用户名: 密码: 验证码:
中温余热吸附制冷用复合吸附剂及吸附床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以内燃机尾气余热驱动的吸附制冷系统为背景,围绕如何提高吸附床传热传质性能和系统可靠性,开展了高效复合吸附剂、复合吸附剂与换热壁面连接方式以及单管吸附床和新型制冷单元的研究。主要研究成果如下:
     1、研制了一种在一定温度下烧制而成的固化分子筛复合吸附剂,该吸附剂以分子筛为主吸附剂,其配比(质量份)为:分子筛:凹凸棒粘土:发泡剂:膨胀石墨=100:40:15:30。
     2、利用正交试验和逐步回归法导出了凹凸棒粘土、膨胀石墨和发泡剂的添加量,以及烧制温度这4个因素与复合吸附剂导热系数的经验式为:
     λ=0.379-0.857a-0.771b+0.468c-8.6×10~(-5)d+1.481a~2+1.515b~2+0.0336c~2W/(mK)采用加权评价法对吸附剂的吸附性能进行了评价与对比,得到上述4个因素与吸附性能经验式为:
     x=9.038-0.487a-8.982b-1.770c-0.001d-4.995bc+16.799b~2+0.0152a~2b-0.435a~2c+0.512b~2c式中:a、b、c分别为凹凸棒粘土、发泡剂、膨胀石墨相对于分子筛的质量百分比d为烧制温度单位℃
     经实验验证上述两经验式可用于预测该类吸附剂导热系数、吸附性能,并为的吸附床工程设计提供参考。
     3、提出使用胶粘剂将复合吸附剂与金属换热壁面粘结在一起的方法。该方法不仅能够有效减小吸附剂与金属换热壁面间的接触热阻,而且能够有效减小因两者间因线性膨胀系数不一致而引起的热应力。研究结果表明添加纳米SiC的硅橡胶胶粘剂是一种基本适合本研究工况的胶粘剂。
     4、利用所开发的复合吸附剂和提出的粘结方法,制作了单管吸附床制冷实验台,并对效果进行了研究与考核。实验证明:散装条件下,环状固化分子筛复合吸附剂较环状纯分子筛吸附剂缩短响应时间约12.9%;采用添加纳米SiC的硅橡胶粘结剂将吸附剂与金属换热壁面进行粘结的方法较散装方法缩短响应时间27.4%。响应时间减少将有效缩短循环周期。
     5、借鉴热管和浮头式换热器原理,提出一种新型吸附制冷单元。并利用集总参数法和Simulink对由新型制冷单元组成的两床系统的运行规律、操作参数对吸附制冷性能的影响进行了数值模拟研究。研究表明:热源温度存在一个极值,当超过这个温度极值后,再提升热源温度反而要削弱系统的制冷能力;蒸发温度提高和冷却温度降低将有助于提高系统的制冷能力;系统的吸附/脱附时间比与循环周期有关,但通常都是吸附时间长一些,约占循环周期的60%左右;吸附剂导热系数的提高可以有效的提高吸附制冷系统的制冷性能。
In order to improve the performance of adsorbent bed and reliability of adsorption refrigeration system driven by internal combustion engine exhaust waste heat,some research and exploration,which are focused on high-performance composite adsorbent,the installation method between absorbent and adsorbent bed, the performance of single-tube adsorbent bed and new refrigeration unit,were done. Main results are as follows.
     1.A zeolite-based composite absorbent was preparated and recommended,with the formula:13X zeolite 100(mass fraction),attapulgite clay 40,blister 15,expanded graphite 30,350℃sintered;
     2.With the orthogonal test and stepwise regression method,the empirical was derived and validated by experiment,The equations about of the thermal conductivity and adsorption performance of composite adsorbent with the 4 factors above are as follows:
     Thermal conductivity:
     λ=0.379-0.857a-0.771b+0.468c-8.6×10~(-5)d+1.481a~2+1.515b~2+0.0336c~2 W/(mK) Adsorption performance(by weighted evaluation method):
     χ=9.038-0.487a-8.982b-1.770c-0.001d-4.995bc+16.799b~2+0.0152a~2b-0.435a~2c+0.512b~2c Where a,b,c are mass percent of attapulgite clay,blister,expanded graphite,d is the sintered temperature(℃).
