用户名: 密码: 验证码:
反射面天线与高密度机箱的多场耦合分析与集成优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子装备是机电结合的系统,机电耦合问题已成为制约电子装备性能提高并影响下一代装备研制的一个瓶颈。因而在多个国家重点项目的支持下,基于前人的工作,本文以电子装备的典型案例—反射面天线和高密度机箱为研究对象,针对其存在的场耦合问题进行了深入研究与探索。
     在前人提出的反射面天线机电耦合模型的基础上,针对耦合模型综合考虑随机误差与系统误差,导致计算工作量大的问题,提出了新的耦合模型求解方法。首先基于结构分析的变形网格推导了结构与电磁网格转换矩阵,用于得到电算网格和内部计算点,以内部点代替细化网格,保证精度的同时降低计算工作量;其次利用有限元单元形函数插值,计算内部点的变形,可提高高频时的计算精度;再次根据结构网格的具体形式推导了不同单元的数值积分公式,拓展了适用范围;最后通过数值算例和工程实验表明了该求解方法的正确性和有效性。
     针对耦合模型系统误差中的太阳辐射热变形影响面天线电性能的问题,首先研究天线受到太阳照射的热流密度;其次以热流密度为载荷,分析了天线的温度分布,并通过实验验证了分析结果;最后研究了温度导致的结构变形对天线电性能的影响。针对耦合模型随机误差中通常忽视表面加工质量的问题,利用分形函数建立天线面板表面纹理的数学模型,将表面纹理引入面天线机电耦合模型中计算电性能。得出了表面加工质量的纹理幅度、密度和粗糙程度对电性能影响的初步规律。相关结论可供工程实践参考。
     针对面天线结构设计中的机电分离问题,在面天线机电耦合模型的基础上,建立了反射面天线的机电集成优化模型,进行反射面天线机电集成优化设计。同时将天线整体建模,在设计变量中包含馈源(副面)支撑结构的参数,能够将天线的主面和馈源(副面)支撑结构作为一个整体进行设计。通过典型8m口径抛物面天线的机电集成优化实例表明,与传统结构优化和单纯考虑主面的机电集成优化相比,考虑整体的机电集成优化能够取得更好的效果。最后将机电集成优化应用于某工程的40m口径反射面天线,获得的改进设计方案可供工程参考。
     针对高密度机箱电磁兼容性分析的问题,从多场耦合的角度,综合考虑了孔缝等结构参数、接触缝隙等因素,同时还考虑了实际工作中机箱的结构变形和温度对电磁器件的影响等实际因素,提出了高密度机箱的机电热三场耦合模型。对于接触缝隙或导电衬垫,通过转移阻抗得到其等效的电磁参数,可进入场耦合模型,提高了实际机箱电磁屏效分析的准确性。说明了耦合模型求解的具体步骤。最后不但进行了数值算例仿真还设计了实物实验,通过仿真数据与实验数据的对比表明了所提场耦合模型的正确性与有效性。
     针对高密度机箱设计中存在的机电热分离问题,在高密度机箱机电热三场耦合模型的基础上建立了多场耦合的集成优化模型,分析了优化模型的特点,提出优化求解的思路与流程。并将优化模型应用于某实际工程案例,通过对结构参数进行优化设计,获得的改进设计方案在结构强度、通风散热和电磁屏效三个方面都有明显的改善,体现了集成优化的优势。
Electronic equipment is a kind of electromechanical system, and the electromechanical coupling problem is the bottleneck which constrains the improvement of existing electronic equipment and the development of the next generation equipment. With the support of several national key projects, based on the previous work, this paper researches the coupled multifield problem and integrated optimization design on the study of reflector antenna and electronic equipment enclosure, which are two kinds of typical electronic equipments.
     Based on the electromechanical coupling model of reflector antenna proposed by previous scholars, for the problem of large computation in analysis of the coupling model, a new solution is proposed which could improve analysis efficiency and precision. Firstly, the transformation matrix between structures grid and electromagnetic grid is derived. Secondly, the finite element shape function of the structure grid is used to interpole phase difference of aperture surface. Thirdly, different formulas of different structure grid for numerical integration are derived. Finally, the correctness and effectiveness of the new solution is proved by some numerical simulations and experiments.
     For the problem of thermal deformation of ground reflector antenna due to solar radiation , which is a kind of system error, the heat flux from solar on antenna surface is calculated firstly. Secondly, the temperature distribution of antenna is obtained by FEM, and a temperature experiment proved the temperature results. Thirdly, thermal-structure analysis was proceeded by FEM. Finally, electronic parameters of the antenna were calculated by coupling model. Another surface quality problem of reflector machining, is a kind of random error. Fractal function is used to model surface texture. Microscopic surface texture is introduced to the coupling model and then calculates electronic performance. The effects of different amplitude, density and roughness of the reflector texture to antenna’s far field patterns are studied. These results could be referenced in engineering practice.
     For the separation problem of electromagnetic and structure design of reflector antenna, based on the coupling model, a new electromechanical integrated optimization model of reflector antenna is established. The structure parameters include feed support structure, so the antenna structure could be designed as a entirety. The examples of tipical 8m and 40m antennas in some project show that the electromechanical integrated optimization results are much better than the tradition structure design, and the results indicate the rationality and effectiveness of the integrated optimization.
