用户名: 密码: 验证码:
混合智能技术及其在故障诊断中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型复杂机械设备的故障往往表现为复杂性、不确定性、多故障并发性等,运用单一的智能故障诊断技术,存在精度不高、泛化能力弱等问题,难以获得满意的诊断效果,故急需一种新的思路和方法来解决这些工程实际问题。
     利用人工神经网络、模糊逻辑、遗传算法等单一智能技术之间的差异性和互补性,扬长避短,优势互补,并结合不同的现代信号处理技术和特征提取方法,将它们以某种方式综合、集成或融合,提出混合智能诊断技术,能够有效地提高诊断系统的敏感性、鲁棒性、精确性,降低它的不确定性,准确定位故障发生的位置,估计其严重程度。因此,研究混合智能技术及其在故障诊断中的应用,具有重要的科学理论意义和工程应用价值。论文正是围绕这一艰难而又诱人的主题,以机械设备的早期、微弱和复合故障的诊断为目的,对混合智能故障诊断技术的基本原理和工程应用进行了深入的研究。
     论文介绍了模糊逻辑、神经网络、聚类算法和遗传算法等技术的基本概念和原理,针对每种技术各举一例,说明其使用方法和有效性。描述了两种适合于处理非平稳、非线性信号的现代信号处理技术:小波包分析和经验模式分解。小波包分析是小波变换的延伸,以不同的尺度将动态信号正交地分解到相互独立的频带中,提供无冗余、不疏漏的独立频带分解信号的特征信息;经验模式分解方法基于信号的局部特征时间尺度,把动态信号分解为若干个本征模式分量,正交地给出分解信号的本征信息。所以二者分别从不同角度来分析信号,各具特色。
     为了提高机械故障诊断的准确性,结合小波包分解和经验模式分解方法在分析动态信号上的优势,特征评估方法在选取敏感特征方面的特点,以及径向基函数神经网络分类能力强的优点,提出了一种基于特征评估和神经网络智能故障诊断模型。该模型能够针对不同诊断问题选择其相应的敏感特征,克服了传统方法在特征选择上的盲目性。通过对滚动轴承局部损伤故障和烟气轮机转子轻微摩擦故障的诊断研究,应用结果表明:利用小波包分析和经验模式分解方法能从动态信号中精细地获得更多的故障特征信息;利用特征评估方法能够从原始特征集中评选出敏感特征,从而大大提高了径向基函数神经网络诊断的准确率。
     针对机械设备中早期故障和复合故障并发的复杂诊断问题,利用统计分析、经验模式分解、改进的距离评估技术、自适应神经模糊网络和遗传算法等技术,提出了一种综合多征兆域特征集和多个分类器组合的混合智能诊断模型。该模型运用多种信号预处理方法挖掘潜藏在动态信号中的故障信息,并综合利用从不同侧面表征机械设备运行状态的时域和频域统计特征,构成多元征兆域特征集来全面反映故障特性;利用基于不同输入特征集的多个自适应神经模糊网络之间的独立性和互补性,将其组合成混合智能模型。混合智能模型在机车轮对轴承的故障诊断中实现了轴承不同故障类型,不同故障程度,以及复合故障的可靠识别,获得了非常满意的诊断结果。同时,诊断结果也验证了提出的基于改进距离评估技术的特征选择方法的有效性。
     针对故障诊断中应用最多的无监督聚类算法——模糊C均值算法存在的问题,提出了一种新的混合智能聚类算法。该算法使用聚类评价指标自动确定聚类数;利用基于梯度下降的3层前馈神经网络通过无监督训练来自适应学习特征权值;运用基于点密度函数的算法计算样本权值。赋予特征和样本以相应的权重,强调敏感特征和典型样本对聚类的贡献,削弱无关特征和模棱两可样本对聚类的干扰,以提高聚类的性能。采用国际公认比较聚类算法性能的典型数据IRIS验证了混合智能聚类算法的有效性。在电力机车轮对轴承单一故障、早期故障和复合故障并发的诊断问题中,进一步验证了该算法不仅能正确地确定聚类数,而且聚类性能优于模糊C均值聚类算法,具有更好实用性和推广性能。
     阐述了基于网络的远程状态监测与故障诊断系统的必要性。介绍了“潜艇模型振动监测与分析系统”和“皮带输送机轴承状态检测与故障诊断系统”两个远程状态监测和故障诊断系统的总体框架;规划了两个不同系统的功能;提出了潜艇模型混合智能振动源辨识方法和皮带输送机滚筒轴承混合智能故障诊断方法;着重研究了混合智能技术在其中的应用。
Faults of large-scale and complex mechanical equipments are characterised by complexity, uncertainty, syndrome, et al. If a single intelligent technique is utilized to diagnose these faults, it would be too difficult to obtain a satisfied diagnosis result. Generally, the diagnosis accuracy of the single intelligent technique is lower and generalization ability is weaker. Thus, it is urgent and necessary to present a novel idea and method to solve these practical engineering problems.
     According to the diversity and the complementarity between individual intelligent techniques, i.e. artificial neural network (ANN), fuzzy logic (FL), genetic algorithm (GA), et al., we may utilise their own merits and overcome their own shortcomings, and reinforce their advantages. By synthesising, integrating or fusing these individual intelligent techniques and different modern signal processing techniques and feature extraction methods via some means to propose hybrid intelligent diagnosis techniques, we can efficiently improve sensitivity, robustness and accuracy of a diagnosis system, reduce its uncertainty, ascertain the fault place exactly, and evaluate its severity. Therefore, it is quite worthy to investigate the hybrid intelligent technique and its applications in fault diagnosis for scientific theory studies and engineering applications. This dissertation just focuses on the extremely difficult but very attractive thesis. Aiming at incipient, slight and compound faults occurring in the mechanical equipments, the dissertation detailedly explores the fundamentals and engineering applications of the hybrid intelligent fault diagnosis techniques.
     The dissertation introduces basic conceptions and principles of fuzzy logic, neural network, clustering algorithm, genetic algorithm, et al., and provides an illustration for each technique to show its use and validity. Two advanced signal processing techniques suitable to nonstationary and nonlinear signals, wavelet packet analysis (WPA) and empirical mode decomposition (EMD), have been presented. WPA is an extended result of wavelet transform (WT). It orthogonally decomposes a dynamic signal into several independent frequency bands that link up mutually without redundant or omitted information. EMD method, which is based on the local characteristic time scales of a signal, adaptively decomposes the dynamic signal into a series of intrinsic mode functions (IMFs) and orthogonally presents intrinsic information of the signal. Thus, WPA and EMD have their own characteristics and could analysis the dynamic signal from different aspects, respectively.
     In order to improve the accuracy of fault diagnosis, we combine the superiority of WPA and EMD in processing dynamic signals, the advantage of feature evaluation method in selecting sensitive features and the strong classification ability of radial basis function neural network, and propose an intelligent fault diagnosis model based on feature evaluation and neural network. Aiming at various fault diagnosis problems, this model is able to automatically select the corresponding sensitive features and overcome blindness of traditional methods in selecting features. This model is applied to the local defects diagnosis of rolling element bearings and the slight rub fault diagnosis of a fume turbine rotor. The results demonstrate that more fault characteristic information can be precisely extracted by adopting WPA and EMD, the sensitive features can be easily selected from a large number of features with the feature evaluation method, and therefore the diagnosis accuracy has been greatly improved finally.
     Aiming at complex diagnosis problems of the intercurrent incipient fault and compound faults, a novel hybrid intelligent diagnosis model based on feature sets from multiple symptom domains and multiple classifier combination, is proposed, which combines statistics analysis, EMD, the improved distance evaluation technique, adaptive neuro-fuzzy inference system (ANFIS) and GA techniques. This model employs several signal preprocessing methods to mine the underlying fault information from dynamic signals. Time-domain and frequency-domain statistical features that reflect the equipment operation conditions from various aspects are synthesised to construct the multiple feature sets, which are able to completely present fault characteristics. Based on the independency and the complementarity of multiple ANFISs with the different input feature sets, we combine them and develop the hybrid intelligent diagnosis model. The practical application results of fault diagnosis of locomotive wheel pair bearings show the hybrid model is able to reliably recognise not only different fault categories and severities but also the compound faults. Thus, a desired diagnosis effect has been obtained via the hybrid model. Moreover, the application effect also validates the power of the proposed feature selection method based on the improved distance evaluation technique.
     Aiming at the existing shortcomings in the most popular unsupervised clustering algorithms used in the fault diagnosis field, fuzzy C-means (FCM) clustering algorithm, a novel hybrid intelligent clustering algorithm is developed. In this algorithm, the cluster number is automatically set by using the cluster validity index, feature weights are adaptively learned via a three-layer feed forward neural network with the gradient descent technique under the unsupervised mode of training, and sample weights are computed through the algorithm of distribution density function of data point. Then, the feature weights and the sample weights are assigned to the corresponding features and samples to emphasize the leading effect of sensitive features and typical samples, and weaken the interference of unrelated features and vague samples to improve the clustering performance. The test result of the benchmark data IRIS demonstrates the validity of the proposed algorithm. The algorithm is also employed to the single, incipient and compound fault diagnosis of locomotive wheel pair bearings. The results show that the hybrid intelligent clustering algorithm enables to automatically and correctly set cluster number, its clustering performance is superior to that of the FCM, and have a better practicability and generalisation.
     The necessity of developing remote condition monitoring and fault diagnosis systems is presented. The structures of two remote condition monitoring and fault diagnosis systems:“Monitoring and analysis system of vibration for the submarine model”and“Bearing condition monitoring and fault diagnosis system of strap transportation machines”, are introduced respectively. The different functions of the two systems are developed. The hybrid intelligent vibration source identification method for the submarine model and the hybrid intelligent fault diagnosis method for the roller bearings of the strap transportation machines are proposed. The application of the hybrid intelligent technique in the two systems is detailedly studied in the dissertation.
