用户名: 密码: 验证码:
基于稀疏表示模型的EEG信号棘波自动检测技术与应用系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑电图(Electroencephalography, EEG)检查是临床无创获取脑电信号最为便捷而成熟的方式,它是临床脑疾病诊断、神经生理学、脑科学等研究的重要途径。完成的脑电诱发电信号的产生和诱发电位的采集,及其癫痫特征波的自动检测与分类在临床检测、脑电监护、癫痫等脑疾病的控制与治疗上均有很重要的意义。
     本论文主要针对癫痫脑电信号特别是诱发癫痫脑电信号的采集和处理展开研究,取得的创新成果主要包括:
     (1)以EEG信号的神经电活动偶极子模型与头球模型为生理基础,以EEG信号的癫痫病态特征波具有的多形态结构特征为先验基础,对EEG信号的产生过程进行了数学建模,建立了EEG信号多形态生成模型。同时,基于EEG信号的可稀疏性表示假设,提出了面向特征抽取的EEG信号结构自适应稀疏分解模型(SSDM),为本文的癫痫特征自动检测理论与算法奠定了模型基础。
     (2)设计了一种新的EEG信号自适应稀疏表示过完备原子库。基于原子库设计要尽可能匹配逼近信号的内在结构成分这个基本准则,利用高斯函数及一阶、二阶导函数作为生成函数,研究设计了能够匹配异常EEG信号的多种多形态瞬时结构波形的过完备稀疏表示原子库。利用匹配追踪算法进行稀疏分解,结果显示EEG信号形态匹配过完备原子库具有更强的稀疏表示性能,并揭示了经典原子库下的稀疏表示对EEG信号特征检测的局限性。在此基础上,讨论了基于稀疏表示的EEG信号压缩采样问题。
     (3)提出了一种新的基于形态结构匹配的EEG信号棘波自动检测算法。算法的核心是,根据临床诊断中癫痫特征波的人工检测标准,以及本文提出的形态匹配过完备原子库,给出了癫痫特征波形态结构特征的定量化描述,包括癫痫特征波的持续时间、幅度、锐度以及波峰两侧或一侧是否出现短暂的反向抑制过程等特征,并进一步建立了癫痫特征波的定量化检测标准。算法首先通过波形分解与自适应预测滤波技术去除多导数据中非癫痫特征波形,仅保留有癫痫嫌疑的波段作进一步处理,以提高后续处理的效率;然后利用EEG信号在形态匹配过完备原子库下的稀疏表示时频参数,自适应提取各种瞬态波形的形态结构特征,通过与建立的定量化检测标准进行匹配与比对,从而实现EEG信号的癫痫特征波自动检测与分析。实验结果显示,本文的EEG稀疏表示原子库不仅能够克服Gabor字典不能识别周期化棘波序列的缺点,而且能够有效去除背景节律与伪迹的影响,提高了处理效率和癫痫波检测的正确率。
     (4)根据癫痫等神经系统疾病的神经电生理信号处理和疾病筛查的需要,研制了便携式的、可方便实现稀疏表示分析算法的神经诱发电信号处理系统。在PDA等移动计算设备的SD接口技术和Zigbee短距离无线通讯技术基础上,设计出短距离无线遥测SD卡和相应的测试终端,并编写出运行于Windows CE等移动操作系统平台上的设备驱动程序和数据采集、处理程序,完成诱发电信号的产生和诱发电位的采集。系统硬件设计过程简单,软件设计平台完善。实践表明基于PDA等移动计算平台和Zigbee短距离无线通讯技术的诱发电位测试系统的卓越的诱发信号发生和实时采集、处理诱发电位信号的能力,满足大多数诱发电位研究的需要,特别是满足微侵扰式的诱发电位研究的需要。
EEG (Electroencephalography, EEG) examination is by now the most convenient and mature manner for clinic to take the brain electrical signal by noninvasive access. It also provides an efficient approach to make clinical diagnosis of brain diseases and research on neurophysiology and brain science. In fact, the generation and collection of nerve evoked electrical signals, and also automatic detection and classification of epilepsy features have played a very important role in clinical testing, EEG ward, control and treatment of epilepsy and other brain diseases.