     Address to numerical simulation of shielding effectiveness and leakage electromagnetic field of electronic equipment enclosure, server influence factors are researched in the view of multifield coupling, including structure parameters(holes, slots and so on), contact seam/conductive rubber, structure deformation and temperature. In consideration of the enclosure which will deform due to impact and vibration, and temperature will affect the features of electromagnetic components in practical working, the three fields coupled model of electronic equipment enclosure is established. Transfer impedance is used to compute electromagnetic parameters of contact seam/conductive rubber during solving the coupled model. The comparison between simulation data and the experiment data shows that the three fields coupled model is correct.
     Against the separation problem of electromagnetic, structure and thermal design of enclosure, basis on the three fields coupled model, a integrated optimization model is proposed. Finally, the optimization method is applied to an engineering case, to optimize the structural parameters, and the designed scheme is greatly improved in structure strength, ventilation and shielding effectiveness, and the results indicate the advantage of the integrated optimization.
引文
[1]段宝岩,宋立伟.电子装备机电热多场耦合问题初探.电子机械工程, 2008, 24(3): 1-7+46.
    [2] Felippa C A, Park K, Farhat C. Partioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Engrg., 2001,190: 3247-3270
    [3]宋少云.多场耦合问题的建模与耦合关系的研究.武汉工业学院学报, 2005, 24(4): 21-23+29.
    [4]宋少云.多场耦合问题的协同求解方法研究与应用.武汉:华中科技大学博士学位论文. 2007.
    [5]宋少云.多场耦合问题的分类及其应用研究.武汉工业学院学报, 2008, 27(3): 46-49.
    [6]钟掘.复杂机电系统耦合设计理论与方法.北京:机械工业出版社, 2007.
    [7]钟掘,陈先霖.复杂机电系统耦合与解耦设计.中国机械工程, 1999. 10 (9): 10-12.
    [8]郑榕明,张勇慧,王可钧.耦合算法原理及有限元与DDA的耦合.岩土工程学报, 2000, 22(6): 727-730.
    [9]董平川,徐小荷,何顺利.流固耦合问题及研究进展.地质力学学报, 1999, 5(1): 17-25.
    [10]叶正寅,张伟伟,史爱明.流固耦合力学基础及其应用.哈尔滨:哈尔滨工业大学出版社, 2010.
    [11] Kamakoti R, Wei S. Fluid–structure interaction for aeroelastic applications. Progress in Aerospace Sciences, 2004, 4: 535–558.
    [12]孙培德,杨东全,陈奕柏.多物理场耦合模型及数值模拟导论.北京:中国科学技术出版社, 2007.
    [13]李海滨,冯国泰.叶轮机械中的多场耦合分析技术.航空发动机, 2002, 2: 51-56.
    [14] S.Amari, R.Vahldiech, J.Bornemann. Analysis of Propagation in Corrugated Waveguides with Arbitrary Corrugation Profile. IEEE AP-S Int. Symp. Vig, Orlando, USA, July,1999: 290-293.
    [15] G.G.Yaralioglu, A.S.Ergun, B.Bagram, et al. Calculation and Measurement of Electromechanical Coupling Coefficient of Capacitive Micromachined Ultrasonic Transducers. IEEE Trans. On Ultrasonic, Ferroelectrics, andFrequency Control, 2006, 50(4): 449-456.
    [16] F.Dughiero. Numerical and Experimental Analysis of an Elector-thermal coupled Problem for Transverse Flux Induction Heating Equipment. IEEE Trans. On Magnetics. 1998, 34(5): 35-46.
    [17] H.S.C wang. Performance of Phased-array Antennas with Mechanical Errors. IEEE Trans. On Aerospace & Electronic Systems, 1992, 28(2): 535-545.
    [18] T.H.Pham, P.F.Wending, S.J.Salon, et al. Transient Finite Element Analysis of an Induction Motor with External Circuit Connections and Electromechanical Coupling. IEEE Trans. On Energy Conversion, 1999, 14(4): 1407-1412.
    [19] H.M.Adelman, S.L.padula. Integrated Thermal-structure-electromagnetic Design Optimization of Large Space Antenna Reflectors. NASA Technical Memorandum 87713.
    [20] D.C.Price. A Review of Selected Thermal Management Solutions for Military Electronic Systems. IEEE Trans. On Components and Packaging Technologies, 2003, 26(1): 26-39.
    [21]张祖稷,金林,束咸荣.雷达天线技术.北京:电子工业出版社, 2006:269-315.
    [22]魏文元,宫德明,陈必森.天线原理.北京:国防工业出版社,1985.241-286.
    [23]段宝岩.我国天线结构机电一体化设计的现状与发展.电子机械工程, 1999,79(3):2-6.
    [24]章文勋.世纪之交的天线技术.电波科学学报,2000,15(1):97-100.
    [25] J. Ruze. The Effect of aperture errors on the antenna radiation pattern. Suppl. al Nuovo Cimento, 1952, 9(3):364-380.