引文
[1]李凌均.统计学习理论在设备智能诊断中的应用研究[D].西安:西安交通大学,2003.
    [2]余贻鑫.美加“8.14大停电”过程中的电压崩溃[J].电力设备,2004,5(3):4-7.
    [3]中国新闻网.中国海军一潜艇机械故障失事70名官兵全部遇难. http://www.chinanews.com.cn/n/2003-05-02/26/299687.html.
    [4]中国新闻网.埃及客机红海坠毁148人遇难起飞不久即无影踪. http://www.chinanews.com.cn/n/2003-05-02/26/299687.html.
    [5]编辑部.国内外半月大事[J].半月谈,2004(4):93.
    [6]中国新闻网.重庆天原化工总厂氯气泄漏爆炸导致人员伤亡. http://www.chinanews.com.cn/n/2004-04-16/26/426492.html.
    [7]胡兆勇.机械故障诊断中知识表达与推理的研究[D].西安:西安交通大学,2005.
    [8]新华网.巴基斯坦三列火车相撞伤亡严重. http://news.xinhuanet.com/world/2005-07/13/content_3214812.htm.
    [9]中国新闻网.哥伦比亚客机坠毁160人死亡. http://www.chinanews.com.cn/news/2005/2005-08-17/26/613231.shtml.
    [10]胡桥.混合智能诊断技术及应用研究[D].西安:西安交通大学,2006.
    [11]东北新闻网.机械故障造火车追尾青藏铁路两车相撞1死8伤. http://news.nen.com.cn/72340194296070144/20060121/1833462.shtml.
    [12]薛胜军.基于神经网络与模糊技术的内燃机热工故障在线诊断的研究[D].武汉:武汉理工大学,2001.
    [13]断晨东.基于第二代小波变换的故障诊断技术研究[D].西安:西安交通大学,2005.
    [14]郑海波.非平稳非高斯信号特征提取与故障诊断技术研究[D].合肥:合肥工业大学,2002.
    [15]姜宏开.第二代小波构造理论研究及其在故障特征提取中的应用[D].西安:西安交通大学,2006.
    [16]高强.遗传算法研究及其在故障诊断中的应用[D].西安:西安交通大学,2004.
    [17]李如强.基于软计算和信息融合的故障诊断方法研究[D].上海:上海交通大学,2004.
    [18]黄文虎,夏松波.不断总结经验,将我国设备监测与诊断技术提高到新的水平[J].中国设备管理,1998,11:3-5.
    [19]胥永刚.机电设备监测诊断时域新方法的应用研究[D].西安:西安交通大学,2003.
    [20]高毅龙.数据挖掘及其在工程诊断中的应用[D].西安:西安交通大学,2002.
    [21]冯志鹏.计算智能在机械设备故障诊断中的应用研究[D].大连:大连理工大学,2003.
    [22]何正嘉,訾艳阳,孟庆丰等.机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社,2001.
    [23]姚华堂,盛颂恩,劳佳锋.基于小波变换的智能混合诊断系统[J].机电工程,2003,20(4):65-67.
    [24]张雨,徐小林,张建华.设备状态检测与故障诊断的理论和实践[M].长沙:国防科技大学出版社,2000.
    [25]屈梁生,张海军.机械故障诊断中的几个基本问题[J].中国机械工程,2000,11(1-2):211-216.
    [26] Sohre JS. Trouble-shooting to stop vibration of centrifugal [J]. Petrol/Chem. Engineering, 1968,11: 22-23.
    [27]何学文.基于支持矢量机的故障智能诊断理论与方法研究[D].长沙:中南大学,2004.
    [28]白木万博[日].机械振动讲演论文集.郑州:郑州机械研究所,1984.
    [29]安田千秋,伊藤良二,喜多千里等.旋转机械振动的故障诊断系统[J].实用测试技术,1995,1:40-46.
    [30]高金吉.高速涡轮机械振动故障机理及诊断方法的研究[D].北京:清华大学,1993.
    [31]陈安华,钟掘.转子系统非线性振动的辨识建模[J].中国有色金属学报,1997,7(3):159-163.
    [32]徐敏,张瑞林.设备故障诊断手册[M].西安:西安交通大学出版社,1998.
    [33]胡茑庆.转子碰摩非线性行为与故障辨识的研究[D].长沙:国防科技大学,2001.
    [34] Wang Q, Chu F. Experimental Determination of the Rubbing Location by Means of Acoustic Emission and Wavelet Transform [J]. Journal of Sound and Vibration, 2001, 248(1): 91-103.
    [35] Chu F, Lu W. Determination of the Rubbing Location in a Multi-Disk Rotor System By Means of Dynamic Stiffness Identification [J]. Journal of Sound and Vibration, 2001, 248(2): 235-246.
    [36] Lu W, Chu F. Rub Fault Diagnostics by Dynamic Characteristics Analysis of a Multi-Disk Rotor System [J]. Key Engineering Materials, 2001(204-205):163-172.
    [37] Gao JJ, Jiang ZN. Research on fault mechanism of rotor to stator rub nonlinear vibration in high-speed turbo machinery [J]. Key Engineering Materials, 2003(245-246):163-172.
    [38] Lin FS, Meng G. Study on the dynamics of a rotor in a maneuvering aircraft [J]. Journal of Vibration and Acoustics, Transactions of the ASME, 2003, 125(3): 324-327.
    [39] Lin FS, Meng G. Hahn Eric.Nonlinear dynamics of a cracked rotor in a maneuvering aircraft[J]. Applied Mathematics and Mechanics (English Edition), 2004, 25(10): 1139-1150.
    [40] Zhang WM, Meng G. Nonlinear dynamical system of micro-cantilever under combined parametric and forcing excitations in MEMS [J]. Sensors and Actuators, A: Physical, 2005, 119(2): 291-299.
    [41] Wu FQ, Meng G. Compound rub malfunctions feature extraction based on full-spectrum cascade analysis and SVM [J]. Mechanical Systems and Signal Processing, 2006, 20: 2007-2021.
    [42] Tandon N, Choudhury A. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings [J]. Tribology International,1999, 32(8): 469-480.
    [43] Baydar N, Ball A. Detection of gear failures via vibration and acoustics signals using wavelet transform [J]. Mechanical Systems and Signal Processing, 2003, 17(4):787-804.
    [44] Ren CL, Michael GK. Multisensor integration and fusion in intelligent system [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1989, 19(5): 901-931.
    [45] Wang XZ, Chen BH, Mc G. Data mining for failure diagnosis of process units by learning probabilistic networks [J]. Transactions of the Institute of Chemical Engineers. Part B, 1997, 11(4): 78-84.
    [46]王奉涛.非平稳信号故障特征提取与智能诊断方法的研究及应用[D].大连:大连理工大学,2003.
    [47] Chen P, Toyota T, He ZJ. Automated function generation of symptom parameters and application to fault diagnosis of machinery under variable operating conditions [J]. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans., 2001, 31(6): 775-781.
    [48]黄昭毅.对我国无量纲诊断的历史回顾与今后的期望(一)[J].中国设备管理,2000,10:34-35.
    [49]黄昭毅.对我国无量纲诊断的历史回顾与今后的期望(二)[J].中国设备管理,2000,10:39-41.
    [50]黄昭毅.对我国无量纲诊断的历史回顾与今后的期望(三)[J].中国设备管理,2000,10:37-38.
    [51] Chen P, Toyota T, Taniguchi M, et al. Failure diagnosis method for machinery in unsteadyoperating condition by instantaneous power spectrum and genetic programming [A]. IEEE International Conference on Knowledge-Based Intelligent Electronic Systems [C], 2000, 2: 640-643.
    [52] Chen P, Taniguchi M, Toyota T, et al. Fault diagnosis method for machinery in unsteady operating condition by instantaneous power spectrum and genetic programming [J]. Mechanical Systems and Signal Processing, 2005, 19: 175-194.
    [53] Blough JR. Development and analysis of time variant discrete Fourier transform order tracking[J]. Mechanical Systems and Signal Processing, 2003, 17(6):1185-1119.
    [54] Kemerait R, Childers D. Signal detection and extraction by cepstrum techniques[J]. IEEE Transactions on Information Theory, 1972, 18(6): 745-759.
    [55]韩秋实,许宝杰,王红军等.旋转机械故障诊断监测专家系统中的时间序列模式识别技术研究[J].机械工程学报,2002,38(3):104-107.
    [56] Salami MJE, Sidek SN. Parameter estimation of multicomponent transient signals using deconvolution and ARMA modelling techniques [J]. Mechanical Systems and Signal Processing, 2003, 17(6): 1201-1218.
    [57]丁康.离散频谱分析校正理论和技术[D].西安:西安交通大学,2006.
    [58] Qu Liangsheng, Liu Xiong, Chen Yuedong. Discovering the holospectrum [J]. Noise & Vibration Control Worldwide, 1989, 20(2): 58-62.
    [59] Du R, Chen YD, Chen YB. Four dimensional holospectrum-a new method for analyzing force distributions [J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 1997, 119(1): 95-104.
    [60] Liu S. A modified low-speed balancing method for flexible rotors based on holospectrum [J]. Mechanical Systems and Signal Processing, 2007, 21(1): 348-364.
    [61] Groutage D, Bennink D. A new matrix decomposition based on optimum transformation of the singular value decomposition basis sets yields principal features of time-frequency distributions [A]. Proceedings of the Tenth IEEE Workshop on Statistical Signal and Array Processing [C], 2000, 598-602.
    [62] Groutage D, Bennink D. Feature sets for nonstationary signals derived from moments of the singular value decomposition of Cohen-Posch (positive-time-frequency) distributions. IEEE Transactions on Signal Processing, 2000, 48(5): 2498-1503.
    [63] Yang HY, Mathew J, Ma L. Fault diagnosis of rolling element bearings using basis pursuit [J]. Mechanical Systems and Signal Processing, 2005, 19: 341-356.