     The main focus in this thesis is the automatic detection of epileptic spikes in EEG signals based on sparse representation. The innovation results achieved in the thesis are summarized as follows.
     Firstly, a multi-component mathematical model is established for the producing process of EEG signals, taking the neuroelectricity activity dipole model and header model as the physiological foundation and the epileptic characteristics in abnormal EEG signals as the prior foundation. Then, a structure adaptive sparse decomposition model (SSDM) is proposed for EEG signals, based on the hypothesis that EEG signals can be of sparse representation. In fact, the two models have been the foundation of our research in this thesis.
     The second constribution in this thesis is the designed sparse dictionary for EEG signals. To represent EEG signals as sparsely as possible, the atoms in the designed dictionary should match the inherent structures in the EEG signals as closely as possible. Since EEG signals are locally observed much like Gaussian probability density, Gaussian wavelet, and Mexico-hat wavelet, the generation functions of the dictionary are intuitively chosen as the Gaussian and its first-order and second-order derivative functions, producing a sparse dictionary capable of matching kinds of characteristic epilepsy waves in abnormal EEG signals. Experiment results demonstrate that the designed sparse dictionary behaves more efficiently than the usual Gabor dictionary in sparse representation of the EEG signals. Moreover, compressive sampling of EEG signals is also discussed based on sparse representation.
     The core of this thesis is the newly proposed algorithm of automatic detection of epileptic spikes in EEG signals through our quantitative dectection criteria which have been established based on the detection criteria in clinic diagnosis and our designed sparse dictionary. In the first stage of the algorithm, an adaptive autoregressive prediction filter is used as a pre-detector to detect all the possible epileptiform transients. This pre-detection is not only able to reduce the complexity of the algorithm but also improve the overall detection performance of the procedure. In the second stage, the time-frequency parametrization of EEG signals is provided using our designed sparse dictionary and the matching pursuit method, capable of describing quantificationally the epilepsy characteristic waves in the abnormal EEG signals. Through comparing with the pre-established detection criteria, the time-frequency parametrization can be used to automatically dectect the epileptic spikes in the abnormal EEG signals. Numerous experiment results show that the proposed algorithm is not only capable of detecting the periodic spike sequences in EEG signals, but also effectively elliminating the influences of background rhythm and artifacts. Compared with previous detection methods based on the Gabor dictionary, our algorithm behaves more efficiently and accurately.
     Motivated by the need of clinical testing of epilepsy and other neurological diseases, a portable application system is designed for sampling and processing the EEG signals, which can easily implement the relevant processing algorithms based on sparse analysis. The design of hardware system has been based on technologies of Zigbee short-range wireless communi-cations and SD card interface for mobile computing devices such as PDA. The design of the application system includes a couple of aspects:(a) the design of SD card for short-range wireless telemetry and corresponding test terminals; (b) the programs for device drivers and data acquisition and processing running on the Windows CE operating system. The overall design process of hardware system is simple, and that of software system is perfect. Practical applications demonstrate that our designed system has met the most research on evoked potentials, in particular to those micro-intrusive types.
引文
[1]刘秀琴.神经系统临床电生理学(上)(脑电图学)[M].第一版.北京:人民军医出版社,2004.
    [2]Harvey Simon. Epilepsy (review)[M]. Epilepsy,2004, (1):1-26.
    [3]王新德总主编,刘秀勤主编.神经系统临床电生理学(脑电图学)/(神经病学Vo1.2)[M].北京:人民军医出版社,2004:1-5,35-38,62-69,116-120,295-297.
    [4]张明岛,陈兴时.脑电学发展史[M].国外医学精神病学分册.1996,23(2):95-99.
    [5]王维治,付锦,邱浩彰.世界神经病学发展史[M].中华神经科杂志,2003,36(6):471-476.
    [6]祝正祥,谭启富,汤黎明等.慢性小脑刺激系统的研制[J].医疗器械(现“中国医疗器械杂志”).1987,11(1):21-24.
    [7]季忠,秦树人编著.微弱生物医学信号特征提取的原理与实现[M].第一版.北京:科学出版社,2007.