    [26] J. Ruze. Antenna tolerance theory-A review. Proc.IEEE, 1966, 54(4):633-642.
    [27] Vu T B. The effect of aperture errors on the antenna radiation pattern. Proceedings of the IEE, 1969,116:195-202.
    [28] Kim J W, Kim B S, Lee C W. Computation of the average power pattern of reflector antenna with random surface errors and misalignment errors. IEEE Trans. On Antennas Propagat., 1996, 44(7): 996-999.
    [29] Y. Rahmat-Samii. An efficient computational method for characterizing the effects of random surface errors on the average power pattern of reflectors. IEEE Transactions on Antennas and Propagation, 1983, 31(1):92-98.
    [30] Y.Rahmat-Samii, Effect of deterministic surface errors on reflector antennaperformance. Annals des Telecommun., 1985, 40:350-360.
    [31] WU S C, Y. Rahmat-Samii,. Average Pattern and Beam Efficiency Characterization of Reflector Antenna with Random Surface Errors. Journal of Electromagnetic Waves and Applications, 1991,5(10):1069-1087.
    [32] Bahadori K, Rahmat-samii Y. Characterization of effects of periodic and aperiodic surface distortions on membrane reflector antennas . IEEE Transactions on Antennas and Propagation, 2005,53(9):2782–2791.
    [33] Sinton S, Rahmat-Samii Y . Radom Surface Error Effects on Offset Cylindrical Reflector Antennas . IEEE Transactions on Antennas and Propagation, 2003,51(6):1331–1337.
    [34] Amane Miura, Yahya Rahmat-Samii. Spaceborne Mesh Reflector Antennas With Complex Weaves: Extended PO/Periodic-MoM Analysis. IEEE Transactions on Antennas and Propagation, 2007, 55(4):1022-1029.
    [35] Smith W T, Stuzman W L. A comparison of Physical Optics and Geometrical Optics Methods for Computation of Reflector Surface Error Effects. Virginia Tech EE Dept. Satcom Rep. 87-2, Satellite Communicat. Gp., NASI-18471,1987.
    [36] William T, Richard S, Bastian J. An approximation of the radiation integral for distorted reflector antennas using surface error decomposition . IEEE Transactions on Antennas and Propagation, 1997, 45(4): 5-10.
    [37] Y. Rahmat-Samii. Array feeds for reflector surface distortion compensation: concepts and implementation. IEEE Antennas and Propagation Magazine, 1990, 32(4):20-26.
    [38] Y. Rahmat-Samii. Novel array feed distortion compensation techniques for reflector antennas. IEEE Aerospace and Electronic Systems Magazine, 1991, 6(6): 12-17.
    [39] Imbriale W A. Distortion compensation techniques for large reflector antennas. IEEE Proceedings of Aerospace Conference, Big Sky, Montana, USA,10-17 Mar., 2001, 2:799-805.
    [40] Robert A. Hoferer, Yahya Rahmat-Samii. Subreflector Shaping for Antenna Distortion Compensation: An Efficient Fourier–Jacobi Expansion With GO/PO Analysis. IEEE Transactions on Antenna and Propagation, 2002, 50(12): 1676-1687.
    [41] Shenheng X, Rajagopa;an H. A novel reflector surface distortion compensating technique using a sub reflectarray. IEEE Antennas and Propagation International Symposium, Toki Messe, Niigata, Japan, 2007:5315-5318.
    [42]刘京生,曾余庚.天线副面(馈源)支撑结构参数对电性能的影响及其优化.天线结构分析、设计与试验的研究论文集.西安:西北电讯工程学院, 1986.
    [43]王五兔,徐国华.反射面变形对天线辐射方向图的影响.电子学报, 1994,22(12):46–49.
    [44]漆一宏,吴鸿适.反射面天线馈源的混合相位中心.电子学报, 1992, 20(9): 22-26.
    [45]叶尚辉.天线结构设计.北京:国防工业出版社, 1980.
    [46]段宝岩.天线结构分析、优化与测量.西安:西安电子科技大学出版社,1998.115-138.
    [47] Duan B Y, Qi Y H, Xu G H. Study on Optimization of Mechanical and Electronic Synthesis for the Antenna Structural System. Int J Mechatronics, 1994, 4(6): 553-564.
    [48] Liu J S, Hollaway L. Integrated structure-electromagnetic optimization of large reflector antenna systems. Structural and Multidisciplinary Optimization, 1998, 16(1): 29-36.
    [49]刘少东,焦永昌,张福顺.表面误差对侧馈偏置卡塞格伦天线辐射场的影响.西安电子科技大学学报, 2005, 32(6):865-868.
    [50]王从思,段宝岩,仇原鹰,等.大型天线变形反射面的新拟合方法.西安电子科技大学学报,2005,32(6):839-843.
    [51]王从思,段宝岩,仇原鹰.天线表面误差的精确计算方法及电性能分析.电波科学学报, 2006, 21(3):403-409.
    [52]王从思,段宝岩,仇原鹰. Coons曲面结合B样条拟合大型面天线变形反射面.电子与信息学报,2008,30(1):233-237.
