷达发射带宽以及散射点疏密程度等对散射中心参数估计性能的影响,验证了改进TLS-ESPRIT方法结合正交类型判断法具有较好的参数估计性能和较高的分辨率。
     (2)将基于传播算子的多重信号特征方法(PM-MUSIC)用于散射中心参数估计。其核心思想是利用传播算子法取代MUSIC方法中的特征值分解,以快速计算出噪声子空间矩阵。仿真实验验证了较高信噪比条件下PM-MUSIC算法在保证良好的散射中心估计性能的同时也提高了运算效率。
     2基于GTD的多维目标散射中心参数估计
     多维散射中心提取能够提供比一维散射中心更多有价值的信息。本文在前人对多维散射中心参数的理论及提取方法的研究基础上做了进一步研究。具体内容如下:
     (1)分析并推导了基于几何绕射理论的2D-GTD模型,并将其近似为二维谱估计模型。同时,采用重采样技术推导了3D-GTD模型与三维谱估计模型的关系。
     (2)将二维修正矩阵束法(2D-MMEMP)及2D-ESPRIT算法用于二维GTD模型的散射中心参数提取。修正方法选用置换矩阵简化了第二维参数计算过程,并利用自相关矩阵的特征值分解代替Hankel矩阵的奇异值分解,一定程度上减少了经典二维矩阵束法(2D-MEMP)的运算量;其中,2D-MMEMP方法是依据一维参数有无重复或近似值选择第二维参数的计算方法, 2D-ESPRIT算法则是通过参数调节避免了特征值重根造成的特征向量不唯一问题,这两种修正方法均保证了二维散射中心参数估计的准确性且无需额外的参数配对过程。
     (3)提出一种修正的三维增广矩阵束算法(3D-MMEMP) ,并将该算法及修正3D-ESPRIT(3D-MESPRIT)方法用于三维GTD模型的散射中心参数提取。这两种修正方法利用空间平滑三种扫描顺序之间的关系,建立置换矩阵,简化了目标三维散射中心参数提取的计算量。3D-MMEMP和3D-MESPRIT方法提取三维参数均无需额外配对过程。即使在一维参数中出现重复或近似值的情况下,仍然能够准确估计出另外两维参数。
     3基于GTD的全极化目标散射中心参数提取
     本文结合全极化信息与高分辨技术研究了基于全极化GTD理论的散射中心一维、二维参数提取问题。
     (1)提出一种极化线性变换(Polarization Linear Transform)的回波数据处理方法。这种方法既可以避免分别对单极化通道进行参数提取,也可以一定程度上简化并行极化处理的运算量。文中采用极化线性变换和基于特征空间的空间谱估计(PL-ES)相结合的方法提取出目标全极化一维散射中心的参数信息,取得了较好的估计效果。
     (2)提出基于极化线性变换的2D-ESPRIT方法(2D-PL-ESPRIT)。并采用该算法对全极化二维GTD模型的散射中心参数进行估计,克服了单极化通道运算复杂以及参数估计不准确的问题,同时避免了二维并行极化处理方法的大运算量问题,估计效果较好。
     4基于散射中心提取技术的雷达目标识别将五类战斗机的主散射中心作为特征进行目标识别。利用五种散射中心参数估计方法及两种识别方法对五类战斗机进行识别,并对其识别性能进行分析,论证了散射中心作为目标特征的可行性。具体内容有:
     (1)将PM-MUSIC方法与支持向量机(SVM)联合用于目标识别。首先,用PM-MUSIC方法提取五类战斗机的一维散射中心特征;其次,依据飞机尺寸剔除由噪声产生的虚假散射中心;然后,利用中心矩标准化各散射中心参数,划分训练样本以及测试样本;最后通过支持向量机(SVM)进行目标识别。
     (2)采用南京航空航天大学雷达目标特性研究中心开发的雷达目标后向散射仿真软件,计算五类战斗机F16、J6、M2000、Su27、J8II的回波。分别使用传统的MUSIC、PM-MUSIC、改进TLS-ESPRIT、IFFT以及矩阵束(MP)等五种不同的散射中心提取方法结合支持向量机(SVM)以及自适应高斯分类器(AGC)两种分类方法对五类战斗机进行识别。仿真比较了各类算法的识别性能,并分析了实验数据压缩比、信噪比以及雷达带宽对识别性能的影响。通过比较说明在一般情况下,PM-MUSIC和支持向量机(SVM)联合的散射中心目标识别算法效果较好。
     5基于散射中心提取技术的RCS数据压缩拟合本文以GTD散射中心模型为基础,分析散射中心提取技术在RCS数据处理上的应用。首先,利用MP、改进TLS-ESPRIT以及MUSIC等算法获得散射中心各参数,然后通过GTD模型拟合重建RCS数据。其目的是研究用散射中心参数压缩回波数据,节省存储空间。
     (1)分别通过IFFT方法以及MP、改进TLS-ESPRIT、MUSIC三种基于GTD模型的散射中心提取方法进行回波数据压缩。
     (2)分析对比了几种压缩方法的RCS拟合效果,讨论了点目标与体目标的拟合结果、目标在不同方位角条件下的拟合性能以及频率域与角度域压缩拟合的效果。说明了散射中心技术在RCS数据压缩拟合领域具有良好的应用效果。
The research on radar target echo properties has aroused great attention among researchers due to the development of modern signal processing and high resolution radar techniques in recent years. Especially, most researchers focus on making use of the information obtained from the radar target echo data, such as scattering centers’locations, types, amplitudes, and polarization to judge the targets’states, characteristics and classes. The thesis studies several key problems of radar target scattering centers extraction and its application based on the geometrical theory of diffraction (GTD) model in optical region. The main works are summarized as follows:
     1 1D scattering centers parameters estimation of radar target based on GTD model In order to increase accuracy and efficiency of the parameters extraction based on 1D GTD model, two improved algorithms are studied in the thesis. The two methods are summarized as follows:
     (1) The improved total least squares-rotational invariance technique (TLS-ESPRIT) combined with the orthogonality of signal and noise subspace is applied to extract the scattering center based on 1D-GTD model efficiently. Where, the orthogonality of signal and noise subspace is used to determine the scattering center’s type. In this way the dense points’types can be judged more accurately. Simulations demonstrate that the improved TLS-ESPRIT combined with the orthogonality method can achieve good accuracy by comparing the results of different conditions, such as signal to noise ratio(SNR), radar bandwidth and the density of scattering centers, on the estimation of parameters.