    [64] Jiang JD, Chen J, Qu LS. The application of correlation dimension in gearbox condition monitoring [J]. Journal of Sound and Vibration, 1999, 223(4): 529-541.
    [65] He ZJ, Zi YY, Chen P, et al. New approach of wavelet fractal analysis to mechanical fault diagnosis [A]. Proceedings of the ASME Design Engineering Technical Conference [C], 2001, 6: 2905-2909.
    [66] Kocur D, Stanko R. Order bispectrum: a new tool for reciprocated machine condition monitoring [J]. Mechanical Systems and Signal Processing, 2000, 14(6): 871-890.
    [67] Simonovski I, Boltezar M, Gradisek J, et al. Bispectral analysis of the cutting process [J]. Mechanical Systems and Signal Processing, 2002, 16: 1093-1104.
    [68] Liu XH, Randall RB. Blind source separation of internal combustion engine piston slap from other measured vibration signals [J]. Mechanical Systems and Signal Processing, 2005, 19(6): 1196-1208.
    [69] Mohammed ER, Hassan F, Guillaume G, et al. Blind Separation of rotating machine signals using Penalized Mutual Information criterion and Minimal Distortion Principle [J]. Mechanical Systems and Signal Processing, 2005, 19(6): 1282-1292.
    [70] Addisson S, Luis V, Jorge I, et al. Blind source separation for classification and detection of flaws in impact-echo testing [J]. Mechanical Systems and Signal Processing, 2005, 19(6): 1312-1325.
    [71] Li ZN, He YY, Chu FL. Application of the blind source separation in machine fault diagnosis: A review and prospect [J]. Mechanical Systems and Signal Processing, in press.
    [72] Vidal R., Ma Y, Sastry S. Generalized principal component analysis (GPCA) [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(12): 1945-1959.
    [73] Meltzer G, Ivanov YY. Fault detection in gear drives with non-stationary rotational speed-Part I: the time-frequency approach [J]. Mechanical Systems and Signal Processing, 2003, 17(5): 1033-1047.
    [74] Richard C. Time-frequency-based detection using discrete-time discrete-frequency Wigner distribution [J]. IEEE Transactions on Signal Processing, 2002, 50(9): 2170-2176.
    [75] Zou J, Chen J. A comparative study on time-frequency feature of cracked rotor by Wigner-Ville distribution and wavelet transform [J]. Journal of Sound and Vibration,2004, 276(1-2): 1-11.
    [76] Stander CJ, Heyns PS, Schoomble W. Using vibration monitoring for local fault detection on gears operating under fluctuating load conditions [J]. Mechanical Systems and Signal Processing, 2002, 16: 1005-1024.
    [77] Ye ZM, Wu B, Sadeghian A. Current signature analysis of induction motor mechanical faults by wavelet packet decomposition [J]. IEEE Transactions on Industrial Electronics, 2003, 50(6): 1217-1228.
    [78] Tse PW, Yang WX, Tam H Y. Machine fault diagnosis through an effective exact wavelet analysis [J]. Journal of Sound and Vibration, 2004, 277(4-5):1005-1024.
    [79]杜小山.循环平稳理论在齿轮箱故障诊断中的应用研究[D].西安:西安交通大学,2005.
    [80] Gardner WA. Exploitation of spectral redundancy in cyclostationary signals [J]. IEEE Signal Processing Magazine, 1991, 8(2): 14-36.
    [81] Dandawate AV, Giannakis BG. Statistical tests for presence of cyclostationarity [J]. IEEE Transaction on signal processing, 1994, 42(9): 2355-2368.
    [82]张贤达.现代信号处理[M].北京:清华大学出版社,2002.
    [83] Gammaitoni L, Hanggi P, Jung P, et al. Stochastic Resonance[J]. Reviews of Modern Physics, 1998, 70(1): 223-287.
    [84]胡笃庆,陈敏,温熙森.随机共振在转子碰摩故障早期检测中的应用[J].机械工程学报,2001,31(9):88-91.
    [85] Li Q, Wang TY, Leng YG, et al. Engineering signal processing based on adaptive step-changed stochastic resonance [J]. Mechanical Systems and Signal Processing, in press.
    [86] Yan BF, Miyamoto A. A comparative study of modal parameter identification based on wavelet and Hilbert-Huang transforms [J]. Computer-Aided Civil and Infrastructure Engineering, 2006, 21(1): 9-23.
    [87] Peng ZK, Tse PW, Chu FL. An improved Hilbert-Huang transform and its application in vibration signal analysis [J]. Journal of Sound and Vibration, 2005, 286(1-2): 187-205.
    [88] Shen GJ, Tao LM, Chen ZS. Gearbox fault diagnosis based on empirical mode decomposition [J]. Chinese Journal of Mechanical Engineering (English Edition), 2004, 17(3): 454-456.
    [89] Yu D J, Cheng J S, Yang Y. Fault diagnosis approach for roller bearings based on empirical mode decomposition method and Hilbert transform [J]. Chinese Journal of Mechanical Engineering (English Edition), 2005, 18(2): 267-270.
    [90] Gai GH. The processing of rotor startup signals based on empirical mode decomposition [J]. Mechanical Systems and Signal Processing, 2006, 20(1): 222-35.
    [91] Yu DJ, Cheng JS; Yang Y. Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings [J]. Mechanical Systems and Signal Processing, 2005, 19(2): 259-270.
    [92] Cheng JS, Yu DJ, Yang Y. A fault diagnosis approach for roller bearings based on EMD method and AR model [J]. Mechanical Systems and Signal Processing, 2006, 20(2): 350-362.
    [93] Peng ZK, Tse PW, Chu FL. A comparison study of improved Hilbert-Huang transform and wavelet transform: application to fault diagnosis for rolling bearing [J]. Mechanical Systems and Signal Processing, 2005, 19: 974-988.
    [94] Li CJ, Ma J, Hwang B. Empirical model decomposition based time-frequency analysis for the effective detection of tool breakage [J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2006,128: 154-166.
    [95] Duan CD, He ZJ, Jiang HK. A sliding window feature extraction method for rotating machinery based on the lifting scheme [J]. Journal of Sound and Vibration, 2007, 299(4-5): 774-785.
    [96] Jiang HK, He ZJ, Duan CD, et al. A Gearbox fault diagnosis using adaptive redundant lifting scheme [J]. Mechanical Systems and Signal Processing, 2006, 20(8): 1992-2006.
    [97] Altug S, Chen MY, Trussell HJ. Fuzzy inference systems implemented on neural architectures for motor fault detection and diagnosis [J]. IEEE Transactions on Industrial Electronics, 1999, 46(6): 1069-1079.
    [98] Hayashi S, Asakura T, Zhang S. Study of machine fault diagnosis system using neural networks [A]. Proceedings of the 2002 International Joint Conference on Neural Networks[C],2002, 1: 956-961.
    [99]新华网.载人航天工程火箭系统总指挥谈“长征”二号F型火箭. http://news3.xinhuanet.com/newscenter/2003-10/15/content_1123946.htm.
    [100]吴今培.智能故障诊断与专家系统[M].北京:科学出版社,1997.
    [101]曾儒伟,许城,曾亮.故障诊断方法发展动向[J].航空计算技术,2003,33(3):19-22.
    [102] Lautre NK, Manna A. A study on fault diagnosis and maintenance of CNC-WEDM based on binary relational analysis and expert system [J]. The International Journal of Advanced Manufacturing Technology, 2006, 29(5): 490-498.
    [103] Liu SC, Liu SY. An efficient expert system for machine fault diagnosis [J]. The International Journal of Advanced Manufacturing Technology, 2003, 21(9): 691-698.
    [104] Li WL, Tsai YP, Chiu CL. The experimental study of the expert system for diagnosing unbalances by ANN and acoustic signals [J]. Journal of Sound and Vibration, 2004, 272: 69-83.
    [105] Kontogiannis CC, Safacas AN. A knowledge based fault diagnosis and supervisory expert system for generators and distribution substations in power plants [A]. Proceedings of the Fourth IASTED, International Conference on Power and Energy Systems [C], 2004, 337-341.
    [106] Qian Y, Li XX, Jiang YR, et al. An expert system for real-time fault diagnosis of complex chemical processes [J]. Expert Systems with Applications, 2003, 24(4): 425-432.
    [107] Yang BS, Lim DS, Tan ACC. VIBEX: An expert system for vibration fault diagnosis of rotating machinery using decision tree and decision table [J]. Expert Systems with Applications, 2005, 28(4): 735-742.
    [108]徐光华,蒋林,屈梁生.基于概率神经网络的大机组快速响应智能诊断系统[J].中国机械工程,1995,6(3):36-38.
    [109] Jang JR. ANFIS: adaptive-network-based fuzzy inference system [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(3): 665-685.
    [110] Zhang QH, Benveniste A. Wavelet Networks [J]. IEEE Transactions on Neural Networks, 1992, 3(6): 889-898.
    [111] Delyon B, Juditsky A, Benveniste A. Accuracy analysis for wavelet approximations [J]. IEEE Transactions on Neural Networks, 1995, 6(2): 332-348.
    [112] Cao K, Hamamatsu Y An Adaptive Hybrid Wavelet Neural Network and Its Application [A]. TheIEEE International Conference on Robotics and Biomimetics [C], 2004, 779-784.
    [113] Jiao LC, Pan J, Fang YW. Multiwavelet neural network and its approximation properties [J]. IEEE Transaction on Neural Networks, 2001,12(5): 1060-1066.
    [114]李微,谭阳红,彭永进.基于小波神经网络的电力电子电路故障模式识别[J].继电器,2005,33(1):82-86.
    [115] Chen YH, Yang B, Dong JW. Time-series prediction using a local linear wavelet neural network [J]. Neurocomputing, 2006, 69: 449-465.
    [116] Subasi A, Alkan A, Koklukaya E, et al. Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing [J]. Neural Networks, 2005, 18: 985-997.