    [8]李志平,张福利,刘武顺等.中西医学史[M].北京:人民卫生出版社,1999:43-90.
    [9]李经纬,程之范主编.中国医学百科全书一医学史[M].上海:上海科学技术出版社,1987:103-200.
    [10]关新民.医学神经生物学[M].第二版.北京:人民卫生出版社,2002:3-12.
    [11]陈国田,曹起龙.简明神经电生理诊断学[M].第一版.北京:科学技术文献出版社,1998.
    [12]徐科.神经生物学纲要[M].第一版.北京:科学出版社,2000.
    [13]张明岛,陈兴时.脑诱发电位学[M].第一版.上海:上海科技教育出版社,1997.
    [14]JOHN R. HUGHES著.马仁飞译.临床实用脑电图学[M].第二版.北京:人民卫生出版社,1997.
    [15]吴立文.临床脑电图图谱[M].第一版.北京:中国协和医科大学出版社.2007.
    [16]潘映辐.临床诱发电位学[M].第二版.北京:人民卫生出版社.2000.
    [17]郑延平.生物反馈的临床实践[M].第一版.北京:高等教育出版社.2003.
    [18]Wolpaw J. R., et al. EEG-based communication:improved accuracy by response verification [J]. IEEE Trans. Rehabil Eng.,1998,6(3):326-333.
    [19]杨福生.随机信号处理[M].北京:清华大学出版社,1990.
    [20]高湘萍,吴小培,沈谦.基于脑电的意识活动特征提取与识别[J].安徽大学学报(自然科学版).2006,30(2):33-36.
    [21]沈民奋,沈凤鳞等.不同状态下脑电信号的双谱分析[J].生物物理学报.1998,14(1):51-57.
    [22]艾玲梅,黄力宇,黄远桂.利用双谱分析的癫痫脑电特征研究[J].西安交通大学学报,2004,38(10):1097-1100.
    [23]王兴元,骆超,谭贵霖.动力学模型中混沌现象的研究[J].生物物理学报.2005,21(4):307-316.
    [24]刘心东.混沌及其在生物医学工程中应用[J].国外生物医学工程分册.1993,16(2):36-41.
    [25]Gabor A J. Seizure detection using a self-organizing neural network:validation and comparison with other detection strategies [J]. Electoenceph Clin Neurophysiol.1998,107: 27-32.
    [26]Mamelak A N. Automated staging of sleep in cats using neural networks[J]. Electroenceph Clin Neurophysiol,1991,79:52-61.
    [27]PRADHAN N, DUTT NARAYANE. Data Compression by Linear Prediction for Storage and Transmission of EEG Signal[J]. International Journal of Biomedical Computing,1994,7(35): 207-217.
    [28]TULGA KALAYCI, et al. Wavelet Preprocessing for Automated Neural Network Detection of EEG Spikes[J]. IEEE Engineering In Medicine and Biology,1995:160-166.
    [29]蔡琼,陈焕文,谢丽娟.基于改进小波变换的EEG分析[J].计算机技术与发展.2008,18(4):32-34.
    [30]NITISH V, THAKOR, GUO XIN-RONG, SUN YI-CHUN. Multiresolution Wavelet Analysis of Evoked Potentials[J]. IEEE Transaction On Biomedical. Engineering.1993,40(11): 1085-1094.
    [31]吴敏,韦志辉,汤黎明等.一种基于小波变换的脑电信号癫痫特征波的识别算法[J].中国医疗设备.2008,23(4):21-24.
    [32]WILLIAMS W J. Recent advances in time-frequency representations:Some theoretical foundations[J]. Time Frequency and Wavelets in Biomedical Signal Processing, IEEE Press Series in Biomedical Engineering. IEEE Press,1999.
    [33]Sartoretto F. Automatic detection of epileptiform activity by single-level wavelet analysis[J]. Clin Neurophysiol.1999,110:239-249.
    [34]季忠,秦树人.基于Wigner分布的脑电信号处理[J].信号处理.2002,18(6):570-573.
    [35]HLAWATSCH. The Wigner distribution-theory and application in signal processing[M]. New York:North Holl and Elsevier Science Publishers,1992.