     (2) MUSIC algorithm based on Propagator Method (PM-MUSIC) is applied to estimate the scattering center. The PM method instead of the matrix EVD of the MUSIC is applied to compute the noise subspace matrix. Simulations show that the PM-MUSIC can achieve good accuracy in the estimation of scattering centers and reduced the computation complexity under high SNR.
     2 Multidimensional scattering centers parameters estimation of radar target based on GTD model Multidimensional scattering center extraction can provide more valuable information than 1D scattering center. The thesis makes a further research based on the previous scattering center extraction methods as follows:
     (1) The 2D-GTD model based on the geometrical theory of diffraction is analyzed, formulated, and approximated to the 2D spectrum estimation model. Simultaneously, the relationship between 3D-GTD model and 3D spectrum estimation model is also derived.
     (2) 2D modified matrix enhancement and matrix pencil method (2D-MMEMP) and 2D rotational invariance techniques (2D-ESPRIT) are employed to extract the scattering center based on 2D-GTD model. The permutation matrix is used to reduce the calculation cost of the second dimension parameters in the modified methods. Meanwhile, EVD on autocorrelation matrix of enhanced matrix is introduced to decrease the computational load of SVD on enhanced matrix. According to 1D estimated parameters, the proper procedure is selected to estimate the 2D parameters in the 2D-MMEMP method. And in the 2D-ESPRIT method, an adjustable parameter is used to avoid the problem of non-unique eigenvectors caused by the repeated eigenvalues. These two modified methods can achieve good accuracy in the estimation of 2D-scattering centers and avoid the extra pairing procedure。
     (3) A 3D-MMEMP is developed. The method and 3D-MESPRIT methods are applied to extract the 3D scattering centers based on 3D-GTD model. In these two methods, the permutation matrix is established by utilizing the relationship of three scanning orders on space smoothing. The computational load of the other dimension parameters estimation is decreased. The 3D-MMEMP and 3D-MESPRIT methods do not require any pairing algorithm. Furthermore, they can extract the other dimensions’scattering centers accurately even if there are repeated or similar values in one dimension.
     3 Full-Polarization scattering centers estimation based on GTD model The thesis studies the 1D and 2D full-polarization scattering center extraction techniques based on full-polarization GTD model by combining the high-resolution technique with the full-polarization information.
     (1) A polarization linear transform in full-polarization scattering centers estimation is proposed. This new method avoids the parameters extraction of each channel and decreases the computational complexity in smoothing process of PP-MUSIC method. Moreover, the polarization linear transform combined with the eigenspace spatial spectrum estimation method (PL-ES) is introduced to extract the 1D-GTD scattering centers to get better estimation result.