    [117] Hemeida AM. Wavelet neural network load frequency controller [J]. Energy Conversion and Management, 2005, 46: 1613-1630.
    [118] Oysal Y. A comparative study of adaptive load frequency controller designs in a power system with dynamic neural network models [J]. Energy Conversion and Management, 2005, 46: 2656-2668.
    [119]郑海波,陈心昭,李志远等.小波神经网络故障诊断系统的设计与应用[J].农业机械学报,2002,33(1):73-76.
    [120]谭阳红.基于小波和神经网络的大规模模拟电路故障诊断研究[D].长沙:湖南大学,2005.
    [121] Liu Q, Jiang XM. Sensor fault diagnosis based on discrete wavelet transform and BP neural network [A]. Proceedings of SPIE-The International Society for Optical Engineering [C], 2005, 5998: 59980J1-59980J8.
    [122]吴桂峰,翟玉庆,陈虹等.基于小波-神经网络的电机振动故障诊断[J].控制工程,2004,11(2):152-154.
    [123]李洪.基于小波包特征提取的ART1网络故障诊断研究[J].振动、测试与诊断,2004,24(4):298-302.
    [124]陆爽,杨斌,李萌等.基于小波和径向基函数神经网络的滚动轴承故障模式识别[J].农业工程学报,2004,20(6):102-105.
    [125] He Y, Tan Y, Sun Y. Wavelet neural network approach for fault diagnosis of analogue circuits [J]. IEE Proceedings Circuits, Devices and Systems, 2004, 151(4): 379-384.
    [126] Venkatasubramanian V, Chan K. A neural network methodology for process fault diagnosis [J]. Journal of American Institute of Chemical Engineers, 1989,35(12): 1993-2002.
    [127] Yang DM, Stronach AF, Macconnell P. Third-order spectral techniques for the diagnosis of motor bearing condition using artificial neural networks [J]. Mechanical Systems and Signal Processing, 2002, 16: 391-411.
    [128] Chen D, Wang WJ. Classification of wavelet map patterns using multi-layer neural networks for gear fault detection [J]. Mechanical Systems and Signal Processing, 2002, 16: 695-704.
    [129] Wong MLD, Jack LB, Nandi AK. Modified self-organising map for automated novelty detection applied to vibration signal monitoring [J]. Mechanical Systems and Signal Processing, 2006, 20: 593-610.
    [130] Arinton E, Korbicz J. Dynamic High Order Neural Networks- Application for Fault Diagnosis [J]. Lecture Notes in Computer Science, 2004, 3070: 145-150.
    [131] Lee WY, House JM, Kyong NH. Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks [J]. Applied Energy, 2004, 77: 153-170.
    [132] Yang BS, Hwang WW, Kim DJ, et al. Condition classification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines [J]. Mechanical Systems and Signal Processing, 2005, 19: 371-390.
    [133] Su H, Kim YC, Lee YD, et al. Vibrational analysis using neural network classifier for motor faultdetection [A]. Proceedings of SPIE-The International Society for Optical Engineering [C], 2005, 6042: 60422K1-60422K6.
    [134] Serhat S, Emine A, Erdinc T. Elman's recurrent neural network applications to condition monitoring in nuclear power plant and rotating machinery [J]. Engineering Application of Artificial Intelligence, 2003, 16: 647-656.
    [135] Zhang S, Mathew J, Ma L. A. Best basis-based intelligent machine fault diagnosis [J]. Mechanical Systems and Signal Processing, 2005, 19: 357-370.
    [136] Samanta B, Balushi KRA. Artificial neural network based fault diagnostics of rolling element bearings using time-domain features [J]. Mechanical Systems and Signal Processing, 2003, 17: 317-328.
    [137] Rafiee J, Arvani F, Harifi A, et al. Intelligent condition monitoring of a gearbox using artificial neural network [J]. Mechanical Systems and Signal Processing, in press.
    [138]雷亚国,何正嘉,訾艳阳等.基于特征评估和神经网络的机械故障诊断模型[J].西安交通大学学报,2006,40(5):558-562.
    [139] Peng Z, He Y, Chen Z, et al. Identification of the shaft orbit for rotating machines using wavelet modulus maxima [J]. Mechanical Systems and Signal Processing, 2002, 16: 623-635.
    [140] Zhou FC, Chen J, He J, et al. Cyclic Statistics Based Neural Network for Early Fault Diagnosis of Rolling Element Bearings [J]. Lecture Notes in Computer Science, 2004, 3174: 595-600.
    [141]董立新,肖登明,吕干云等.一种基于油中溶解气体分析的变压器绝缘故障诊断新方法[J].上海交通大学学报,2005,39:82-86.
    [142] Wang GF, Wang TY. Wavelet neural network and its application in fault diagnosis of rolling bearing [A]. Proceedings of SPIE-The International Society for Optical Engineering [C], 2005, 6041: 60412B1-60412B6.
    [143]廖广兰,李巍华,史铁林等.基于自组织映射的齿轮箱状态监测可视化研究[J].机械工程学报,2003,39(12):99-102.
    [144]杨帆,浦昭邦,庄严等.基于信息融合的滚动轴承故障诊断[J].轴承,2005,2:30-32.
    [145]陈丁跃.基于信息融合与神经网络的复合振动故障诊断[J].振动、测试与诊断,2004,24(4):290-293.
    [146]张淑清,张琳.基于RBF网络和D-S推理的轴承故障诊断[J].仪器仪表学报,2003,24(4):50-51.
    [147] Yang Y, Yu DJ, Cheng JS. A roller bearing fault diagnosis method based on EMD energy entropy and ANN [J]. Journal of Sound and Vibration, 2006, 294: 269-277.
    [148]陆爽,侯跃谦,田野.基于AR模型和径向基函数神经网络的滚动轴承故障诊断[J].机械传动,2004,28(5):10-13.
    [149]陈向东,赵登峰,王国强等.基于神经网络的滚动轴承故障监测[J].轴承,2003,2:23-26.
    [150]王平,廖明夫.基于神经网络的滚动轴承故障包络信号的自动识别方法[J].航空发动机,2004,30(2):46-50.
    [151] Jaradat MAK., Langari R. A hybrid real-time system for fault detection and sensor fusion based on conventional fuzzy clustering approach [A]. The IEEE International Conference on Fuzzy Systems [C], 2005, 189-194.
    [152] Twiddle JA, Jones NB. Fuzzy model-based condition monitoring and fault diagnosis of a diesel engine cooling system [J]. Journal of Systems and Control Engineering, 2002, 216(3): 215-224.
    [153] Alexander P, Singh R. Gas turbine engine fault diagnostics using fuzzy concepts [A]. AIAA 1st Intelligent Systems Technical Conference [C], 2004, 75-89.
    [154] Bocaniala CD, Sa DCJ, Palade V. Fuzzy-based refinement of the fault diagnosis task in industrialdevices [J]. Journal of Intelligent Manufacturing, 2005, 16(6): 599-614.
    [155] Skarlatos D, Karakasis K, Trochidis A. Railway wheel fault diagnosis using a fuzzy-logic method [J]. Applied Acoustics, 2004, 65(10): 951-966.
    [156] Kim YJ, Bae H, Poo KM, et al. Equipment fault diagnosis system of sequencing batch reactors using rule-based fuzzy inference and on-line sensing data [J]. Water Science and Technology, 2006, 53(4-5): 383-392.
    [157] Miguel LJD, Blázquez LF. Fuzzy logic-based decision-making for fault diagnosis in a DC motor [J]. Engineering Applications of Artificial Intelligence, 2005, 18: 423-450.
    [158] Wang JP, Hu HT. Vibration-based fault diagnosis of pump using fuzzy technique [J]. Water Science and Technology, 2006, 39: 176-185.
    [159]羊拯民,尹安东.基于时序分析与模糊聚类的变速箱齿轮故障识别[J].农业机械学报,2004,35(2):129-133.
    [160]张彼德,李明,郑高.汽轮发电机组振动多故障的分层模糊诊断模型[J].汽轮机技术,2003,45(5):325-328.
    [161] Holland JH. Adaptation in Natural and Artificial Systems [M] (1992 edition),MIT, 1992.
    [162] Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs [M] (3rd edition), Springer, 1999.
    [163] Jack LB, Nandi AK. Genetic algorithms for feature selection in machine condition monitoring with vibration signals [J]. IEE Proceedings Vision, Image & Signal Processing, 2000, 147(3): 205-212.
    [164] Zhang L, Jack LB, Nandi AK. Fault detection using genetic programming [J]. Mechanical Systems and Signal Processing, 2005, 19: 271-289.
    [165] Zhang L, Nandi AK. Fault classification using genetic programming [J]. Mechanical Systems and Signal Processing, in press.
    [166]陈鹏,丰田利夫.遗传算法在故障诊断技术中的应用——频域最佳特征参数自动再生法[J].设备管理&维修,1998,1:31-36.
    [167] Chen P, Taniguchi M, Toyota T, et al. Fault diagnosis method for machinery in unsteady operating condition by instantaneous power spectrum and genetic programming [J]. Mechanical Systems and Signal Processing, 2005, 19: 175-194.
    [168] Garai G, Chaudhuri BB. A novel genetic algorithm for automatic clustering [J]. Pattern Recognition Letters, 2004, 25: 173-187.
    [169] Zio E, Baraldi P, Pedroni N. Selecting features for nuclear transients classification by means of genetic algorithms [J]. IEEE Transaction on Nuclear Science, 2006,53(3): 1479-1493.
    [170]李良敏.遗传算法:工程诊断的基本工具[D].西安:西安交通大学,2005.
    [171] Carpenter GA, Grossberg S. A self-organizing neural network for supervised learning, recognition, and prediction [J]. IEEE Communication Magazine, 1992, 30(9): 38-49.
    [172] Carpenter GA, Grossberg S. Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps [J]. IEEE Transactions on Neural Networks, 1992, 3(5): 698-713.