     3.Bonding method is proposed to reduce the contact thermal resistance between the absorbent and the heat transfer surface of adsorbent bed.This bonding method can not only reduce the thermal stress,which is generated by the difference of linear expansion coefficient between the absorbent and the metal heat exchanger,but also can enhance the reliability of the adsorbent bed.The results of experiments show that the silicone rubber added nano-Sic is a good adhesive for sorbent and adsorbent bed.
     4.In the single-tube adsorption refrigeration test-bed,the effects to the adsorption refrigeration performance of composite absorbent and bonding methods are tested.The tests show that the response time by using composite adsorbent will be shorten about 12.9%than pure zeolite.The response time by using the new bonding methods will be shorten about 27.4%than bulk methods.This will effectively result in the cycle time of system be shorten.
     5.A new type of adsorption refrigeration unit and its application systems are proposed,which combines the features of heat pipe and the floating head heat exchanger.Lumped parameter method and Simulink are used to simulate the performance of system,which consists of two new units.The operation law of the adsorption refrigeration system and the influence of operating parameters to adsorption refrigeration system were studied.The results show that the capacity of refrigeration system will be weakened with the raise of heat source temperature when the heat source temperature overrun an extremum;the increase of evaporation temperature,or the decrease of cooling temperature,or the increase of thermal conductivity of sorbent,will help to improve the capacity of refrigeration system;The ratio between adsorption time and desorption time is related to the cycle periodic time, and the adsorption time is usually longer than desorption time,it takes up about 60% of cycle time.
引文
[1]王如竹,吴静怡,代彦军等.吸附式制冷[M].北京:机械工业出版社,2002:259.
    [2]罗运俊,何梓年,王长贵.太阳能利用技术[M].北京:化学工业出版社,2005.
    [3]国际制冷学会.国际制冷学会关于制冷领域应优先研究的问题列表[J].制冷学报.2006,27(3):59-62.
    [4]E H G.Freight car refrigeration by an adsorption system employing silica gel[J].Refrigera-ting Engineering.1924,17(2).
    [5]B M E.The development of silica gel refrigeration[J].Arnerican Society of Refrigeration Engineering.1929,177(4):1763-1768.
    [6]Daunt J G,Rosen C Z.Desorption cooling below 12 K using He4 desorbed from synthetic zeolite[J].Cryogenics.1972,12(3):201-208.
    [7]Babiichuk V P,Golub A A,Esel B N,et al.Continuous adsorption refrigerator for producing temperatures below 1 K[J].Cryogenics.1975,15(5):254-256.
    [8]Steinberg M,Dang V D.Production of synthetic methanol from air and water using controlled thermonuclear reactor power--Ⅰ,technology and energy requirement[J].Energy Conversion.1977,17(2-3):97-112.
    [9]I T D.Exploration of molecular sieve zeolites for cooling of buildings with solar energy[J].Final Report,NSF/RA-770017.1977.
    [10]Lazarev B G,Makarov V I,San A A.Cryogenically pumped laboratory metallurgical installation[J].Cryogenics.1979,19(9):499-504.
    [11]Ron M.Hydrogen heat pump as a bus air conditioner[J].Journal of the Less-Common Metals.1984,104(2):259-278.
    [12]Adell A.Comparison of the performance obtained in a tropical country,of a solid adsorption,solar-driven refrigerator and a photovoltaic refrigerator[J].Journal of Power Sources.1985,15(1):1-12.
    [13]Jones J A,Golben P M.Design,life testing,and future designs of cryogenic hydride refrigeration systems[J].Cryogenics.1985,25(4):212-219.
    [14]Bard S.Improving adsorption cryocoolers by multi-stage compression and reducing void volume[J].Cryogenics.1986,26(8):450-458.
    [15]Passos E,Meunier F,Gianola J C.Thermodynamic performance improvement of an intermittent solar-powered refrigeration cycle using adsorption of methanol on activated carbon[J].Journal of Heat Recovery Systems.1986,6(3):259-264.