    [36]Gallez D, Babloyantz A. Predictability of human EEG:A dynamical approach [J]. Biol Cybern.1991,64:381-391.
    [37]马千里,宁新宝,王俊等.描述睡眠脑电多重分形特性的一种新参数[J].科学通报,2006,51(15):1842-1846
    [38]Pierre Comon. Independent component analysis:A new concept?[J]. Signal Processing,1994, (36):287-314.
    [39]Anthony Bell, Terence Sejnowski. An informationmaximization approach blind source seperation and blind deconvolution[J]. Neural Computation.1995,7(6):1004-1034.
    [40]刘铁兵,汤黎明,吴敏等.基于独立分量分析的癫痫脑电信号分析研究[J].医学研究生学报,2007,20(3):278-280.
    [41]康永强,田梦君.一种快速ICA算法及其在脑电信号处理中的应用[J].科学技术与工程.2006,6(5):330-335.
    [42]吴敏,韦志辉,汤黎明等.基于SVM算法癫痫脑电的研究[J].医疗卫生装备,2007,28(12):23-25.
    [43]王建英,尹忠科,张春梅著.信号与图像的稀疏分解及初步应用[M].成都:西南交通大学出版社,2006:49-57.
    [44]周崇经.滤波理论与波形编码[M].辽宁科学技术出版社,1986.
    [45]刘利雄,贾云得,廖斌,张敏.一种改进的最佳时频原子搜索策略[J].中国图像图形学报.2004,9(7):873-877.
    [46]姜玉亭.基于稀疏分解的图像去噪[D].硕士学位论文,成都:西南交通大学,2005.
    [47]Stephane Mallat, Zhifeng Zhang. Matching pursuit with time-frequency dictionaries [J]. IEEE Trans on Signal Processing,1993,41(12):3397-3415.
    [48]张文耀.基于匹配跟踪的低位率语音编码研究[D].博士学位论文,北京:中国科学院研究生院(软件研究所,2002.
    [49]Donoho D L, Johnstone I. Ideal spatial adaptationvia wavelet shrinkage [J]. Biometrika,1994, 81(11):425-455.
    [50]Coifamn R R, Donoho D L. Transaction-invariant denoising[R]. Technical Report, Yale University and Stanford University,1995.
    [51]Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM Review,2001,43(1):129-159.
    [52]Wang Janying, Chen Tianqi. Joint frequency 2-D AOA and polarizatian estimation estimation in broad-band [J]. Science in China (series F),2001,44(03):161-167.
    [53]Tuteur F B. Wavelet transforms in signal detection [A]. Proc. of IEEE ICASSP[C], New York, USA,1988:1435-1438.
    [54]Wang G, Chen D, Lin J, et al. The application of chaotic oscillators to weak signal detection[J]. IEEE Trans. On Industrial Electronics,1999,45(2):440-444.
    [55]Bjmm Volcker, Peter Handel. Frequency estimation from proper sets of correlations [J]. IEEE Trans. on signal processing,2002,50(4):791-802.
    [56]Steven K and Supratim S. Mean likelihood frequency estimation [J]. IEEE Trans. on signal processing,2000,4(7):1937-1946.
    [57]Durka P J. Adaptive time-frequency parametrization of epileptic spikes [J]. Physical Review E, 2004,69(05):1914-1918.
    [58]Piotr Durka J, Ircha D, Blinowska KJ. Stochastic time-frequency dictionaries for matching pursuit[J]. IEEE Trans on Signal Processing,2001,49(3):507-510.
    [59]Arthur P L, Philipos C L. Voiced/unvoiced speech discrimination in noise using gabor atomic decomposition[A]. Proc. Of IEEE ICASSP[C], Hong Kong, April,2003, VoL I:820-828.
    [60]Durka P J, Szelenberger W, Blinowska KJ, et al. Adaptive time-frequency parametrization in pharmaco EEG[J]. Journal of Neuroscience Methods,2002,117(1):65-71.
    [61]Durka P J, Blinowska KJ. A unified time-frequency parametrization of EEG[J]. IEEE Engineering in Medicine and Biology,2001,20(5):47-53.