    [173] Roya J, Gerald MK. A fuzzy neural network approach to machine condition monitoring [J]. Computers & Industrial Engineering, 2003, 45: 323-330.
    [174] Jang JR, Sun CT. Neuro-fuzzy modeling and control [J]. Proceedings of the IEEE, 1995, 83(3): 378-406.
    [175] Zhang YQ, Kandel A. Compensatory neurofuzzy systems with fast learning algorithms [J]. IEEE Transactions on Neural Networks, 1998, 9(1): 83-105.
    [176] Lin FJ, Lin CH, Shen PH. Self-constructing fuzzy neural network speed controller [J]. IEEE Transactions on Fuzzy Systems, 2001, 9(5): 751-759.
    [177] Lou XS, Loparo KA. Bearing fault diagnosis based on wavelet transform and fuzzy inference [J]. Mechanical Systems and Signal Processing, 2004, 18: 1077-1095.
    [178] Altmann J, Mathew J. Multiple band-pass autoregressive demodulation for rolling-element bearing fault diagnosis [J]. Mechanical Systems and Signal Processing, 2001, 15: 963-977.
    [179] Guo QJ, Yu HB, Xu AD. An online self-constructing wavelet fuzzy neural network for machine condition monitoring [A]. IEEE Proceedings of the Fourth International Conference on Machine Learning and Cybernetics [C], 2005, 7: 4193-4200.
    [180]刘永阔,夏虹,谢春丽等.基于模糊神经网络的核动力装置设备故障诊断系统研究[J].核动力工程,2004,25(4):328-331.
    [181]李医民,胡寿松.模糊神经网络技术在故障诊断中的应用[J].系统工程与电子技术,2005,27(5):948-952.
    [182] Min Y, Min Z. Design method for fault diagnosis of small satellites based on multi-level fuzzy neural network [A].Proceedings of SPIE-The International Society for Optical Engineering [C], 2005, 5985: 5985491-5985496.
    [183]苏羽,赵海,苏威积.一种基于模糊神经网络的融合故障诊断方法[J].计算机工程,2004,30(17):5-6.
    [184]张吉先,钟秋海,戴亚平.RBF及模糊神经网络在旋转机械故障诊断中的应用[J].系统仿真学报,2004,16(3):560-563.
    [185]石红雁,许纯新,瞿爱琴.液压系统故障诊断的高阶统计量-模糊神经网络法[J].农业机械学报,2003,34(5):119-122.
    [186]金林,张洪才.一种基于模糊神经网络的故障诊断方法的研究[J].西北工业大学学报,2004,22(5):658-661.
    [187]彭斌,刘振全.谐小波模糊神经网络应用于旋转机械的故障诊断[J].动力工程,2005,25(5):702-706.
    [188] Yuan SF, Chu FL. Fault diagnostics based on particle swarm optimisation and support vector machines [J]. Mechanical Systems and Signal Processing, in press.
    [189]张周锁.基于支持向量机的智能诊断技术及应用研究[D].西安:西安交通大学,2004.
    [190] Yang JY, Zhang YY, Zhu YS. Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension [J]. Mechanical Systems and Signal Processing, in press
    [191]赵荣珍,张优云.基于Rough set知识获取的故障数据表聚类离散化方法研究[J].机械工程学报,2005,41(1):145-150.
    [192]何永勇,禇福磊,陈真勇.基于多Agent的分布式故障智能诊断原型系统研究[J].计算机工程与科学,2002,24(1):88-92.
    [193] Li ZN, Wu ZT, He YY, et al. Hidden Markov model-based fault diagnostics method in speed-up and speed-down process for rotating machinery [J]. Mechanical Systems and Signal Processing, 2005, 19: 329-339.
    [194]许雪琦.分布式智能化状态监测与故障诊断系统的设计与研究[D].天津:天津大学,2004.
    [195] Ge M, Du R, Zhang GC, et al. Fault diagnosis using support vector machine with an application in sheet metal stamping operations [J]. Mechanical Systems and Signal Processing, 2004, 18: 143-159.
    [196] Purushotham V, Narayanan S, Prasad SAN. Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition [J]. NDT & E International, 2005, 38: 654-664.
    [197]刘晓颖.复杂过程的智能故障诊断技术及其在大型工业窑炉中的应用[D].长沙:中南大学,2003.
    [198]王志华.基于模式识别的柴油机故障诊断技术研究[D].武汉:武汉理工大学,2004.
    [199] Roshdy SY, Carla NP. Combining genetic algorithms and neural networks to build a signal pattern classifier [J]. Neurocomputing, 2004, 61: 39-56.
    [200] Raymer ML, Punch WF, Goodman ED, et al. Dimensionality reduction using genetic algorithms [J]. IEEE Transactions on Evolutionary Computation, 2000, 4(2): 164-171.
    [201] Rohlfing T, Maurer CR. Multi-classifier framework for atlas-based image segmentation [J]. Pattern Recognition Letters, 2005, 26: 2070-2079.
    [202] Teredesai A, Govindaraju V. GP-based secondary classifiers [J]. Pattern Recognition, 2005, 38: 505-512.
    [203] Topchy A, Jain AK, Punch W. Clustering ensembles: models of consensus and weak partitions [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(12): 1866-1881.
    [204] Fred ALN, Jain AK. Combining multiple clusterings using evidence accumulation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 835-850.
    [205] Zhang CL, Jiang J, Kamel M. Intrusion detection using hierarchical neural networks [J]. Pattern Recognition Letters, 2005, 26: 779-791.
    [206] Rahman A, Fairhurst M. Decision combination of multiple classifiers for pattern classification: hybridisation of majority voting and divide and conquer techniques [A]. Proceedings of the Fifth IEEE Workshop on Applications of Computer Vision [C], 2000, 58-63.
    [207] Javadi AA, Farmani R, Tan TP. A hybrid intelligent genetic algorithm [J]. Advanced Engineering Informatics, 2005, 19: 255-262.
    [208] Prevost L, Oudot L, Moises A. Hybrid generative/discriminative classifier for unconstrained character recognition [J]. Pattern Recognition Letters, 2005, 26: 1840-1848.
    [209] Bruzzone L, Cossu R, Vernazza G. Detection of land-cover transitions by combining multidate classifiers [J]. Pattern Recognition Letters, 2004, 25: 1491-1500.
    [210] Nanni L. Comparison among feature extraction methods for HIV-1 protease cleavage site prediction [J]. Pattern Recognition, 2006, 39: 711-713.
    [211] Gasparini F, Corchs S, Schettini R. A recall or precision oriented skin classifier using binary combining strategies [J]. Pattern Recognition, 2005, 38: 2204-2207.
    [212] Engin M. ECG beat classification using neuro-fuzzy network [J]. Pattern Recognition Letters, 2004, 25: 1715-1722.
    [213] Toygar ?, Acan A. Multiple classifier implementation of a divide-and-conquer approach using appearance-based statistical methods for face recognition [J]. Pattern Recognition Letters, 2004, 25: 1421-1430.
    [214] Gülerí,übeyli ED. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients [J]. Journal of Neuroscience Methods, 2005, 148: 113-121.
    [215] Abiyev RH. Controller based of fuzzy wavelet neural network for control of technological processes [A]. The IEEE International Conference on Computational Intelligence for Measurement Systems and Applications [C], 2005, 215-219.
    [216] Kaczmar UM, Trelak W. Fuzzy logic and evolutionary algorithm-two techniques in rule extraction from neural networks [J]. Neurocomputing, 2005, 63: 359-379.
    [217] Goltsev A, Rachkovskij D. Combination of the assembly neural network with a perceptron for recognition of handwritten digits arranged in numeral strings [J]. Pattern Recognition, 2005, 38: 315-322.
    [218] Smid R, Docekal A, Kreidl M. Automated classification of eddy current signatures during manual inspection [J]. NDT & E International, 2005, 38: 462-470.
    [219] Eduard L, Jesús B, Oscar G, et al. Building parsimonious fuzzy ARTMAP models by variableselection with a cascaded genetic algorithm: application to multisensor systems for gas analysis [J]. Sensors and Actuators, B: Chemical, 2004, 99: 267-272.
    [220] Iyatomi H, Hagiwara M. Adaptive fuzzy inference neural network [J]. Pattern Recognition, 2004, 37: 2049-2057.
    [221] Liu CL. Classifier combination based on confidence transformation [J]. Pattern Recognition, 2005, 38: 11-28.
    [222] Ghosh AK, Chaudhuri P, Murthy CA. On visualization and aggregation of nearest neighbor classifiers [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1592-1602.
    [223] Asharaf S, Shevade SK, Murty MN. Rough support vector clustering [J]. Pattern Recognition, 2005, 38: 1779-1783.
    [224] Srivastava S, Singh M, Hanmandlu M, et al. New fuzzy wavelet neural networks for system identification and control [J]. Applied Soft Computing, 2005, 6: 1-17.
    [225] Kim SW, Oommen BJ. On using prototype reduction schemes and classifier fusion strategies to optimize kernel-based nonlinear subspace methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 455-460.
    [226] Kim KT. Application of feature space trajectory classifier to identification of multi-aspect radar signals [J]. Pattern Recognition, 2005, 38: 2159-2173.
    [227] Wang X, Wang H. Classification by evolutionary ensembles [J]. Pattern Recognition, 2006, 39: 595-607.
    [228] Lim CP, Leong JH, Kuan MM. A hybrid neural network system for pattern classification tasks with missing features [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(4): 648-653.
    [229] Zhang P, Verma B, Kumar K. Neural vs. statistical classifier in conjunction with genetic algorithm based feature selection [J]. Pattern Recognition Letters, 2005, 26: 909-919.
    [230] Mashao DJ, Skosan M. Combining classifier decisions for robust speaker identification [J]. Pattern Recognition, 2006, 39: 147-155.