    [16]S.Adsorption heat pumps[J].Journal of Heat Recovery Systems.1986,6(4):277-284.
    [17]Restuccia G,Recupero V,Cacciola G,et al.Zeolite heat pump for domestic heating[J].Energy.1988,13(4):333-342.
    [18]Aittom A,H M.Modelling of zeolite/methanol adsorption heat pump process[J].Heat Recovery Systems and CHP.1988,8(5):475-482.
    [19]Critoph R E.Activated carbon adsorption cycles for refrigeration and heat pumping[J].Carbon.1989,27(1):63-70.
    [20]Cacciola G,Restuccia G,Giordano N.Economic comparison between adsorption and compression heat pumps[J].Heat Recovery Systems and CHP.1990,10(5-6):499-507.
    [21]Z.y.Liu,Cacciola G.,Restuccia G.Fast simple and accurate measurement of zeolite thermal conductivity[J].ZEOLITES.1990(10):565-570.
    [22]Cacciola G,Hajji A,Maggio G,et al.Dynamic simulation of a recuperative adsorption heat pump[J].Energy.1993,18(11):1125-1137.
    [23]Critoph R E.An ammonia carbon solar refrigerator for vaccine cooling[J].Renewable Energy.1994,5(1-4):502-508.
    [24]Cacciola G,Restuccia G.Progress on adsorption heat pumps[J].Heat Recovery Systems and CHP.1994,14(4):409-420.
    [25]J.j.Guilleminot,J.b.Chalfen A C.Heat and mass transfer characteristics of composites for adsorption heat pumps[C].USA:ASME,1994.
    [26]严爱珍.利用沸石分子筛制冷[J].江苏化工.市场七日讯.1985(03).
    [27]严爱珍,鲍书林.沸石分子筛在吸附制冷应用上的探讨[J].南京大学学报(自然科学版).1986(02).
    [28]雒惠云.航天器制冷系统的研制和应用[J].真空与低温.1987(02).
    [29]翁文耀,吴育金.单元沸石吸附制冷技术中试概述[J].渔业现代化.1990(03).
    [30]郑庆雄,吴健.分子筛吸附制冷单元的工作原理及制冷性能研究[J].制冷学报.1990(04).
    [31]冯毅,谭盈科.吸附式制冷在利用低温能源方面的应用[J].节能.1990(02).
    [32]李中付,黄志成,刘国新.固体吸附式太阳能制冷的理论及试验研究[J].制冷学报.1991(04).
    [33]黄志成,李中付,刘国新.太阳能吸附式制冰器试验研究[J].制冷.1991(02).
    [34]朱冬生.吸附式热泵循环过程的模拟及实验研究[D].华南理工大学;,1991.
    [35]王如竹,戴巍,周衡翔.吸附式制冷研究概况[J].低温与特气.1994(04).
    [36]王如竹,李永强.活性炭-甲醇吸附式制冷单元:工作原理和制冷性能[J].制冷学报.1994(3).
    [37]V S S.Ramp wave analysis of the solid / vapor heat pump[J].ASME Journal of Energy Resources Technology.1990,112:69-78.
    [38]Critoph R E.Forced convection enhancement of adsorption cycles[J].Heat Recovery Systems and CHP.1994,14(4):343-350.
    [39]Douss Nejib,Meunier Francis E.S L.Predictive model and experimental results for a two-adsorber solid adsorption heat pump[J].Industrial & Engineering Chemistry Research.1988,27(2):310-316.
    [40]D N.Experimental study of solid adsorption heat-pump cycles[J].International Chemical Engineering.1992:718-725.
    [41]Shelton S V,Wepfer W J,Miles D J.Square wave analysis of the solid-vapor adsorption heat pump[J].Heat Recovery Systems and CHR 1989,9(3):233-247.
    [42]Tchernev D.i.C J M.Closed cycle zeolite regenerative heat pump[C].New York USA:Solar Energy Division(Publication) SED,1989.
    [43]Wang R Z,Wu J Y,Xu Y X,et al.Performance researches and improvements on heat regenerative adsorption refrigerator and heat pump[J].Energy Conversion and Management.2001,42(2):233-249.