    [62]吴敏,韦志辉,汤黎明等.一种基于稀疏表示模型的脑电图信号分析方法[J].临床康复与医学工程.2008,12(4):667-670.
    [63]成令忠.组织学[M].第二版.北京:人民卫生出版社.1994,483-565.
    [64]张培林.神经解剖学[M].第一版.北京:人民卫生出版社,1987.
    [65]姚泰主编,吴博威副主编.生理学[M].第六版.北京:人民卫生出版社,2005.
    [66]许绍芳.神经生物学[M].第一版.上海:上海医科大学出版社,1999.
    [67]韩济生.神经科学原理[M].第一版.北京:北京医科大学出版社,1999,78-93.
    [68]王家蓓,孙曼霁.神经递质受体和离子通道的移植[J].生理科学进展.1987,18:131-135.
    [69]万选才,杨天祝,徐承焘等.现代神经生物学[M].第一版.北京:北京医科大学中国协和医科大学联合出版社,1999.
    [70]张庸等译.美国最新临床医学问答-神经病学[M].第一版.北京:海洋出版社,2000.
    [71]甘思德,范明.神经元胞质快转运的亚细胞分子机制[J].生理科学进展.1993:24-186.
    [72]Takel K, Mepherson P S, Schmid S L, et al. Tubular membrance invaginations coated by dynamin rings are induced by GTP-FS in nerve terminates [J]. Nature,1995,374-386.
    [73]刘安西,陈守同等编译.细胞膜离子通道[J].第一版.北京:中央民族出版社.1990:1-16,65-82.
    [74]吕国蔚.实验神经生物学[M].第一版.北京:科学出版社,2003.
    [75]陈宜张.神经系统电生理学[M].第一版.北京:人民卫生出版社,1983.
    [76]Matsuoka M, et al. Clinical topographic EEG and evoked potential[J]. Tokyo: Shindan-To-Chirgo Co. Ltd,1986.
    [77]万柏坤,薛召军,程龙龙,朱欣.脑电多极子模型[J].自然科学进展.2006,16(7):881-888.
    [78]陈果,吕俊芳,李静.脑电信号源脑电图定位方法的综述[J].航空计测技术.2003,23(2):1-3.
    [79]郑旭媛,万柏坤.脑电逆问题的研究进展[M].国外医学生物医学工程分册.2001,24(4):179-182.
    [80]贺士娟,杨雅妹,王霞,颜威利.脑电磁逆问题中头模型构造方法的研究[J].河北工业大学学报.2001,30(3):7-10.
    [81]王磊.基于真实头模型的脑电信号源分析[D].河北工业大学,2004.
    [82]张迎春,邹凌,朱善安.脑电正问题的模型和算法[J].生物医学工程学杂志.2004,21(2):337-339.
    [83]邹凌,朱善安,张迎春.关于脑电偶极子源定位问题[J].国外医学生物医学工程分册.2003,26(3):103-108.
    [84]Cuffin B N, Schomer D L, Ives J R. Experimental tests of EEG source localization accuracy in realistically shaped head models[J]. Clin Neurophysiology,2001, (112):2288-2292.
    [85]Cuffin B N. EEG localization accuracy improvements using realistcally shaped head models[J]. IEEE Trans. BME.,1996,47:299-303.
    [86]刘浩,彭松.电流极子在均匀导电球模型中电位解析解的数值验证[J].生物医学工程学杂志.2004,21(3):367-370.
    [87]尧德中.均匀导电球模型中2n极子电位的解析解[J].中国生物医学工程学报.1998,17(2):97-102.
    [88]刘本永.非平稳信号分析导论[M].国防工业出版社,2006.
    [89]邱天爽,张旭秀,李小兵,孙永梅.统计信号处理——非高斯信号处理及其应用[M].电子工业出版社,2004.
    [90]Starck J L, Elad M, and Donoho DL. Image decomposition via the combination of sparse representation and a variational approach[J]. IEEE Transaction on Image Processing,2005, 14(10):1570-1582.
    [91]何昭水,谢胜利,傅予力.信号的稀疏性分析[J].自然科学进展.2006,16(9):1167-1173.