     (2) A 2D-ESPRIT based on polarization linear transform (2D-PL-ESPRIT) is proposed, which is used to extract the full-polarization 2D-GTD scattering centers. This method avoids the inaccuracy of the signal channel extraction, and also avoids the great computational load of the parallel polarization MUSIC method (PP-MUSIC). Simulations show that the 2D-PL-ESPRIT can achieve good accuracy in the estimation of full-polarization 2D-GTD scattering centers and reduce the computation complexity.
     4 Radar target identification based on scattering centers extraction Five kinds of fighters scattering centers are used as features in target identification. The performance analyses show the feasibility of the scattering centers as the features to identify the target. The works are detailed as follows:
     (1) The PM-MUSIC combined with the support vector machine (SVM) is applied to target identification. The 1D scattering centers of five planes are extracted by the PM-MUSIC method, and the spurious scattering centers are excluded by using the range window around the target region. The scale training samples and testing samples are obtained according to the central moments of the distribution of 1-D scattering centers on the target. Finally, targets are identified by SVM.
     (2) The echo data of five fighters(F16、J6、M2000、Su27 and J8II) are calculated by the radar target back scattering simulation software which is developed by radar target character research center of Nan Jing University of Aeronautics and Astronautics. The 1D scattering centers of five fighters are extracted by the five methods-MUSIC, PM-MUSIC, improved TLS-ESPRIT, IFFT and Matrix pencil (MP) under different conditions(SNR, bandwidth, data compression ratio). And the five fighters are identified by the two kinds of identification methods–SVM and adaptive Gaussian classifier (AGC) respectively. Simulations demonstrate that the PM-MUSIC combined with the SVM has a better performance.
     5 RCS data compression and fitting based on scattering centers extraction This thesis studies the application of scattering centers in RCS data compression based on GTD model. The MP, improved TLS-ESPRIT and MUSIC methods are applied to extract the scattering centers parameters. Then the extracted scattering centers are used to fit and reconstruct the RCS data by the GTD model. In this way, the echo data are compressed.
     (1) The IFFT method and scattering extraction method based on GTD model, such as MP, improved TLS-ESPRIT and MUSIC, are used to extract the scattering centers for echo data compression.
     (2) The thesis compares the RCS fitting performance of several compression methods, discuses the fitting effect of the point target and volume target. The fitting performance of frequency domain and angle domain is analyzed, and the fitting performance in different azimuth is analyzed also. Simulations show a good application effect of the scattering center technique in RCS data compression and fitting field.
引文
[1]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社, 2005.
    [2] Hurst M P, Mittra R.Scattering center analysis via prony’s method[J].IEEE Transactions on Antennas and Propagation, 1987, 35(8): 986-988.
    [3] Carriere R, Moses R L. High resolution radar target modeling using a modified Prony estimation [J]. IEEE Transactions on Antennas and Propagation, 1992, 40(1):13-18.
    [4] Van D M, Odendaal J W, Botha E C.2D microwave image using TLS-ESPRIT with matrix enhancement[J]. Microwave and Optical Technology Letters, 1995, 38:814-824.
    [5] Cui S M, Jin D X, Fang D G. Scattering center analysis of radar targets with the use of the matrix pencil method combined with the GTD-based method[J]. Microwave and Optical Technology Letters, 1997, 14: 244-247.
    [6] Potter L C, Chiang D M and Carriere R . A GTD-based parametric model for radar scattering[J].IEEE Transactions on Antennas and Propagation, 1995, 43(10): 1058-1066.
    [7] Li Q, Rothwell E J. Scattering center analysis of radar target using fitting scheme and genetic algorithm [J], IEEE Transactions on Antennas and Propagation, 1996, 44: 198-207.
    [8] Keller J B. Geometrical theory of diffraction [J]. Optics Soc. of America, 1962: 116-130.
    [9] Tsao J,Steinberg B D. Reduction of sidelobe and speckle artifacts in microwave imaging: The CLEAN technique [J].IEEE Transactions on Antennas and Propagation, 1988, 36(4): 543-556.
    [10] Bhalla R,Ling H.ISAR image formation using bistatic data computed from the shooting and bouncing ray technique[J] . Journal of Electromagnetic Waves and Applications , 1993 , 7(9):1271-1287.
    [11] Bhalla R,Ling H.Three-Dimensional scattering center extraction using the shooting and bouncing ray technique[J].IEEE Transactions on Antennas and Propagation,1996,44(11): 1445-1453.