    [44]W R Z.Performance improvement of adsorption cooling by heat and mass recovery operation[J].International Journal of Refrigeration.2001,24(7):602-611.
    [45]Saha B B,Akisawa A,Kashiwagi T.Solar/waste heat driven two-stage adsorption chiller:the prototype[J].Renewable Energy.2001,23(1):93-101.
    [46]Lemmini F,Errougani A.Building and experimentation of a solar powered adsorption refrigerator[J].Renewable Energy.2005,30(13):1989-2003.
    [47]Alghoul M A,Sulaiman M Y,Azmi B Z,et al.Advances on multi-purpose solar adsorption systems for domestic refrigeration and water heating[J].Applied Thermal Engineering.2007,27(5-6):813-822.
    [48]Wang D C,Xia Z Z,Wu J Y,et al.Study of a novel silica gel-water adsorption chiller.Part Ⅰ.Design and performance prediction[J].International Journal of Refrigeration.2005(28):1073-1083.
    [49]Zhao H,Zhang M,Zhenyan L,et al.Mechanical and experimental study on freeze proof solar powered adsorption cooling tube using active carbon/methanol working pair[J].Energy Conversion and Management.2008,In Press,Corrected Proof.
    [50]Zhai X Q,Wang R Z,Wu J Y,et al.Design and performance of a solar-powered air-conditioning system in a green building[J].Applied Energy.2008,85(5):297-311.
    [51]Wang L W,Wu J Y,Wang R Z,et al.Study of the performance of activated carbon-methanol adsorption systems concerning heat and mass transfer[J].Applied Thermal Engineering.2003,23(13):1605-1617.
    [52]陆紫生,王如竹,王丽伟等.采用复合吸附剂-氨的多功效热管型高效吸附制冷机[J].科学通报.2005(19).
    [53]Wang L W,Wang R Z,Lu Z S,et al.Split heat pipe type compound adsorption ice making test unit for fishing boats[J].International Journal of Refrigeration Issue with Special Emphasis on Cryobiology.2006,29(3):456-468.
    [54]陈传涓,王如竹,陆紫生,et al.复合交变热管复合吸附渔船制冰机的循环特性[J].化工学报.2006,57(6):1364-1369.
    [55]Wang K,Wu J Y,Xia Z Z,et al.Design and performance prediction of a novel double heat pipes type adsorption chiller for fishing boats[J].Renewable Energy.2008,33(4):780-790.
    [56]刘忠宝.车辆余热双效复叠空调系统-除湿蒸发冷却和转轮固体吸附制冷 研究[D].北京:北京航空航天大学,2000.
    [57]刘忠宝,姚洪伟,王浚.车辆尾气热驱动的转轮固体吸附制冷空调系统研究[J].真空与低温.2001(03):158-164.
    [58]李定宇.海洋渔船柴油机尾气制冰机[P].中国,99232616.8.
    [59]Critoph R E,Metcalf S J.Specific cooling power intensification limits in ammonia-carbon adsorption refrigeration systems[J].Applied Thermal Engineering.2004,24(5-6):661-678.
    [60]Wang D C,Xia Z Z,Wu J Y.Design and performance prediction of a novel zeolite-water adsorption air conditioner[J].Energy Conversion and Management.2006,47(5):590-610.
    [61]Ltd H D R C.Fishing vessel diesel engine exhaust icemaker2000.
    [62]李晓敏.提高DY渔船柴油机尾气制冰系统性能的实验研究[D].湖南大学;,2001.
    [63]Wang L W,Wang R Z,Wu J Y,et al.Adsorption ice makers for fishing boats driven by the exhaust heat from diesel engine:choice of adsorption pair[J].Energy Conversion and Management.2004(45):2043-2057.
    [64]Z.Tamainot-telto R E C.Adsorpotion refigeratior using monolithic carbonammonia pair[J].Int J.Refrig.1997,20(2):146-155.
    [65]Restuccia G,Freni A,Maggio G.A zeolite-coated bed for air conditioning adsorption systems:parametric study of heat and mass transfer by dynamic simulation[J].Applied Thermal Engineering.2002,22(6):619-630.