    [53]兰佩锋,仇原鹰,邵晓东.一种反射面天线机电耦合分析的新方法.系统工程与电子技术,2009,31(2):296-299..
    [54]宋立伟,段宝岩,郑飞,等.表面误差对反射面天线电性能的影响.电子学报, 2009,37(3):552-556.
    [55]宋立伟,段宝岩,郑飞.变形反射面天线馈源最佳相位中心的研究.北京理工大学学报, 2009, 29(10): 894-897.
    [56]宋立伟,段宝岩,郑飞.反射面表面与馈源误差对天线方向图的影响.系统工程与电子技术, 2009, 31(6): 1269-1274.
    [57]王伟,段宝岩,马伯渊.一种大型反射面天线面板测试与调整方法及其应用.电子学报,2008,36(6):1114-1118.
    [58]王伟,李鹏,宋立伟.面板位置误差对反射面天线功率方向图的影响机理.西安电子科技大学学报, 2009, 36(4): 708-713.
    [59]王伟,段宝岩,马伯渊.重力作用下天线反射面变形及其调整角度的确定.电波科学学报, 2008, 23(4): 645-650.
    [60]王从思,段宝岩,仇原鹰等.面向大型反射面天线结构的机电综合设计与分析系统.宇航学报, 2008,29(6):2041-2049.
    [61] C.S. Wang, B.Y. Duan and Y.Y.Qiu. On distorted surface analysis and multidisciplinary structural optimization of large reflector antennas. Int. J. Structural and Multidisciplinary Optimization, 2007, 33(6):519-528.
    [62]马洪波,段宝岩,王从思.随机参数反射面天线机电集成稳健优化设计.电波科学学报, 2009, 24(6): 1065-1070.
    [63]王从思,段宝岩,郑飞,等.大型空间桁架面天线的结构电磁耦合优化设计.电子学报,2008,36(9):1776-1781.
    [64]王从思,保宏,仇原鹰,陈光达.星载智能天线结构的机电热耦合优化分析.电波科学学报, 2008, 23(5): 991-996.
    [65] Rahat-Samii Y, Galindo-Israel V. Shaped reflector antenna analysis using the Jacobi_bessel series. IEEE Transactions on Antennas and propagation, 1980,28(4):425-435.
    [66]王从思.天线机电热多场耦合理论与综合分析方法研究.西安:西安电子科技大学博士学位论文. 2007.
    [67] Rathod H T,Nagaraja K V, Venkatesudu B, et al . Guass Legendre Quardrature over a triangle . Journal of Indian Institute of Science, 2004,84:183-188.
    [68] Lague G, Baldur R. Extended numerical integration method for triangular surfaces . International Journal for Numerical Methods in Engineering, 1977,11:388–392.
    [69] Hammer P C,Marlowe O J. Stroud A H. Numerical integration over simplexes and cones . Math. Tables Other Aids Computation, 1956,10:130–136.
    [70] Trupathi R. Chandrupatla, Ashol D. Belegundu. Introduction to Finite Elements in Engineering. Beijing: Tsinghua University Press, 2006.
    [71]龙驭球,李聚轩,龙志飞.四边形单元面积坐标理论.工程力学,1997,14(3):1-11.
    [72]龙志飞,李聚轩,岑松.四边形单元面积坐标的微分和积分公式.工程力学, 1997,14(3):12-20.
    [73]王世儒,王金金,冯有前,李彦民.计算方法.西安:西安电子科技大学出版社, 1997.
    [74] B.Y.Duan, C.S.Wang. Reflector Antenna Distortion Using MEFCM. IEEE Transactions on Antennas Propagation,2009 ,57 (10): 3409-3413.
    [75]张巨勇,施浒立,陈志平,等.大口径天线电性能风振响应的时域分析.应用力学学报, 2008,25(1):84-88.
    [76]刘国明.表面光洁度和波纹度.北京,科学技术出版社, 1984.
    [77]刘尔.几何量公差.北京:北京理工大学出版社, 1992.
    [78] Imbriale W A, Gama E, Smith K S, et al. Thermal Considerations for Hydroformed Reflectors. IEEE Aerospace Conference, Big Sky, Montana, US, 2006.
    [79] Feng Fan, Xiao-fei Jin, Shi-zhao Shen. Effect of Non-uniform Solar Temperature Field on Cable-net Structure of Reflector of Large Radio Telescope-FAST. Advances in Structural Engineering, 2009, 12(4):503-512.
    [80]金晓飞,范峰,沈世钊.巨型射电望远镜(FAST)反射面支撑结构日照温度场效应分析.土木工程学报, 2008, 41(11): 71-77.
    [81] C.Granet, H.Z.Zhang, A.R.Forsyth, et al. The Designing, Manufacturing, and Testing of a Dual-Band Feed System for the Parkes Radio Telescope. IEEE Antennas and propagation Magazine, 2005, 47(3):13-19.
    [82] A.Greve. Reflector Surface Measurement of the IRAM 30-m Radio Telescope. Internatinal Journal of Infrared and Millimeter Waves, 1986, 7(1):121-135.