    [12] Bhalla R,Ling H. Bistatic scattering center extraction using the shooting and bouncing ray technique[A]. Proceedings of SPIE [C], 1999: 612-619.
    [13] Bhalla R, Moore J, Ling H. A global scattering center representation of complex targets using the shooting and bouncing ray technique[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(12):1850-1856.
    [14] Bhalla R,Ling H.3D scattering center representation of complex targets using the shooting and bouncing ray technique: a review[J]. IEEE antennas and propagation magazine, 1998, 40(5):30-39.
    [15] Choi I S, Kim H T. Two-Dimensional evolutionary programming-based CLEAN [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(1):373-382.
    [16] Hughes E J, Leyland M. Using multiple genetic algorithms to generate radar point-scatterer models[J]. IEEE Transactions on Evolutionary Computation, 2000, 4(2):147-163.
    [17]孙真真,陈曾平.一种高频区复杂雷达目标二维散射的参数模型[J].国防科技大学学报,2001,23(4):113-119.
    [18]计科峰,匡纲要,粟毅.基于SAR图像的目标散射中心特征提取研究方法[J].国防科技大学学报,2003,25(1):45-50.
    [19]刘拥军,葛德彪,张忠治.有属性的散射中心理论及应用[J] .电波科学学报,2003,18(5):559-563.
    [20]贺治华,张旭峰.一种GTD模型参数估计的新方法[J].电子学报.2005,33(9) : 1679-1682.
    [21]贺治华,黎湘,张旭峰.基于MUSIC算法的GTD模型参数估计[J].系统工程与电子技术,2005,27(10): 1685-1688.
    [22]张贤达.现代信号处理[M].第二版.北京:清华大学出版社,2003: 138-146.
    [23] Hua Y B,Sarkar T K.On SVD for estimating generalized eigenvalues of singular matrix pencil in noise[J].IEEE Transactions on Signal Processing,1991,39(4): 892-899.
    [24] Rouquette S and Najim M.Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods [J].IEEE Transactions on Signal Processing, 2001, 49(1): 237-245.
    [25] Wang Y X, Ling H.A Frequency-Aspect Extrapolation Algorithm for ISAR Image Simulation Based on Two-Dimensional ESPRIT[J].IEEE transactions on geoscience and remote sensing , 2000,38(4):1743-1748.
    [26] Burrows M L . Two-dimensional ESPRIT with tracking for radar imaging and feature extraction[J]. IEEE Transactions on Antennas and Propagation,2004,52(2):524-532.
    [27] Hua Y B.Estimating Two-Dimensional Frequencies by Matrix Enhancement and Matrix Pencil[J]. IEEE Transactions on Signal Processing ,1992,40( 9):2267-2280.
    [28] Chen F J and Carrson C.Estimaion of Two-Dimensional Frequencies Using Modified Matrix Pencil Method [J] .IEEE Transactions on Signal Processing,2007,55(2):718-724.
    [29]王菁周建江.一种基于GTD模型的目标散射中心提取方法[J] .系统工程与电子技术,2008, 30(11):2146-2150.
    [30]王菁周建江汪飞.基于GTD模型的目标二维散射中心提取[J] .电子与信息学报,2009, 31(4):958-962.
    [31]付耀文贾宇平.基于一维散射中心匹配的雷达目标识别[J].电子学报,2006,34(3): 404-407.
    [32]沈明华付强卢再奇.基于多散射中心估计的飞机目标识别.信号处理.2006,22(4):605-608.
    [33]樊萍景占荣.雷达目标一维散射中心识别特征提取研究[J].系统工程与电子技术,2008, 30(12):2352-2354.
    [34] Kim K T, Seo D K, Kim H T.Radar target identification using one-dimensional scattering centres[C].IEE Proceedings-Radar, Sonar and Navigation. 2001, 148(5) : 285-296.
    [35]张恂.雷达目标的高分辨参数建模及其在目标识别中的应用[D].博士论文.国防科技大学研究生院,1997.
    [36] Wang Y, Ling H.A model-based angular extrapolation technique for iterative method-of-moments solvers[J]. Microwave and Optical Technology Letters,1999,20 (4):229-233.
    [37] Gupta I J, Beals M J, Moghaddar A . Data extrapolation for high resolution radar imaging[J]. IEEE Transactions on Antennas and Propagation, 1994, 42:1540-1545.
    [38] Tseng N, Burnside W D . A very efficient RCS data compression and reconstruction technique[J]. Tech. Rep. No. 722780-4, ElectroSci. Lab., Ohio State University, Columbus, 1992.