    [66]Critoph R E.Rapid cycling solar/biomass powered adsorption refrigeration system[J].Renewable Energy Renewable Energy Energy Efficiency,Policy and the Environment.1999,16(1-4):673-678.
    [67]周冬雷.船舶尾气吸附式制冷系统的开发及性能实验[D].山东大学;,2005.
    [68]卢允庄.内燃机车烟气余热驱动的沸石-水吸附式空调系统[D].上海:上海交通大学,2003.
    [69]Guilleminot J J,Meunier F.Heat and mass transfer in a non isothermal fixed bed solid adsorbent reactor:a uniform presssure-non uniform temperature case[J].Heat Mass Transfer.1987,30:1595-1606.
    [70]Guilleminot J J,Choisier A,Chalfen J B,et al.Heat transfer intensification in fixed bed adsorbers[J].Heat Recovery Systems and CHP.1993,13(4):297-300.
    [71]王正根,王如竹.吸附剂的固化方法及其吸附床的设计[J].流体机械.2000(08):44-46.
    [72]Meunier F.Solid sorption heat powered cycles for cooling and heat pumping applications[J].Applied Thermal Engineering.1998(18):715-729.
    [73]卢允庄,刘震炎.NaX沸石复合吸附剂的性能与应用[J].上海交通大学学报.2001(05):729-732.
    [74]张敏,卢允庄,王如竹.沸石分子筛2水吸附工质对的吸附性能及导热性能[J].太阳能学报.2003,24(1):37-41.
    [75]赵惠忠,张敏,刘震炎等.基于13X沸石的新型制冷复合吸附剂性能[J].化工学报.2007,58(05):1150-1154.
    [76]Cacciola G,Restuccia G,Mercadante L.Composites of activated carbon for refrigeration adsorption machines[J].Carbon.1995,33(9):1205-1210.
    [77]朱冬生,王忠民,林琳等.导热高分子/沸石复合物强化固体吸附热传导性能的研究[J].工程热物理学报.1999,20(1):94-97.
    [78]朱冬生,汪立军,谭盈科.化学聚合法强化吸附剂热传导[J].化工学报.1999,50(2):235-241.
    [79]陈海军.吸附制冷用复合吸附剂的制备及导热性能强化[D].南京工业大学;,2004.
    [80]陈海军,崔群,顾春华等.吸附制冷用复合吸附剂导热性能强化[J].南京工业大学学报(自然科学版).2004,26(01):13-18.
    [81]胡芃,姚娟娟,蔡北虎等.沸石分子筛/泡沫铝平衡吸附制冷性能理论分析[J].中国科学技术大学学报.2008,38(1):84-88.
    [82]胡芄,蔡北虎,陈则韶等.沸石分子筛/泡沫铝复合吸附剂及其吸附制冷性能[J].工程热物理学报.2006,27(02):185-188.
    [83]Babenko,V.a.,Kanonchik L E,Vasiliev L L.Heat and mass transfer intensification in solid sorption systems[J].Journal of Enhanced Heat Transfer.1998,5(2):111-125.
    [84]Bonaccorsi L,Freni A,Proverbio E,et al.Zeolite coated copper foams for heat pumping applications[J].Microporous and Mesoporous Materials.2006,91(1-3):7-14.
    [85]R.g.Oliveira R Z W.A consolidated calcium chloride-expanded graphite compound for use in sorption refrigeration systems[J].Carbon,.2007,45(2):390-396.
    [86]王凯.氯化钙/膨胀石墨混合吸附剂的吸附特性及其在双热管型吸附制冷系统中的应用[D].上海:上海交通大学,2007.
    [87]EunTai-Hee,SongHyun-Kon,HunHanJong,leeKun-Hong,Kim J N.Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps PartⅠ:Characterization of the composite blocks[J].International Journal of Refrigeration.2000,23(1):64-73.
    [88]Ho L C,Ho P S,Hoon C S,et al.Characteristics of non-uniform reaction blocks for chemical heat pump[J].Chemical Engineering Science.2005,60(5):1401-1409.