    [92]谢胜利,何昭水,傅予力.基于稀疏元分析的欠定混叠自适应盲分离方法[J].中国科学E.2007,37(8):1086-1098.
    [93]赵浩,周卫东,钟凌惠.独立分量分析在生物医学信号处理中的应用[J].生物医学工程研究.2004,22(4):56-60.
    [94]Seungjin Cho, Andrzej Cichocki, Hyung-Min Park, et al. Blind source separation and indepandent component analysis:a review[J]. Neural Information Processing-Lettres and Review,2005,6(1):1-57.
    [95]王建英.信号与图像的稀疏分解及初步应用[M].西南交通大学出版社,2006.
    [96]刘丹华,石光明,周佳社.一种冗余字典下的信号稀疏分解新方法[J].西安电子科技大学学报(自然科学版).2008,35(2):228-232.
    [97]Elad M, Michale. mage denoising via sparse and redundant representations over learned dictionaries[J]IEEE Transactions on Image Processing,2006,15(12):3736-3745.
    [98]Blumensath T, Davies M E. Gradient pursuits[J]. IEEE Trans on Signal Processing,2008, 56(6):2370-2382.
    [99]张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报.2006,51(6):628-633.
    [100]Hamid Hassanpour, Luke Rankine, Mostefa Mesbah, et al. Comparative performance of time-frequency based EEG spike detection techniques[A]. The 13th 2005 European Signal Processing Conference (EUSIPCO'05) [C]. Antalya, Turkish,2005,201-204.
    [101]Brown M L, Williams W J, and Hero A O. Nonorthogonal gabor representation of event-related potentials [A]. In Proceedings of the 15th Annual International Conference of IEEE Engineering in Medicine and Biology Society,1993,314-315.
    [102]Aviyente S, Bernat E, Malone S, and Iacono W. Analysis of event related potentials using pca and matching pursuit on the time-frequency plane[A]. IEEE International Conference of the Engineering in Medicine and Biology Society,2006,3:424-427.
    [103]孙玉宝,吴敏,韦志辉,肖亮,冯灿.基于稀疏表示的脑电棘波检测算法研究[J].电子学报.2009,37(9):1971-1978.
    [104]孙玉宝,肖亮,韦志辉,邵文泽.基于Gabor感知多成分字典的图像稀疏表示算法研究[J].自动化学报.2008,34(11):1379-1387.
    [105]Candes E, Romberg J. and Tao T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information [J]. IEEE Trans. Inform. Theory, vol.52, no.2, pp.489-509, Feb.2006.
    [106]Donoho D. Compressed sensing[J]. IEEE Trans. Inform. Theory, vol.52, no.4, pp.1289-1306, April 2006.
    [107]吴敏,韦志辉,汤黎明等.基于稀疏表示的两阶段脑电癫痫波检测算法研究[J].中国生物医学工程学报.2009,28(4):535-543.
    [108]Arakawa K, Fender D H. Separation of a nonstationary component from the EEG by a nonlinear digital filter[J]. IEEE Transactions on Biomedical Engineering,1986,33(7): 724-726.
    [109]Durka P J,Blinowska KJ. A unified time-frequency parametrization of EEG[J]. IEEE Engineering in Medicine and Biology,2001,20(5):47-53.
    [110]Wilson S B, Emerson R. Spike detection:a review and comparison of algorithms [J]. Clinical Neurophysiology,2002,113(12):1873-1881.
    [111]Gotman J, Gloor P. Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG[J]. Electroenceph clin Neurophysiol,1976,41(5):513-529.
    [112]H. Hassanpour, M. Mesbah, B. Boashash.EEG spike detection using time-frequency signal analysis[C]. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Montreal, Quebec, Canada,2004,5:421424.
    [113]Latka M, Was Z, Kozik A, West B J. Wavelet analysis of epileptic spikes[J]. Physical Review E,2003,67(5):2902-2907.
    [114]Guedes de Oliveira P, Queiroz C, Lopes de Silva F. Spike detection based on a pattern recognition approach using a microcomputer[J]. Electroenceph clin Neurophysiol,1983,56(1): 97-103.