    [39] Skolnik M I.Radar Handbook[M].McGraw-Hill Publishing Company, 1990.
    [40] Chen V C, Ling H.Time-Frequency Transforms for Radar Imaging and Signal Analysis [M]. Boston: Artech House, 2002.
    [41] Bettini G, Bicci A. Cluster model: a new procedure for the computation of E.M. scattering from radar targe[A]. Proceedings of the 1996 IEEE Radar Conference t[C], May 1996:351-356.
    [42] Simpson S, Galloway P, Bell C. Complex target signature generation[A]. Proceeding of ICSP’96[C].485-488.
    [43]孙长印,保铮.雷达成像近似二维模型及其超分辨算法[J].电子学报,1999,27(12):84-87.
    [44] Rigling B D, Moses R L.Three-dimensional Surface Reconstruction from Multistatic SAR Images[J].IEEE Transactions on Image Processing , 2005, 14(8): 1159-1171.
    [45] Goyette T M, Dickinson J C, et al.Three dimensional fully polarimetric W-band ISAR imagery of scale-model tactical targets using a 1.56THz compact range[A] . Proceedings of SPIE[A], 2003,5095:66-74.
    [46] Iwamoto M, Kirimoto T.A novel algorithm for reconstructing three-dimensional target shapes using sequential radar images[J].IEEE International symposium on Geoscience and Remote sensing, 2001,4 :1607-1609.
    [47] Dillon K J ,et al.Estimating 3-D Orientation from 1-D Projection with Application to Radar[A].Proceedings of SPIE 2003[C],5095:216-223.
    [48] Bryant M L, Gostin LL, Soumekh M.3-D E-CSAR imaging of a T-72 tank and synthesis of its SAR reconstructions[J] . IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(1):211-227.
    [49] Mayhan J T, Burrows M L, Cuomo K M, et al.High Resolution 3D“Snapshot”ISAR Imaging and Feature Extraction[J] . IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2):630-641.
    [50] Xu X J, Narayanan R M.Three-Dimensional Interferometric ISAR Imaging for Target Scattering Diagnosis and Modeling[J].IEEE Transactions on Image Processing, 2001, 10(7):1094-1102.
    [51] Wang G, Xia X G, Chen V C.Three-Dimensional ISAR Imaging of Maneuvering Targets Using Three Receivers[J].IEEE Transactions on Image Processing, 2001,10(3):436-447.
    [52] Weiss I . Projective Invariants of Shapes[A] . DARPA Image Understanding Workshop Proceedings[C],1988.1125-1134.
    [53] Potter L C, Moses R L.Attributed scattering centers for automatic target recognition[J].IEEE Transactions on Image Processing, 1997,6 (1): 79-91.
    [54] Liao S P, Li X G, Fang D G.The optimal approximation algorithm of feature coefficients and recognition of target[J].Chinese Journal of Electronics, 1993,5(1):18-22.
    [55] Bechtel M E.Short pulse target characteristics.Atmospheric effects on radar target identification and imaging[M].H.E.G.Jesle (ed.). Bosten/Holland: Reidel Publishing,1976: 3-53.
    [56]郭桂蓉,庄钊文,陈曾平.电磁特征抽取与目标识别[M].国防科大出版社,1996.
    [57]阮颖铮编著.电磁散射理论基础[M].成都电讯工程学院出版社, 1989.
    [58] Petter N. Stoyle.ISAR Image Interpretation.Non-Cooperative air target identification using radar[A].NATO RTO Meeting proceedings[C]. Mannheim, Germany. Apr. 1998.
    [59] Rissanen J.Modeling by the shortest data description[J]. Automatica, 1978, 14:465-471.
    [60] Akaike H. Information Theory and an extension of the maximum likelihood principle[A]. Proc 2nd Int. Symp. Inform. Theory. B. N[C]. 1973.
    [61] Willimas D B.Counting the degrees of freedom when using AIC and MDL to detect signals[J].IEEE Transactions on Signal Processing ,1994,42( 11):3282-3284.
    [62] Wu H T, Yang J F, Chen F K.Source number estimators using transformed gerschgorin radii J[J].IEEE Transactions on Signal Processing ,1995,43(7):1325-1333.
    [63] Djuric P M.A model selection rule for sinusoids white Gaussian noise[J].IEEE Transactions on Signal Processing, 1996, 44(7): 1744-1751.
    [64] Djuric P M.Model selection based on asymptotic Bayes theory[A].Proc. IEEE Seventh SP workshop Stat. Signal Array Process[C]., Quebec, Canada, 1994:7-10.