    [89]刘志强,吴锋,王国庆等.一种能同时提高固体吸附制冷吸附剂传热传质性能的方法[J].化工科技.2001,9(04):5-9.
    [90]高建明,王国庆,吴锋等.含可膨胀石墨复合吸附剂块制冷研究[J].北京理工大学学报.2003,23(05):658-661.
    [91]Wang L W,Wang R Z,Lu Z S,et al.Studies on split heat pipe type adsorption ice-making test unit for fishing boats:Choice of heat pipe medium and experiments under unsteady heating sources[J].Energy Conversion and Management.2006,47(15-16):2081-2091.
    [92]Wang L W,Wang R Z,Xia Z Z,et al.Studies on heat pipe type adsorption ice maker for fishing boats[J].International Journal of Refrigeration.2008,In Press,Corrected Proof.
    [93]Lu Z S,Wang R Z,Wang L W,et al.Performance analysis of an adsorption refrigerator using activated carbon in a compound adsorbent[J].Carbon.2006,44(4):747-752.
    [94]Zisheng L,Ruzhu W,Liwei W,et al.A study on multifunction heat pipe type high efficient aasorption refrigerator using compound adsorbent-ammonia[J].Chinese Science Bulletin.2005,51(2):239-242.
    [95]王德昌,吴静怡,王如竹,窦卫东.新型硅胶水吸附式冷水机组动态特性.pdf[J].上海交通大学学报.2006,40(2):306-310.
    [96]Wang D C,Shi Z X,Yang Q R,et al.Experimental research on novel adsorption chiller driven by low grade heat source[J].Energy Conversion and Management.2007,48(8):2375-2381.
    [97]Wang D C,Xia Z Z W J Y.Design and performance prediction of a novel zeolite-water adsorption air conditioner[J].Energy Conversion and Management.2006,47(5):590-610.
    [98]武卫东,张华.固体吸附式冷管及其应用研究进展[C].中国云南昆明:2005.
    [99]张华,武卫东.一种新颖吸附制冷管的设计及性能实验研究[J].流体机械.2005(11).
    [100]张华,武卫东.余热驱动吸附式冷管的循环特性研究[J].制冷学报.2005(2).
    [101]Critoph R E.Multiple bed regenerative adsorption cycle using the monolithic carbon-ammonia pair[J].Applied Thermal Engineering.2002,22(6):667-677.
    [102]Z.Tamainot-telto R E C.Advanced solid sorption air conditioning modules using monolithic carbon-ammonia pair[J].Applied Thermal Engineering.2003(23):659-674.
    [103]朱冬生,Erichu,赵振峰.固体吸附制冷系统中甲醇的热分解的研究[J].制冷学报.1998(01).
    [104]崔群.吸附制冷工质对及其制冷过程研究[D].南京工业大学,2002.
    [105]王国庆,林勇,吴锋等.浸泡法制备吸附制冷用复合吸附剂[J].北京理工大学学报.2005(10).
    [106]王国庆,林勇,吴锋等.制冷用复合吸附剂的制备和性能研究[J].河北化工.2005(02):40-42.
    [107]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005:603.
    [108]艾效逸,王谦,程向荣等.沸石分子筛与硅胶对水的吸附性能及其在空调制冷系统中应用的探讨[J].能源季刊.1991(39).
    [109]范广能,马跃.凹凸棒粘土吸附制冷的研究[J].安徽师范大学学报(自然科学版).1997,20(03):259-263.
    [110]L C D D.Flexible graphite for gasketing,adsorption,electromagnetic interference shielding,vibration damping,electrochemical applications,and stress sensing[J].Journal of Materials Engineering and Performance.2000(3):38-41.
    [111]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001.
    [112]何少华,文竹青,娄涛.试验设计与数据处理[M].长沙:国防科技大学出版社,2002.
    [113]闵凯,刘斌,温广.导热系数测量方法与应用分析[J].保鲜研究.2005(6):35-38.
    [114]张逸民,张敏.物理实验教程[M].郑州:郑州大学出版社,2005.
    [115]王国庆,朱冬生,林琳.吸附剂之间及其与铜表面之间的传热强化研究[J].化学工程.1999,27(6):13-15.