    [231] Lee ZJ, Lee CY. A hybrid search algorithm with heuristics for resource allocation problem [J]. Information Sciences, 2005, 173: 155-167.
    [232] Chou CH, Lin CC, Liu YH, et al. A prototype classification method and its use in a hybrid solution for multiclass pattern recognition [J]. Pattern Recognition, 2006, 39: 624-634.
    [233] Hung KY, Luk RWP, Yeung DS, et al. A multiple classifier approach to detect Chinese character recognition errors [J]. Pattern Recognition, 2005, 38: 723-738.
    [234] Daniel WC, Zhang PA, Xu JH. Fuzzy wavelet networks for function learning [J]. IEEE Transactions on Fuzzy Systems, 2001, 9(1): 200-211.
    [235] Lin CJ, Chin CC. Recurrent wavelet-based neuro fuzzy networks for dynamic system identification [J]. Mathematical and Computer Modelling, 2005, 41: 227-239.
    [236] Lin CJ, Xu YJ. A novel evolution learning for recurrent wavelet-based neuro-fuzzy networks [J]. Soft Computing, 2006, 10(3): 193-205.
    [237] Lin CJ, Chin CC. Prediction and identification using wavelet-based recurrent fuzzy neural networks [J]. IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34(5): 2144-2154.
    [238]孙喜晨,贺仁亚,封举富.一种新的分类方法-属性均值聚类属性支持向量机(AMC-ASVM)[J].北京大学学报,2006,1(1):1-3.
    [239] Zhao ZQ, Huang DS, Sun BY. Human face recognition based on multi-features using neural networks committee [J]. Pattern Recognition Letters, 2004, 25: 1351-1358.
    [240]周子康,杨衡,唐万生.GASSⅡ遗传模拟混合智能优化算法[J].计算机工程与应用,2005,18:30-33.
    [241]董云影,张运杰,畅春玲.改进的遗传模糊聚类算法[J].模糊系统与数学,2005,19(2):128-133.
    [242]苏守宝,陈明华.基于佳点集遗传算法的模糊聚类技术[J].合肥工业大学学报,2005,28(4):402-406.
    [243]陈守煜,李庆国.一种新的模糊聚类神经网络及其在水资源评价中的应用[J].水利学报,2005,36(6):662-666.
    [244] Zhang XW, Yang YP, Xu XM, et al. Wavelet based neuro-fuzzy classification for EMG control [A]. The IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions [C], 2002, 2: 1087-1089.
    [245]曹晓辛,李柠,黄道.基于蚁群聚类算法的模糊神经网络[J].华东理工大学学报,2005,31(2):215-218.
    [246]刘涵,刘丁,李琦.一种遗传-模糊神经网络图像滤波器[J].仪器仪表学报,2004,25(3):310-312.
    [247] Bilge Y, Michael WG, Kenneth PM, et al. Development of a hybrid intelligent system for on-line monitoring of nuclear power plant operations [A].The 2002 PSAM6 (Probabilistic Safety Assessment and Management) Conference [C], San Juan, Puerto Rico, 2002.
    [248] Cheng YS, Melhem HG. Monitoring bridge health using fuzzy case-based reasoning [J]. Advanced Engineering Informatics, 2005, 19: 299-315.
    [249] Zanardelli WG, Strangas EG, Khalil HK, et al. Wavelet-based methods for the prognosis of mechanical and electrical failures in electric motors [J]. Mechanical Systems and Signal Processing, 2005, 19: 411-426.
    [250] Hong SJ, May GS, Yamartino J, et al. Automated fault detection and classification of etch systems using modular neural networks [A]. Proceedings of SPIE-The International Society for Optical Engineering [C], 2004, 5378: 134-141.
    [251] Ye Z, Sadeghian A, Wu B. Mechanical fault diagnostics for induction motor with variable speed drives using Adaptive Neuro-fuzzy Inference System [J]. Electric Power Systems Research, 2006, 76: 742-752.
    [252] Evsukoff A, Gentil S. Recurrent neuro-fuzzy system for fault detection and isolation in nuclear reactors [J]. Advanced Engineering Informatics, 2005, 19: 55-66.
    [253] Sharkey AJC, Chandroth GO, Sharkey NE. A multi-net system for the fault diagnosis of a diesel engine [J]. Neural Computing & Applications, 2000, 9: 152-160.
    [254] Jack LB, Nandi AK. Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms [J]. Mechanical Systems and Signal Processing, 2002, 16: 373-390.
    [255] Guo H, Jack LB, Nandi AK. Feature generation using genetic programming with application to fault classification [J]. IEEE Transactions on Systems, Man, and Cybernetics, 2005, 35(1): 89-99.
    [256] Sampath S, Singh R. An integrated fault diagnostics model using genetic algorithm and neural networks [J]. Journal of Engineering for Gas Turbines and Power, Transactions of the ASME, 2006,128: 49-56.
    [257] Uppal FJ, Patton RJ, Witczak M. A neuro-fuzzy multiple-model observer approach to robust fault diagnosis based on the DAMADICS benchmark problem [J]. Control Engineering Practice, 2006, 14: 699-717.
    [258] Yang BS, Han T, Kim YS. Integration of ART-Kohonen neural network and case-based reasoning for intelligent fault diagnosis [J]. Expert Systems with Applications, 2004, 26: 387-395.
    [259] Yang BS, Han T, An JL. ART–KOHONEN neural network for fault diagnosis of rotating machinery [J]. Mechanical Systems and Signal Processing, 2004, 18: 645-657.
    [260] Yang BS, Kim KJ. Application of Dempster–Shafer theory in fault diagnosis of induction motors using vibration and current signals [J]. Mechanical Systems and Signal Processing, 2006, 20: 403-420.
    [261] Chen P, Liang XY, Yamamoto T. Rough Sets and Partially-Linearized Neural Network for Structural Fault Diagnosis of Rotating Machinery [J]. Lecture Notes in Computer Science, 2004, 3174: 574-580.
    [262] Thukaram D, Khincha HP, Vijaynarasimha HP. Artificial neural network and support vector machine approach for locating faults in radial distribution systems [J]. IEEE Transactions on Power Delivery, 2005, 20(2): 710-721.
    [263] Samanta B. Artificial neural networks and genetic algorithms for gear fault detection [J]. Mechanical Systems and Signal Processing, 2004, 18: 1273-1282.
    [264] Samanta B. Gear fault detection using artificial neural networks and support vector machines with genetic algorithms [J]. Mechanical Systems and Signal Processing, 2004, 18: 625-644.
    [265] Huang CL, Li TS, Peng TK. A hybrid approach of rough set theory and genetic algorithm for fault diagnosis [J]. The International Journal of Advanced Manufacturing Technology, 2005, 27: 119-127.
    [266] Wang WH, An DX, Zhou DH. Hybrid Neural Network Based Gray-Box Approach to Fault Detection of Hybrid Systems [J]. Lecture Notes in Computer Science, 2004, 3174: 555-560.
    [267]姜爱国,王雪.车轮踏面擦伤的集成粗糙神经网络预示诊断[J].清华大学学报,2005,45(2):170-173.
    [268]李增芳,何勇,宋海燕.基于主成分分析和集成神经网络的发动机故障诊断模型研究[J].农业工程学报,2006,22(4):131-134.
    [269] Li RQ, Chen J, Wu X, et al. Fault Diagnosis of Rotating Machinery Based on SVD, FMC and RST [J]. The International Journal of Advanced Manufacturing Technology, 2005, 27: 128-135.
    [270]吴勉,邵惠鹤.基于联合时频分析的混合神经系统在信号分类与模式识别中的应用[J].控制理论与应用,2001,18:69-74.
    [271]张敬芬,孟光,赵德有.基于模糊神经网络的薄板不同指标裂纹诊断[J].机械工程学报,2006,42(3):145-149.
    [272]喻道远,林文.基于ANN和FUZZY的装载机故障诊断模型[J].华中科技大学学报,2005,33(1):71-74.
    [273] Feng ZP, Song XG, Xue DX. Fault diagnosis based on integration of fuzzy c-means, rough sets and adaptive neuro-fuzzy inference system [J]. Transactions of CSICE, 2003, 21(4):281-287.
    [274]于达仁,胡清华,鲍文等.融合粗糙集和模糊聚类的连续数据知识发现[J].中国电机工程学报,2004,24(6):205-210.
    [275]王天宇,董彩凤.一种多组并联模糊神经网络用于信息融合诊断[J].哈尔滨工业大学学报,2004,36(3):324-327.
    [276] Su WJ, Su Y, Zhao H, et al. Integration of Rough Set and Neural Network for Application of Generator Fault Diagnosis [J]. Lecture Notes in Computer Science, 2004, 3066: 549-553.
    [277]李俭,孙才新,陈伟根等.灰色聚类与模糊聚类集成诊断变压器内部故障的方法研究[J].中国电机工程学报,2003,23(2):112-115.
    [278]江志农,吕晓,张进明.基于粗糙集-神经网络在机械振动中的模糊诊断[J].计算机应用,2004,24:304-306.
    [279]梁戈超,何怡刚,朱彦卿.基于模糊神经网络融合遗传算法的模拟电路故障诊断法[J].电路与系统学报,2004,9(2):54-57.
    [280] Kong FS, Chen RH. A combined method for triplex pump fault diagnosis based on wavelet transform, fuzzy logic and neuro-networks [J]. Mechanical Systems and Signal Processing, 2004, 18: 161-168.
    [281]张建华,侯国莲,张巍等.一种基于模糊规则和遗传算法的凝汽器故障诊断方法的研究[J].中国电机工程学报,2004,24(4):205-209.
    [282]段礼祥,张来斌,王朝晖.柴油机燃烧系统故障的小波包神经网络模糊诊断法[J].机械强度,2006,28(1):1-5.
    [283] Hu Q, He ZJ, Zhang ZS, et al. Intelligent fault diagnosis in power plant using empirical mode decomposition, fuzzy feature extraction and support vector machines. [J]. Key Engineering Materials, 2005, 293-294: 373-382.