    [65] Ying C H J, Sabharwal A.Moses R L.A combined order selection and parameter estimation algorithm for undamped exponentials[J] . IEEE Transactions on Signal Processing, 2000, 48 (3):693-701.
    [66] Altes R A.Sonar for generalized target description and its similarity to animal echo location system[J].J. Acoust. Soc.Amer., 1976, 59:97-105.
    [67] Walton E K.Comparison of Fourier and maximum entropy techniques for high-resolution scattering studies[J].Radio Sci., 1987,22 :350-356.
    [68] Gupta I J.High-resolution radar imaging using 2D linear prediction[J].IEEE Transactions on Antennas and Propagation, 1994, 42:31-37.
    [69] Odendaal J W, Barnard E, Pistorius C W I.Two-dimensional superresolution radar imaging using the MUSIC algorithm[J] . IEEE Transactions on Antennas and Propagation, 1994, 42: 1346-1391.
    [70] Quinquis A, Radoi E, Totir F C . Some radar imagery results using superresolution techniques[J].IEEE Transactions on Antennas and Propagation, 2004, 52(5): 1-15.
    [71]李晓辉黎湘郭桂蓉.基于ICA的雷达目标3D成像方法研究[J].信号处理, 2005, 21(2):144-148.
    [72]贺治华张旭峰黎湘等.色噪声环境下GTD模型的参数估计[J].信号处理,2006,22(2):208-210.
    [73]周剑雄.光学区雷达目标三维散射中心重构理论与技术[J].博士论文,长沙:国防科技大学研究生院, 2006 4.
    [74]周剑雄,石志广,付强.宽带雷达目标散射中心类型参数估计性能分析[J].数据采集与处理,2006,21(4): 380-385.
    [75]周剑雄,石志广,付强.雷达目标散射中心参数估计的极限性能分析[J].电子学报,2006,34(4): 726-731.
    [76] Kim K T, Kim H T.Two-Dimensional scattering center extraction based on multiple elastic modules network[J].IEEE Transactions on Antennas and Propagation. 2003, 4:848-861.
    [77]吕玉增,曹敏,贾宇平等.基于遗传算法的二维散射中心提取研究[J].现代雷达,2006,28(11):64-68.
    [78]石志广,周剑雄,赵宏钟等.基于协同粒子群优化的GTD模型参数估计方法[J].电子学报,2007,35(6):1102-1107.
    [79]代大海,王雪松.基于相干极化GTD模型的散射中心提取新方法[J].系统工程与电子技术,2007,29(7):1057-1061.
    [80]代大海,王雪松,肖顺平.基于二维CP-GTD模型的全极化ISAR超分辨成像[J].自然科学进展,2007,17(10):1439-1448.
    [81] Dai D H, Wang X S, Xiao S P.Fully polarized scattering center extraction and parameter estimation: P-MUSIC algorithm[J].Signal Processing, 2007, 23(6): 818-822.
    [82] Diemunsch J R, Wissinger J.Moving and stationary target acquisition and recognition (MSTAR) model-based automatic target recognition: search technology for a robust ATR[A].Proceedings of SPIE[C], 1998, 3370.481-492.
    [83] Smith C R, Goggana P M.Radar target identification[J].IEEE antennas and propagation magazine, 1993, 35(2):27-28.
    [84] Williams R L, Gross D C, Westerkamp J J.1D HRR data analysis and ATR assessment.SPIE conference on algorithms for SAR imagery, Orlando, Florida, 1998, 3370:588-596.
    [85] Harrington R F.Time-Harmonic electromagnetic fields[M].New York: McGraw-Hill, 1968.
    [86] Bowman J J, et al.Electromagnetic and acoustic scattering by simple shapes[M].Amsterdam: North-Holland Publishing, 1969.
    [87] Klement D, et al.Special problems in applying the physical optics method for backscatter computations of complicated objects[J] . IEEE Transactions on Antennas and Propagation ,1988(2):228-237.
    [88] Kontt E F.A progression of high frequency RCS prediction techniques[J].Proceedings of the IEEE, 1985,73(2):252-264.
    [89] Lee S W.Comparison of uniform asymptotic theory and ufimtsev’s theory of electromagnetic edge diffraction[J].IEEE Transactions on Antennas and Propagation, 1977(2):162-170.
    [90] Michaeli A. Elimination of infinities in equivalent edge currents-Part I: Fringe current components[J].IEEE Transactions on Antennas and Propagation, 1986(7):912-918.