    [115]吴敏,韦志辉,汤黎明等.虚拟神经诱发电信号检测系统的设计[J].中国医疗设备.2009,24(1):19-21.
    [116]汤黎明,刘铁兵,吴敏等.精密神经阈值刺激仪的研制[J].医疗卫生装备.2001,22(6):12-14.
    [117]汤黎明,常本康,刘铁兵等.精密神经阈值刺激仪系统软件的开发[J].计算机应用研究.2002,19(12):97-99.
    [118]司家瑞.脑电图检测与智能诊断系统的研究与设计[D].天津大学,2006.
    [119]PCMCIA(PC card) specification revision 5.0. PCMCIA Association (PCA).2005:191-230.
    [120]苗新法.带SD接口的智能安全卡结构研究[J].电子元器件应用.2008,10(10):65-67.
    [121]过晓冰,伍卫国,刘敏Windows CE及其开发工具[J].计算机工程.2000,26(9):33-34.
    [122]李蒙,舒云星Windows CE驱动程序开发[J].计算机工程与设计.2004,25(6):963-964,981.
    [123]李长河,刘刚.嵌入式Windows CE设备驱动的研究实现[J].微机发展.2003,13(7):69-72.
    [124]侯俊杰.深入浅出MFC(第二版)[M].武汉:华中科技大学出版社,2004.
    [125]微软公司著.希望图书创作室译.设备驱动程序开发指南[M].北京:北京希望电子出版社,2003.
    [126]王圣平,张凯.数据采集系统中WindowsCE.Net的几种外设接口编程方法[J].微计算机信息.2005,21(1):61-62.
    [127]陈向群,王雷,马洪兵等Windows CE.NET系统分析及实验教程[J].北京:机械工业出版社,2003.
    [128]陆云峰,李强.基于WinDriver for CE的视频采集驱动程序设计[J].计算机应用与软件.2005,22(6):71-74.
    [129]Microsoft Corp.Windows CE Device Driver Reference[M].1998-02.
    [130]刘大伟Windows CE设备驱动程序设计简析[J].计算机工程.2000,26(3):88-89.
    [131]汤黎明,常本康,刘铁兵等.基于DDS技术的神经阈值刺激仪的研制[J].北京生物医学工程.2003,26(3):191-194,197.
    [132]刘铁兵,汤黎明,张兴华等.高频程控增益前置放大器的设计及其在医学仪器中的应用[J].医疗设备信息.2003,18(3):4-7.
    [133]刘铁兵,汤黎明,张兴华等.高频宽增益小信号放大器的设计及在医用超声功率计中的应用[J].中国医疗器械杂志.2003,27(5):328-330.
    [134]Xicor公司X9312/X9C103 Datasheet[EB/OL]. http://www.xicor.com/x93122x9c103.pdf, 2002-01-05.
    [135]Maxim公司Max1110 Datasheet[EB/OL]. http://www.maxim-ic.com.cn/pdfserv/en/ds/ MAX1110-MAX1111.pdf.,19-1194.
    [136]Maxim公司Max1702B Datasheet[EB/OL]. http://www.maxim-ic.com.cn/pdfserv/en/ds/ MAX1702B.pdf.,19-2448.
    [137]Zigbee Alliance. Zigbee alliance finalizes specification[EB/OL]. http://www. zigbee.org, 2004.
    [138]Gislason Drew, GiIlman Tim. Zigbee wireless sensor networks-zigike is an emerging wireless protocol designed for lowcost, highreliability sensor networks[J]. Software Tools for the Professional Programmer,2004, (29):40-42.
    [139]凌志浩,周怡颞,郑丽国ZigBee无线通信技术及其应用研究[J].华东理工大学学报(自然科学版)。2006,32(7):801-805.
    [140]吴呈瑜,孙运强.基于ZigBee技术的短距离无线数据传输系统[J].仪表技术与传感器.2008,32(5):38-39,51.
    [141]赵曦,解永平.基于ZigBee的智能传感器网络无线接口设计[J].仪器仪表学报.2006,27(6):1639-1640.
    [142]王陈海,吴太虎.短距离无线通信技术发展及在医疗监护中的应用[J].医疗卫生装备.2008,29(1):30-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700