    [284] He ZJ, Hu Q, Zi YY, et al. Hybrid intelligent forecasting model based on empirical mode decomposition, support vector regression and adaptive linear neural network [J]. Lecture Notes in Computer Science, 2005, 3611: 324-327.
    [285]胡桥,何正嘉,訾艳阳等.一种新的机电设备状态趋势智能混合预测模型[J].机械强度,2005,27(4):425-431.
    [286] Hu Q, Heng ZJ, Zhang ZS, et al. Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble [J]. Mechanical Systems and Signal Processing, 2007(21),: 688-705.
    [287] Zadeh LA. Fuzzy sets [J]. Information Control, 1965, 8: 338-353.
    [288]关惠玲,韩捷.设备故障诊断专家系统原理及实践[M].北京:机械工业出版社,2000.
    [289]焦李成.神经网络计算[M].西安:西安电子科技大学出版社,1993.
    [290] Rumelhart D. E., Meclelland J. L. Parallel Distributed Processing [M], MIT, 1986.
    [291]张炜,张优云,战仁军等.旋转机械故障诊断中的神经网络改进算法研究[J].振动工程学报,1996,9(1):31-37.
    [292] Xu R, Donald W. Survey of clustering algorithms [J]. IEEE Transactions on Neural Networks, 2005, 16(3) : 645-678.
    [293]张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868.
    [294] Liao TW. Clustering of time series data-a survey [J]. Pattern Recognition, 2005, 38: 1857-1874.
    [295] Han J, Kamber M. Data Mining: Concepts and Techniques [M], San Francisco, 2001.
    [296] Jain AK, Dubes RC. Algorithms for Clustering [M], Prentice Hall, New Jersey, 1998.
    [297] Jain AK, Murty MN, Flynn PJ. Data clustering: A review [J]. ACM Computing Surveys, 1999, 31(3): 264-323.
    [298] Duda RO, Hart PE. Pattern Classification [M] (2nd edition), Wiley Interscience, New York, 2000.
    [299] Bezdek JC, Keller JM, Krishnapuram R, et al. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing [M], Kluwer, Norwell, MA, 1999.
    [300] Pakhira MK, Bandyopadhyay S, Maulik U. A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification [J]. Fuzzy Sets and Systems, 2005, 155: 191-214.
    [301] Dunn JC. Some recent investigations of a new fuzzy partition algorithm and its application to pattern classification problems [J]. Cybernetics, 1974, 4: 1-15.
    [302] Bezdek JC. Pattern Recognition with Fuzzy Objective Function Algorithms [M], Plenum Press, New York, 1981.
    [303] Xue JH, Pizurica A, Philips W, et al. An integrated method of adaptive enhancement for unsupervised segmentation of MRI brain images [J]. Pattern Recognition Letters, 2003, 24(15): 2549-2560.
    [304] Guerrero BVP, López PC, Moya AFD, et al. Comparison of neural models for document clustering [J]. International Journal of Approximation Reasoning, 2003, 34(2-3): 287-305.
    [305] Pal NR, Bezdek JC. On cluster validity for the fuzzy c-means model [J]. IEEE Transactions on Fuzzy Systems, 1995, 3(3): 370-379.
    [306] Bezdek JC. Mathematical models for systematic and taxonomy [A]. Proceedings of the 8th International Conference on Numerical Taxonomy [C], 1975, 143-166.
    [307] Bezdek JC. Cluster validity with fuzzy sets [J]. Cybernetics, 1973, 3: 58-73.
    [308] Dave RN. Validating fuzzy partition obtained through c-shells of circular clustering [J]. Pattern Recognition Letters, 1996, 17(6): 613-623.
    [309] Bezdek JC. Pattern Recognition. In: Handbook of fuzzy computation [M], IOP Publishing, New York, 1998.
    [310] B?ck T, Hammel U, Schwefel HP. Evolutionary computation: comments on the history and current state [J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 1-17.
    [311] Schmitt LC. Theory of genetic algorithms [J]. Theoretical Computer Science, 2001, 259: 1-61.
    [312] Elbeltagi E, Hegazy T, Grierson D. Comparison among five evolutionary-based optimization algorithms [J]. Advanced Engineering Informatics, 2005, 19: 43-53.
    [313]潭善文,秦树人,汤宝平.小波基时频特性及其在分析突变信号中的应用[J].重庆大学学报,2001,24(2):12-17.
    [314] Huang NE, Shen Z, Long SR, et al. The Empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London, 1998, 454(1): 903-995.
    [315]盖强.局域波时频分析方法的理论研究与应用[D].大连:大连理工大学, 2001.
    [316]边肇祺,张学工.模式识别[M] (第2版),北京:清华大学出版社,2000.
    [317]廖广兰,史铁林,姜南等.基于SOM网络的特征选择技术研究[J].机械工程学报,2005,41(2):46-50.
    [318] Jain A, Zongker D. Feature selection: evaluation, application, and small sample performance [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(2): 153-158.
    [319] Pernkopf F. Bayesian network classifiers versus selective k-NN classifier [J]. Pattern Recognition, 2005, 38: 1-10.
    [320] Peng HC, Long FH, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238.
    [321] Sun ZH, Bebis G, Miller R. Object detection using feature subset selection [J]. Pattern Recognition, 2004, 37: 2165-2176.
    [322] Sawhney H, Jeyasurya B. A feed-forward artificial neural network with enhanced feature selection for power system transient stability assessment [J]. Electric Power Systems Research, 2006, 76: 1047-1054.
    [323] Silva PJS, Hashimoto RF, Kim S, et al. Feature selection algorithms to find strong genes [J]. Pattern Recognition Letters, 2005, 26: 1444-1453.
    [324] Gasca E, Sánchez JS, Alonso R. Eliminating redundancy and irrelevance using a new MLP-based feature selection method [J]. Pattern Recognition, 2006, 39: 313-315.
    [325] I?aki I, Pedro L, Rosa B, et al. Filter versus wrapper gene selection approaches in DNA microarray domains [J]. Artificial Intelligence in Medicine, 2004, 31: 91-103.
    [326] Bacauskiene M, Verikas A. Selecting salient features for classification based on neural network committees [J]. Pattern Recognition Letters, 2004, 25: 1879-1891.
    [327] Kumar R, Jayaraman VK, Kulkarni BD. An SVM classifier incorporating simultaneous noise reduction and feature selection: illustrative case examples [J]. Pattern Recognition, 2005, 38: 41-49.
    [328] Zhao QJ, Lu HT, Zhang D. A fast evolutionary pursuit algorithm based on linearly combining vectors [J]. Pattern Recognition, 2006, 39: 310-312.
    [329] Huang D, Chow TWS. Effective feature selection scheme using mutual information [J]. Neurocomputing, 2005, 63: 325-343.
    [330] Wang XF, QIN J, Liu GJ. New feature selection method in machine fault diagnosis [J]. Chinese Journal of Mechanical Engineering (English Edition), 2005, 18(2): 251-254.
    [331] Li X, Rao S, Zhang T, et al. An ensemble method for gene discovery based on DNA microarray data [J]. Science in China Series C, 2004, 47(5): 396-405.
    [332] Liu YG, Li XM., Wu ZF. The feature subset selection algorithm [J]. Journal of Electronics, 2003, 20(1): 57-61.
    [333] Mills JC, Cordon JI. A new approach for filtering noise from high-density oligonucleotide microarray datasets [J]. Nucleic Acids Res, 2001, 29: E72-72.
    [334] Kohavi R, John GH. Wrappers for feature subset selection [J]. Artificial Intelligence, 1997, 97(1-2): 273-324.
    [335] Micchelli CA. Interpolation of scatter data distance matrices and conditionally positive definite functions [J]. Constructive Approximation, 1986, 2: 11-12.
    [336] Powell M. Radial basis function for multivariable interpolation: a review [M]. Oxford: Claredon Press, 1987.
    [337] Broomhead DS, Lowe D. Multivarariable function interpolation and adaptive networks [J]. Complex System, 1988: 321-355.
    [338] Hagan MT, Demuth HB, Beale MH.神经网络设计[M].戴葵,译.北京:机械工业出版社, 2002.
    [339] Ham FM, Kostanic I. Principles of neurocomputing for science & engineering [M]. New York: McGraw Hill, 2001.
    [340] Ho TK. Hybrid Methods in Pattern Recognition [M], World Scientific Press, Singapore, 2002.
    [341] Alpaydin E. Introduction to Machine Learning [M], MIT, 2004.
    [342] Kittler J, Hatef M, Duin RPW, et al. On combining classifiers [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(3): 226-239.
    [343] Narasimhamurthy A. Theoretical bounds of majority voting performance for a binary classification problem [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(12): 1988-1995.
    [344] Alkoot FM, Kittler J. Experimental evaluation of expert fusion strategies [J]. Pattern Recognition Letters, 1999, 20: 1361-1369.
    [345] Kuncheva LI. A theoretical study on six classifier fusion strategies [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(2): 281-286.
    [346] Fumera G, Roli F. A theoretical and experimental analysis of linear combiners for multiple classifier systems [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 942-956.
    [347] Zhu H, Tang XL. Classifier geometrical characteristic comparison and its application in classifier selection [J]. Pattern Recognition Letters, 2005, 26: 829-842.
    [348] Shyu LY, Wu YH, Hu W. Using wavelet transform and fuzzy neural network for VPC detection from the holter ECG [J]. IEEE Transactions on Biomedical Engineering, 2004, 51(7): 1269-1273.
    [349] Mousa R, Munib Q, Moussa A. Breast cancer diagnosis system based on wavelet analysis and fuzzy-neural [J]. Expert Systems with Applications, 2005, 28: 713-723.
    [350] Gülerí,übeyli ED. Application of adaptive neuro-fuzzy inference system for detection of electrocardiographic changes in patients with partial epilepsy using feature extraction [J]. Expert Systems with Applications, 2004, 27: 323-330.