    [83] Doyle, Keith B. Antenna performance predictions of a radio telescope subject to thermal perturbations. Proceedings of SPIE - The International Society for Optical Engineering, Optical Modeling and Performance Predictions, 2009, 7427(0D):0-9.
    [84] J.W.M.Baars, A.Greve, B.G.Hooghoudt, et al.. Thermal Control of the IRAM 30-m Millimeter Radio Telescope. Astron. Astrophys, ,1988 195:364-371.
    [85] A.Greve, M.Dan, J.Penalver. Thermal behavior of Millimeter Wavelength Radio Telescope. IEEE trans. ANTENNAS Propag., 1992, 40 (11):1375-1388.
    [86] A.Greve, J.F.Panis, C.Thum. The Pointing of IRAM 30-m telescope. Astron.Astrophys. Suppl., 1996, 115:379.
    [87] A.Greve, M.Bremer, J.Penalver, et al. Improvement of the IRAM 30m Telescope From Temperature Measurements and Finite Element Calculations. IEEE Transactions Antennas and propagation, 2005, 53(2):851-860.
    [88] J.W.M.baars, B.G.Hooghoudt, P.G.Mezger, et. Al. the IRAM 30m millimeter radio telescope on Pico Veleta Spain. Astron. Astrophys., 1987,175:319-324.
    [89] J.Penalver, U.Lisenfeld, R.Mauersberger. Point with the IrAM 30m telescope. PProc. SPIE, 2001, 4015:632-636.
    [90] D.Morris, M.Bremer, G.Butin, et. al. Surface adjustment of the IRAM 30m radio telescope. IET Microwaves, Antennas & Propagation, 2009, 3(1): 99-108.
    [91] K.B.Doyle. Antenna performance predictions of a radio telescope subject to thermal perturbations. 2009, 74170D: 1-9.
    [92] Earl A. Thornton. Thermal-Structural Analysis of Large Apace Structures: A Review of Recent Advances. 1982, 36:289-297.
    [93] David Y. Kim, C.Harry Chen, Ken Oye, et al. Thermal Distortion Analysis on Acts Multibeam Antenna, 1988. 12(4):503-512.
    [94] Houfei Fang, Michael Lou, John Huang. Thermal Distortion Analyses of a Three-Meter Inflatable Reflectarray Antenna. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference , Norfolk, VA, US , April 7-10, 2003.
    [95] ChiJie Lin. Dynamics and Thermal Analyses of Flexible Structures in Orbit. Storrs, US, The University of Connecticut, 2006.
    [96] Tuanjie Li, Yao Wang. Deployment Dynamic Analysis of Deployable Antennas Considering Thermal Effect. Aerospace Science and Technology, 2009, 13:210-215.
    [97]朱敏波,刘明治,徐海强.基于在轨热环境的可展开天线反射面精度调整技术.宇航学报,2007,28(3):727-730..
    [98]陈志华,关富玲.星载抛物面天线反射器瞬态热分析.固体力学学报, 2008, 29(3):372-376.
    [99]麦奎斯顿F C ,帕克J D ,斯皮特勒J D.供暖、通风及空气调节.北京:化学工业出版社,2005.
    [100]李锦萍,宋爱国.北京晴天太阳辐射模型与ASHRAE模型的比较.首都师范大学学报,1998,19(1):35-38.
    [101]陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2005.
    [102]张国智,胡仁喜,陈继刚,等. ANSYS10.0热力学有限元分析实例指导教程北京:机械工业出版社,2007.
    [103]王勖成.有限单元法.北京:清华大学出版社,2003. Wang X C. Finite Element Method. Beijing: Tsinghua University Press, 2003.
    [104] Trupathi R. Chandrupatla, Ashol D. Belegundu. Introduction to Finite Elements in Engineering. Beijing: Tsinghua University Press, 2006.
    [105]李伯奎.不同机械加工表面轮廓峰密度的研究.工具技术, 2002, 36(9): 39-42.
    [106]李伯奎.不同机械加工表面轮廓展开长度比的研究.北京工业大学学报, 2002, 28(3): 271-273.
    [107]胡健闻,汤翔,刘领献,等.机械加工表面形貌评定的多尺度分析方法.制造业自动化, 2003, 25(增刊): 183-186.
    [108] Benoit B. Mandelbrot. The Fractal Geometry of Nature. New York: Freeman. 1982.
    [109]王建军,徐西鹏.花岗石抛光表面的粗糙度、分形维数及其关系研究.计量学报, 2007, 28(2): 124-128.
    [110] Xie He-ping, Sun Hong-quan, and Feng Zhi-gang. Study on generation of rock surface by using fractal interpolation . International Journal of Solids and Structures, 2001, 38(5): 768-787.
    [111]孙洪泉,谢和平.岩石断裂表面的分形模拟.岩土力学, 2008. 29(2): 347-352.
    [112]张涛,徐晓苏,王其,等.基于分形差值的三维海底地图生成算法.中国惯性技术学报, 2008, 16(2): 171-173.