    [116]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2000:160-190.
    [117]孟祥睿,张如波,陈晓娟,魏新利.固化吸附剂导热系数测量参数选择[J].制冷学报.2008,29(4):42-46.
    [118]孟祥睿,陈晓娟,张如波,魏新利.稳态平板法测量导热系数的若干影响因素分析[J].大学物理.2008,27(12):35-40.
    [119]中国科学院数学研究所数理统计组编.正交试验法[M].北京:人民教育出版社,1975.
    [120]胡芃,蔡北虎,陈则韶,et al.沸石分子筛/泡沫铝复合吸附剂及其吸附制冷性能[J].工程热物理学报.2006,27(2):185-188.
    [121]Restuccia G,Freni A,Russo F,et al.Experimental investigation of a solid adsorption chiller based on a heat exchanger coated with hydrophobic zeolite[J].Applied Thermal Engineering.2005(25):1419-1428.
    [122]武卫东,张华.工程机械余热驱动冷管型吸附空调的运行特性[J].机械工程学报.2006,42(9):61-66.
    [123]Zhang L Z.Design and testing of an automobile waste heat adsorption cooling system[J].Applied Thermal Engineering.2000(20):103±114.
    [124]Jiangzhou S,Wang R Z,Lu Y Z,et al.Experimental study on locomotive driver cabin adsorption air conditioning prototype machine[J].Energy Conversion and Management.2005,46(9-10):1655-1665.
    [125]赵焕臣,许树柏,和金生.层次分析法-一种简易的新决策方法[M].北京:科学出版社,1986:116.
    [126]张华俊,韩宝琦,王俊等.烧结型沸石分子筛(13X)-水平衡吸附性能的实验研究[C].2002.
    [127]张敏,卢允庄,王如竹。沸石分子筛-水吸附工质对的吸附性能及导热性能[J].太阳能学报.2003,24(1):37-40.
    [128]Bonaccorsi L,Freni A,Proverbio E,et al.Zeolite coated copper foams for heat pumping applications[J].Microporous and Mesoporous Materials.2006,91(1-3):7-14.
    [129]谭志红,刘志强,吴锋等.发泡剂对沸石分子筛吸附/脱附性能的影响[J].现代化工 Modern Chemical Industry.2001,21(7):31-34.
    [130]北京有色冶金设计研究总院.机械设计手册(第三版)[M].北京:化学工业出版社,1993.
    [131]王肇兴,祝总成.锡槽粘土底砖的应力分析[J].玻璃.1989(3):10-18.
    [132]肖小松,吕西林.砌体弹性模量取值的评述[J].四川建筑科学研究.1996(4).
    [133]王慎敏,王虹等.胶黏剂合成、配方设计与配方实例[M].北京:化学工业出版社,2003:18.
    [134]姚日剑,王先荣,王鹢.星用非金属材料出气成分测试分析[J].真空与低温.2005,11(2):98-103.
    [135]王先荣,柴强,曾克仁.卫星胶粘剂出气性质测试和预处理结果分析[J].宇航材料工艺.1997(3):56,60.
    [136]赵惠忠,刘震炎,马晓东,et al.余热冷管在渔船制冷系统的应用研究[J].流体机械.2005,33(01):60-63.
    [137]S A,S M.Fundamental study on solar powered adsorption cooling system[J].Journal of chemical engineering of Japan.1984,17(1):52-57.
    [138]《化学工程手册》编辑委员会.化学工程手册(第二版)第1篇-化工基础数据[M].北京:化学工业出版社,1985.
    [139]李笑乐,吴键,韩宝琦等.沸石分子筛用于制冷循环时的吸附热测定及分析[J].制冷学报.1985(1):10-15.
    [140]F.p.incropera D P D.Fundamentals of Heat And Mass Transfer 6th[M].John Wiley & Sons Inc,2006.
    [141]姚俊,马松辉等.Simulink建模与仿真[M].西安:西安电子科技大学出版社,2002.
    [142]Zhang L,Wang L.performance estimation of an adsorption cooling system for automobile waste heat recovery[J].Applied Thermal Engineering.1997,17(12):1127-1139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700