    [91] Saholos J N, Thiele G A . On the applications of the GTD-MM techniques and its limitations[J].IEEE Transactions on Antennas and Propagation, 1981(5):780-876.
    [92] Ruck G T.Radar cross section handbook[M].New York: Plenum press, 1970. 28-139.
    [93] Rius J M . GRECO: Graphical electromagnetic computing for RCS prediction in real time[J].IEEE antennas and propagation magazine. 1993, 35(2).
    [94]张贤达.现代信号处理[M].清华大学出版社,2002.
    [95] Li P. Sun J, Yu B. Two-dimensional spatial-spectrum estimation of coherent signals without spatial smoothing and eigendecomposition. IEE Proceedings-Radar, Sonar and Navigation, 1996, 143(5):295-299.
    [96]周争光,廖桂生,王洪洋等.基于PM的波达方向、频率的快速估计方法[J].电波科学学报,2006,21(3):428-431
    [97] Zhang X F, Xu D Z.A Novel DOA estimation algorithm based on eigen space[J].IEEE 2007 International Symposium on Microwave, Antenna, Propagation, and EMC Technologies for wireless communication, 2007 :551-554.
    [98]王菁,汪飞,周建江.一种目标散射中心特征快速提取算法[J],南航学报,2009,41(3): 385-390.
    [99] Zhou J J,Zhu Z D, Shu Y Z, Cai Q.Extrapolaration of RF echo data based on AR model[J].Transactions of Nanjing University of Aeronautics & Astronautics, 1999,16(2):193-199.
    [100] Li J, Stoica P . Efficient mixed-spectrum estimation with applications to targetfeature extraction[J].IEEE Transactions on Signal Processing, 1996,44(2): 281-295.
    [101] Kouyoumjian R G, Pathak P H.A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface[J].IEEE Transactions on Signal Processing,1974,62(11):1448-1461.
    [102] Steedly W M, Moses R L. High resolution exponential modeling of fully polarized radar returns [J] .IEEE Transactions on Aerospace and Electronic Systems, 1991,27(3):459-469.
    [103] Sacchini J J, Steedly W M, Moses R L.Two-dimensional Prony modeling and parameter estimation [J].IEEE Transactions on Signal Processing,1993,41(11):3127-3137.
    [104] Keller J B.The Geometrical theory of diffraction, symposium on microwave optics[J].Eaton electronic research laboratory, McGill University, Montreal, Canada, June 1953.
    [105] Chiang D M.Parametric signal processing techniques for model mismatch and mixed parameter estimation[D]. Ph. Dissertation, Ohio State University, 1996.
    [106]戴华.矩阵论[M].第一版,科学出版社,2001.
    [107]张贤达.矩阵分析与应用[M].第四版,清华大学出版社,2008.
    [108] Compton R T . Two-dimensional imageing of radar targets with the MUSIC algorithm[J].Tech.Rep.719267-1, Ohio state Univ. Electro Sic. Lab., Dec.1987.
    [109] Walton E K, Moghaddar A, Demattio C.Superresolution radar target imaging[A].Proc. 1991 Antenna Meas, Techniques Assoc. Symp.,Boulder, CO[C].,Oct.1991,:123-126.
    [110] Shin S Y, Lim H, Myung N H.Estimating three-dimensional scattering centers of a target using high resolution techniques[C].Proceedings of Asia-Pacific Microwave Coference 2007:887-890.
    [111] Dobre O A, Radoi E.Advances in subspace eigenanalysis based algorithms: from 1D toward 3D superresolution techniques[J].TELSIKS 2001:547-553.
    [112]温晓杨,石志广,赵宏钟.一种基于3D-ESPRIT的散射中心参数估计算法[J].雷达科学与技术, 2007, 5(2): 118-123.
    [113]孙厚军,李世勇,吕昕.基于一种超分辨率算法的三维散射中心提取方法.电子学报, 2008,36 (3):468-472.
    [114] Xu X, Zhai L, Huang Y.Subpixel Processing for Target Scattering Center Extraction from SAR Image[A].ICSP2006 Proceedings 2006[C].2006, 4: 16-20.
    [115] Chen F J and Carrson C.Estimation of Two-dimensional frequencies using modified matrixpencil method[J] .IEEE Transactions on Signal Processing, 2007, 55(2): 718-724.
    [116] Dobre O A, Radoi E.Advances in subspace eigenanalysis based algorithms: from 1D toward 3D superresolution techniques[A].In proc ICT 2001 Conference[C], Bucharest ,2001:547-554.