    [113]王玉娟.机械加工金属表面粗糙度的分形研究.南京:南京农业大学硕士学位论文, 1999.
    [114]杨凯.机械加工表面的性能评价.南京:南京航天航空大学硕士学位论文, 2003.
    [115]王运华,郭立新,吴振森.改进的一维分形模型在海面电磁散射中的应用.电子学报, 2007, 35(3): 478-483.
    [116] Berizzi F. Fractal analysis of the signal scattered from the sea surface . IEEE Transactions on Antennas Propagation, 1999, 47(2): 324-338.
    [117] Giorgio Francescherri, Antonio Iodice, Daniele Riccio. Scattering fromDielectric Random Fractal Surfaces via Method of Moments. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4): 1644-1655.
    [118]任新成,郭立新.指数型分层介质粗糙面光透射问题的微扰法.光学学报, 2008, 28(6): 1208-1214.
    [119] Zou Ming-qing, Yu Bo-ming, and Feng Yong-jin, et al.. A Monte Carlo method for simulating fractal surface . Physical A, 2007, 386(01): 176-186.
    [120] Bora C K, Plesha M E, and Erin E. Multiscale roughness of MEMS surface, ASME/STLE Joint International Tribology Conference, Long Beach, California, USA, Oct. 24-27, 2004, 1-7.
    [121] Toporkov J V and Brown G S. Numerical simulations of scattering from time-varying randomly rough surfaces . IEEE Transactions on Geoscience and Remote Sensing, 2000,38(7): 1616-1625.
    [122]杜耀惟.天线罩电信设计方法.北京:国防工业出版社, 1993.
    [123]吴凤高.天线座结构设计.西安:西北电讯工程学院出版社, 1986.
    [124]徐国华,施浒立.双反射面天线表面形状预优设计.西北电讯工程学院学报, 1984, (4): 13-19.
    [125]刘京生.天线副面(馈源)支撑结构的机电综合优化设计.通信学报, 1988, 9(6): 62-65.
    [126]漆一宏,吴鸿适.反射面天线馈源的混合相位中心.电子学报, 1992, 20(9): 22-26.
    [127]李云.双反射面天线旁瓣的机电一体化研究.西安:西北电讯工程学院硕士学位论文, 1985.
    [128]王五兔.反射面天线系统的机电一体化设计技术研究—结构参数对交叉极化的影响.西安:西安电子科技大学硕士学位论文, 1988.
    [129]徐国华,漆一宏,段宝岩,王五兔.变形反射面天线效率与馈源相位中心的研究.西安电子科技大学学报, 1990, 17(4): 63-70.
    [130]漆一宏.反射面天线机电一体化系统技术研究.西安:西安电子科技大学硕士学位论文, 1989.
    [131]徐国华,王君英.反射面天线机电一体化系统分析.通信与测控, 1990, (3): 43-49.
    [132]漆一宏.反射面天线的机电一体化设计.电波科学学报, 1991, 6(1): 150-152.
    [133]徐国华,邵志国.天线机电系统工程设计思想.电子机械工程, 1996, (5):30-34.
    [134]刘国玺.天线的机电一体化分析方法.无线电通信技术, 2004, 30(4): 25-26.
    [135]叶尚辉,陈树勋.天线结构优化设计的导重准则法.西北电讯工程学院学报. 1982, 1.
    [136]段宝岩.天线结构几何优化设计的一种综合法.西安:西北电讯工程学院硕士学位论文, 1984.
    [137]段宝岩,叶尚辉.带离散变量的天线结构几何优化设计.西北电讯工程学院学报. 1985, 3.
    [138]段宝岩.天线结构拓扑、形状与机电综合优化设计.西安:西安电子科技大学博士学位论文, 1989.
    [139]段宝岩.连续体形状优化设计中的几何表示及其敏度分析研究.西安电子科技大学学报, 1991, 18(4).
    [140] Duan B Y, Qi Y H, Xu G H. Study on Optimization of Mechanical and Electronic Synthesis for the Antenna Structural System. Int J Mechatronics, 1994, 4(6): 553-564.
    [141] C.S. Wang, B.Y. Duan and Y.Y.Qiu. On distorted surface analysis and multidisciplinary structural optimization of large reflector antennas. Int. J. Structural and Multidisciplinary Optimization, 2007, 33(6):519-528.
    [142] L.W. Song. Performance of planar slotted waveguide arrays with surface distortion. Progress In Electromagnetics Research Symposium 2010, March 22–26, Xi’an, China.
    [143] C. S. Wang, B. Y. Duan, F. S. Zhang, M. B. Zhu. Coupled structural-electromagnetic-thermal modelling and analysis of active phased array antennas. IET Microwaves, Antennas & Propagation, 2010, 4(2): 247-257.
    [144] C. S. Wang, B. Y. Duan, F. S. Zhang, M. B. Zhu. Analysis of performance of active phased array antennas with distorted plane error. International Journal of Electronics, 2009, 96(5): 549-559.
    [145] C. S. Wang, H. Bao, F. S. Zhang, X. G. Feng. Analysis of electronic performances of planar active phased array antennas with distorted array plane. Journal of Systems Engineering and Electronics, 2009, 20(4): 726-731.
    [146]李素兰,黄进,段宝岩.一种雷达天线伺服系统结构与控制的集成设计研究.机械工程学报, 2010,46(19):140-146.
    [147] Xufeng TONG and Jin HUANG. HLA Based Multidisciplinary Joint SimulationTechnology for Servo Mechanism Analysis , Procedings of 2009 IEEE International Conference on Mechatronics and Automation, 2009,8: 4517-4522.
    [148] C.S. Wang, B.Y. Duan and Y.Y.Qiu. On distorted surface analysis and multidisciplinary structural optimization of large reflector antennas. Int. J. Structural and Multidisciplinary Optimization, 2007, 33(6):519-528.
    [149]王从思,段宝岩,郑飞,等.大型空间桁架面天线的结构电磁机电综合优化设计.电子学报,2008,36(9):1776-1781.
    [150]刘鹏程,邱扬.电磁兼容原理及技术.北京:高等交于出版社, 1993.
    [151] Eugenio Perea, Eduardo Zabala, Emilio Rodriguez-Seco. New Method based on Immunity Tests for Shield Maintenance of Wired Electronic Systems. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(3): 603-611.
    [152] C.L.Holloway, D.A.Hill, M. Sandroni, et. al. Use of Reverberation Chambers to Determine the Shielding Effectiveness of Physically Small, Electronicly Large Enclosures and Cavities. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(4): 770-782.
    [153]姜勇,王刚.电磁屏蔽玻璃在电磁屏蔽方舱上的应用.安全与电磁兼容, 2005, (1): 37-39.
    [154] Z.B.Zhao, M.X.Zhang, X.C.Cui, et. al. Effect of Wire Grid Covering Aperture on the Shielding Performance of metal Rectangular Enclosure. IEEE Transactions on Magnetics, 2009, 45(3): 1068-1071.
    [155]朱明,蒋全兴.金属丝网屏蔽玻璃屏蔽效能的测试研究.安全与电磁兼容, 2007, (11): 90-92.
    [156]陈小宁.导电衬垫转移阻抗法在机箱屏效计算中的应用.安全与电磁兼容, 2005, (5): 54-55.
    [157]奚文俊,冯玉光.导电衬垫在电磁屏蔽中的应用.安全与电磁兼容, 2003, (6): 35-37
    [158]张翼,宣天鹏.电磁屏蔽材料的研究现状及进展.安全与电磁兼容, 2006, (6): 77-81.
    [159] B. Y. Duan, H. Qiao, L. Z. Zeng. The Multi-Field-Coupled Model and Optimization of Absorbing Material’s Position and Size of Electronic Equipments. Journal of Mechatronics and Applications, 2010: 1-6.
    [160] Gabriele Gradoni, Franco Moglie, Anna Pia Pastore, et. al. Numerical and Experimental Analysis of the Field to Enclosure Coupling in Reverberation Chamber and Comparison with Anechoic Chamber. IEEE Transactions on Electromagnetic Compatibility, 2006, 48(1): 203-211.
    [161] Archambeault B. Modeling and simulation validation for EMC applications. IEEE International Symposium on Electromagnetic Compatibility, Seattle, WA, USA, Aug 1999:492-496.
    [162]陈小宁.密封机箱的EMC设计计算.安全与电磁兼容, 2003, (6): 33-34+41.
    [163]李伟生.基于FDTD方法的屏蔽机箱电磁泄漏分析.四川师范大学学报, 2008, 31(4): 491-495.
    [164] Rodolfo Araneo, Giampiero Lovat. Fast MoM Analysis of the Shielding Effectiveness of Rectangular Enclosures with Apertures, Metal Plates, and Conducting Objects. IEEE Transactions on Electromagnetic Compatibility, 2009, 51(2): 274-283.
    [165] R.Araneo, G.Lovat. An efficient MoM Formulation for the Evaluation of the Shielding Effectiveness of Rectangular Enclosures with Thin and Thick Apertures. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(2): 294-304.
    [166] Parisa Dehkhoda, Ahad Tavakoli, Rouzbeh Moini. An Efficient and Reliable Shielding Effectiveness Evaluation of a Rectangular Enclosure with Numerous Apertures. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(1): 208-212.
    [167] C.N.Chiu, C.H.Kuo, M.S.Lin. Bandpass Shielding Enclosure Design Using Multipole-Slot Arrays for Modern Portable Digital Devices. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(4): 895-904.
    [168]何秋仙.电子设备电磁兼容仿真关键技术研究.西安:西安电子科技大学硕士学位论文, 2006.
    [169]蒋全兴. EMI衬垫的转移阻抗与屏蔽质量.安全与电磁兼容, 2000, (1): 3-5+35.
    [170] Edward Nakauch,李迪(译).接触表面电阻率及其对屏蔽效能的影响.安全与电磁兼容, 2005, (6): 69-71.
    [171] Tohru Suwa, Hamid Hadim. Multidisciplinary Placement Optimization of Heat Generating Electronic Components on A Printed Circuit Board in an enclosure. IEEE Transactions on Components and Packaging Technologies, 2007, 30(3): 402-410.