    [117]冯德军.弹道中段目标雷达识别与评估研究[D].博士论文,长沙:国防科技大学研究生院,2006.
    [118]黄培康.雷达目标特征信号[M].第一版,宇航出版社,1993.
    [119] Souyris J C, Tison C.Polarimetric analysis of bistatic SAR images from polar decomposition: A quaternion approach[J].IEEE Transactions on geoscience and remote sensing, 2007,45 (9):2701-2714.
    [120]刘宏伟,杜兰,袁莉等.雷达高分辨距离像目标识别研究进展[J].电子与信息学报,2005,27(8):1328-1333.
    [121]杜兰,刘宏伟,保铮等.一种利用目标雷达高分辨距离像幅度起伏特性的特征提取新方法[J] .电子学报,2005,33(3):411-415.
    [122] Kim K T, Kim H T.One-dimensional scattering centre extraction for efficient radar target classification [J].IEE Proceedings-Radar, Sonar and Navigation, 1999, 146(3):147-158.
    [123] Fuller D F, Terzuoli A J.Approach to object classification using dispersive scattering centers [J].IEE Proceedings-Radar, Sonar and Navigation, 2004,151 (2):85-90.
    [124]裴炳南保铮.基于目标散射中心和HMM分类的多视角雷达目标识别方法[J] .电子学报,2003,31(5):786-789.
    [125] Rihaczek A W, Hershkowitz S J.Theory and practice of radar target identification[M].Artech House, 2000.
    [126] Li H J, Yang S.Using range profiles as feature vectors to identify aerospace object[J].IEEE Transactions on Antennas and Propagation, 1993,41 (3):261-280.
    [127] Cohen M N.Variability of ultra-high range resolution radar profiles and some implications for target recognition[A].Proceedings of SPIE[C], 1992,1699: 256-266.
    [128] Iny D, Morici M M.Quantitative analysis of HRR NCTR performance drivers[A].Proceedings of SPIE[C], 1996,2747:144-152.
    [129] Xing M D, Zheng B.The properties of range profile of aircraft[A].IEEE International Radar Coference[C],2001:1050-1054.
    [130] Li H J, Wang Y D, Wang L H.Matching score properties between range profile of high-resolution radar targets[J] . IEEE Transactions on Antennas and Propagation, 1996, 44 (4):444-452.
    [131] Zyweck A, Bogner R E.Radar target classification of commercial aircraft.IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(2):589-606.
    [132] Jacobs S P, O’Sollivan J A.Automatic target recognition using sequences of high resolution radar range-profiles[J].IEEE Transactions on Aerospace and Electronic Systems, 2000,36(2):364-380.
    [133] Liao X, Bao Z.Circularly integrated bispectra: novel shift invariant feature for high-resolution radar target recognition[J].IEEE electronics letters,1999,34(19):1879-1880.
    [134] Zhang X, Shi Y, Bao Z.A new feature vector using selected bispectra for signal classification with application in radar target recognition[J].IEEE Transactions on Signal Processing, 2001, 49 (9):1875-1885.
    [135] Shi Y, Zhang X.A Gabor atom network for signal classification with application in radar target recognition.IEEE Transactions on Signal Processing, 2001, 49(12):2994-3004.
    [136] Liao X, Runkle P, Carin L.Identification of ground targets from sequential high-range-resolution radar signatures[J].IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4):1230-1242.
    [137] Zwart J P, Heiden R, Gelsema S.Fast translation invariant classification of HRR range profiles in a zero phase representation[A] . IEE Proceedings-Radar, Sonar and Navigation[C], 2003,150(6):411-418.
    [138]聂在平,方大纲.目标与环境电磁散射特性建模——理论、方法与实现[M].国防工业出版社,北京,2009.
    [139] Bharadwaj P, Runkle P, Carin L.Multiaspect classification of airborne target via physics-based HMMs and matching pursuits[J].IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2):595-606.
    [140] Cristianini N, Shawe-Taylor J . An introduction to support vector machines and other Kernel-Based learning methods[M].Cambridge: Cambridge University Press, 2000, Chapter 6.
    [141] Burges C J.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery, 1998, 2(2):121-167.
    [142] Tipping M E.Sparse Bayesian learning and relevance vector machine[J].Journal of machine learning research, 2001, 1(3): 211-244.
    [143]邓乃扬,田英杰.数据挖掘中的新方法——支持向量机[M].科学出版社,北京,2004.
    [144] Hua Y B,Sarkar T K.Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[J].IEEE Transactions on Acoustics Speech and Signal, 1990, 38:814-824.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700