    [172] Frank Gronwald. Calculation of Mutual Antenna Coupling within Rectangular Enclosures. IEEE Transactions on Electromagnetic Compatibility, 2005, 47(4): 1021-1025.
    [173] Q.F.Liu, W.Y.Yin, J.F.Mao, et. al. Accurate Characterization of ShieldingDffectiveness of metallic Enclosures with Thin Wires and Thin Slots. IEEE Transactions on Electromagnetic Compatibility, 2009, 51(2): 293-300.
    [174] Q.F.Liu, W.Y.Yin, M.F.Xue, et.al. Shielding Characterization of Metallic Enclosures with Multiple Slots and a Thin-wire Antenna Loaded: multiple Oblique EMP Incidences with Arbitrary Polarizations. IEEE Transactions on Electromagnetic Compatibility, 2009, 51(2): 284-292.
    [175] David Pouhe, Gerhard Monich. Assessment of Shielding Effectiveness of Gaskets by Means of the Modified Bethe’s Coupling Theory. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(2): 305-315.
    [176] P.Dechkhoda, A.Tavakoli, R.Moini. Shielding effectiveness of a rectangular enclosure with finite wall thickness and rectangular apertures by the generalized modal method of moments. IET Science, Measurement and Technology, 2009, 3(2): 123-136.
    [177]毛湘宇,杜平安,聂宝林.基于TLM的机箱孔缝电磁屏蔽效能数值分析.系统仿真学报, 2009, 21(23): 7493-7497.
    [178]杨兴磊,阚德鹏,李秀峰.基于转移阻抗的方舱屏效计算方法.电子质量, 2005, (11): 78-80.
    [179]邱成悌,赵惇殳,蒋全兴.电子设备结构设计原理(修订版).南京:东南大学出版社, 2005.
    [180]何基原.某地面雷达发射机通用机柜结构设计研究.电子机械工程, 2008, 24(6): 18-25.
    [181]卢德辉,程翔宇,郭黎.某型号雷达符合材料机箱研制综述.电子机械工程, 2009, 25(5): 8-11.
    [182]刘国维.雷达接收系统户外机箱的结构研究.电子机械工程, 2008, 24(3): 21-24.
    [183]黄高文,沈文军.舰用机柜抗强冲击的优化设计.电子机械工程, 2010, 26(1): 10-14.
    [184]张莉.某型高密度机箱振动疲劳分析.电子机械工程, 2009, 25(1): 1-5.
    [185]赵惇殳.电子设备热设计.北京:电子工业出版社, 2009.
    [186]平丽浩,钱吉裕,钱德好.电子设备热控新技术综述.机械电子工程. 2008,24(1):1-10.
    [187]吕永超,杨双根.电子设备热分析、热设计即热测试技术综述及最新进展.电子机械工程, 2007, 23(1): 5-10.
    [188]余克志,丁国良,陈天及.集中送风式陈列柜的CFD整体模型.制冷技术, 2010, 38(2): 35-38.
    [189]刘永,徐晓.舰载电子设备循环风冷式密闭机柜.雷达与对抗, 2008, (4): 53-55.
    [190]郁圣杰,李维忠.密闭机箱的热仿真分析.雷达与对抗, 2008, (4): 56-62.
    [191]王彦海,张世伟,徐岩峰. Icepak仿真软件在水冷底板热设计中的应用.电子机械工程, 2008, 24(1): 27-29.
    [192]张平.唐良宝.密封式电子设备散热装置设计研究.计算机工程与科学, 2010, 32(2): 139-141+149.
    [193]许艳军,齐迎春,任建岳.空间遥感器电子学系统热分析.电子机械工程, 2009, 25(2): 12-15.
    [194]史建东,沈文军.对某舰载机柜电磁屏蔽效能的分析.雷达与对抗, 2008, 3: 56-59.
    [195]徐平,万海军,张勇,刘正伟.舰船信息技术设备的电磁兼容性设计.舰船科学技术, 2009, 31(9): 82-86.
    [196]陈节贵,方重华.舰载机箱的磁场屏蔽特性仿真.中国舰船研究, 2009, 4(6): 75-78.
    [197]袁战军,谢利理,李孝斌.飞机舵机控制系统的电磁兼容性设计.计算机测量与控制, 2008, 16(1): 71-73.
    [198]宋敏,程林.改造机电控制箱的电磁加固设计.电子机械工程, 2008, 24(4): 1-3.
    [199]于晓乐,张凯,王旭东,王五兔.航天器高密度机箱屏蔽效能的有限元方法预测.空间电子技术, 2008, (3): 63-67.
    [200]徐立颖.提高电子产品机箱接缝电磁屏效的方法.无线电工程, 2008, 38(5): 39-42.
    [201]石峥,杜平安,刘建涛.缝隙结构电磁屏蔽特性数值仿真建模方法研究.系统仿真学报. 2009,21(24):7732-7737.
    [202] Kalyanmoy Deb. Optimization for Engineering Design: Algorithms and Examples. New Delhi: Prentice-Hall of India,1998:105-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700