    [351] Lo SP, Lin YY. The prediction of water surface non-uniformity using FEM and ANFIS in thechemical mechanical polishing process [J]. Journal of Materials Processing Technology, 2005, 18: 250-257.
    [352] Gulbag A, Temurtas F. A study on quantitative classification of binary gas mixture using neural networks and adaptive neuro-fuzzy inference systems [J]. Sensors and Actuators B, 2006, 115: 252-262.
    [353] Ye Z, Sadeghian A, Wu B. Mechanical fault diagnostics for induction motor with variable speed drive using Adaptive Neuro-fuzzy Inference System [J]. Electric Power Systems Research, 2006, 76: 742-752.
    [354] Wang WQ, Golnaraghi MF, Ismail F. Prognosis of machine health condition using neuro-fuzzy systems [J]. Mechanical Systems and Signal Processing, 2004, 18: 813-831.
    [355] Aksela M, Laaksonen J. Using diversity of errors for selecting members of a committee classifier [J]. Pattern Recognition, 2006, 39: 608-623.
    [356] Zhu H, Tang XL. Classifier geometrical characteristic comparison and its application in classifier selection [J]. Pattern Recognition Letters, 2005, 26: 829-842.
    [357] Zouari H, Heutte L, Lecourtier Y. Controlling the diversity in classifier ensembles through a measure of agreement [J]. Pattern Recognition, 2005, 38: 2195-2199.
    [358] Loparo KA. Bearings vibration data set, Case Western Reserve University. http://www.eecs.cwru.edu/laboratory/bearing/download.htm.
    [359] Yang MS, Yu NY. Estimation of parameters in latent class models using fuzzy clustering algorithms [J]. European Journal of Operational Research, 2005, 160: 515-531.
    [360] Hung WL, Yang MS. Fuzzy clustering on LR-type fuzzy numbers with an application in Taiwanese tea evaluation [J]. Fuzzy Sets and Systems, 2005, 150: 561-577.
    [361] Ozer M. Fuzzy c-means clustering and Internet portals: a case study [J]. European Journal of Operational Research, 2005, 164: 696-714.
    [362] Alexiuk MD, Pizzi NJ. Robust centroids using fuzzy clustering with feature partitions [J]. Pattern Recognition Letters, 2005, 26 : 1039-1046.
    [363] Goktepe AB, Altun S, Sezer A. Soil clustering by fuzzy c-means algorithm [J]. Advances in Engineering Software, 2005, 66 : 691-698.
    [364] Tsai MY, Lan LS, Pao WT. Online recognition of Chinese handwriting using a hierarchical fuzzy clustering approach [A]. The IEEE International Conference on Acoustics, Speech, and Signal Processing [C], 2005(5), 18-23.
    [365] Xie Y, Raghavan VV, Dhatric P, et al. A new fuzzy clustering algorithm for optimally finding granular prototypes [J]. International Journal of Approximate Reasoning, 2005, 40: 109-124.
    [366] Frigui H, Nasraoui O. Unsupervised learning of prototypes and attribute weights [J]. Pattern Recognition, 2004, 37: 567-581.
    [367] Hall LO, Kanade PM. Swarm based fuzzy clustering with partition validity [A]. The IEEE International Conference on Fuzzy Systems [C], 2005, 991-995.
    [368] Sun HJ, Wang SR, Jiang QS. FCM-Based Model Selection Algorithms for Determining the Number of Clusters [J]. Pattern Recognition, 2004, 37: 2027-2037.
    [369] Camastra F. A novel kernel method for clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 801-805.
    [370] Tsekouras GE, Kawa A, Sampanikou E. Potential-based fuzzy clustering and cluster validity for categorical data and its application in modeling cultural data [A]. The IEEE International Conference on Computational Cybernetics [C], 2005, 81-86.
    [371] Pilevar AH, Sukumar M. GCHL-A grid-clustering algorithm for high-dimensional very large spatial data bases [J]. Pattern Recognition Letters, 2005, 26: 999-1010.
    [372] Qin AK, Suganthan PN. Enhanced neural gas network for prototype-based clustering [J]. PatternRecognition, 2005, 38: 1275-1288.
    [373] Kim DW, Lee KH, Lee D. Fuzzy clustering of categorical data using fuzzy centroids [J]. Pattern Recognition Letters, 2004, 25: 1263-1271.
    [374] Kim DW, Lee KY, Lee D, et al. Evaluation of the performance of clustering algorithms in kernel-induced feature space [J]. Pattern Recognition, 2005, 38: 607-611.
    [375] Su MC, Liu YC. A new approach to clustering data with arbitrary shapes [J]. Pattern Recognition, 2005, 38: 1887-1901.
    [376] Wu KL, Yu J, Yang MS. A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests [J]. Pattern Recognition Letters, 2005, 26: 639-652.
    [377] Yang MS, Wu KL. Unsupervised possibilistic clustering [J]. Pattern Recognition, 2006, 39: 5-21.
    [378] Ma EWM, Chow TWS. A new shifting grid clustering algorithm [J]. Pattern Recognition, 2004, 37: 503-514.
    [379] Chan EY, Ching WK, Ng MK, et al. An optimization algorithm for clustering using weighted dissimilarity measures [J]. Pattern Recognition, 2004, 37: 943-952.
    [380] Huang JZ, Ng MK, Rong HQ, et al. Automated variable weighting in k-means type clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 657-668.
    [381] Wu ST, Chow TWS. Clustering of the self-organizing map using a clustering validity index based on inter-cluster and intra-cluster density [J]. Pattern Recognition, 2004, 37: 175-188.
    [382] Lee JWT, Yeung DS, Tsang ECC. Hierarchical clustering based on ordinal consistency [J]. Pattern Recognition, 2005, 38: 1913-1295.
    [383] Yeung DS, Wang XZ. Improving performance of similarity-based clustering by feature weight learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 23(4): 556-561.
    [384]陈守煜.模糊聚类循环迭代理论与模型[J].模糊系统与数学,2004,18(2):57-61.
    [385] Wang XZ, Wang YD, Wang LJ. Improving fuzzy c-means clustering based on feature-weight learning [J]. Pattern Recognition Letters, 2004, 25: 1123-1132.
    [386] Pakhira MK, Bandyopadhyay S, Maulik U. Validity index for crisp and fuzzy clusters [J]. Pattern Recognition, 2004, 37: 487-501.
    [387] Tsekouras GE, Sarimveis H. A new approach for measuring the validity of the fuzzy c-means algorithm [J]. Advances in Engineering Software, 2004, 35: 567-575.
    [388] Kim M, Ramakrishna RS. New indices for cluster validity assessment [J]. Pattern Recognition Letters, 2005, 26: 2353-2363.
    [389] Kim YI, Kim DW, Lee D, et al. A cluster validation index for GK cluster analysis based on relative degree of sharing [J]. Information Sciences, 2004, 168: 225-242.
    [390] Kim DW, Lee KH, Lee D. Fuzzy cluster validation index based on inter-cluster proximity [J]. Pattern Recognition Letters, 2003, 24: 2561-2574.
    [391] Kim DW, Lee KH, Lee D. On cluster validity index for estimation of the optimal number of fuzzy clusters [J]. Pattern Recognition, 2004, 37: 2009-2025.
    [392] Wu KL, Yang MS. A cluster validity index for fuzzy clustering [J]. Pattern Recognition Letters, 2005, 26: 1275-1291.
    [393] Bezdek JC, Keller JM, Krishnapuram R, et al. Will the real iris data please stand up? [J]. IEEE Transactions on Fuzzy Systems, 1999, 7(3): 368-369.
    [394]刘小芳,吕炳朝,曾黄麟.部分监督加权模糊C-均值算法的聚类分析[J].计算机仿真,2004,22(3):114-116.
    [395] Yoshiyuki F, Michio S. A new method of choosing the number of clusters for the fuzzy c-means method [A]. Proceedings of the 5th Fuzzy System Symposium [C], 1989, 247-250.
    [396] Xie XL, Beni G. A validity measure for fuzzy clustering [J]. IEEE Transactions on Pattern Analysisand Machine Intelligence, 1991, 13(8): 841-847.
    [397] Gath I, Geva AB. Unsupervised optimal fuzzy clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 773-781.
    [398] Kwon SH. Cluster validity index for fuzzy clustering [J]. Electronics Letters, 1998, 34(22): 2176-2177.
    [399]雷亚国,胡桥,段晨东,等.机电设备远程监测与诊断系统在LabVIEW平台上的实现[J].机械科学与技术,2005,24(1):119-122.
    [400]张金玉,张优云,王汉功,等.基于Midas的实时远程监测与诊断系统的开发[J].计算机工程与应用,2001,37(18):27-30.
    [401] Wu X, Chen J, Li RQ, et al. Web-based remote monitoring and fault diagnosis system [J]. The International Journal of Advanced Manufacturing Technology, 2006, 28(1-2): 162-175.
    [402]黎洪生,何岭松,史铁林,等.基于因特网远程故障诊断系统构架[J].华中理工大学学报,2000,28(3):13-15.
    [403]王太勇,李国威,许雪琦,等.基于J2EE和CORBA的设备远程监测诊断系统[J].噪声与振动控制,2003,(1):8-11.
    [404]工之程,陈宗歧,于沨等.舰船噪声测量与分析[M].北京:国防工业出版社,2004.
    [405]章林柯,何琳,朱石坚.潜艇主要噪声源识别方法研究[J].噪声与振动控制,2006,(4):7-10.
    [406] Machinery Information Management Open System Alliance, MIMOSA Technical Release. http://www.mimosa.org. 1998.
    [407] NI Corporation. Database Connectivity Toolkit [M], 2001.
    [408]中国新闻网.山西省西山煤电屯兰矿成为了中国品牌煤矿. http://www.sx.chinanews.com.cn//2007-01-28/1/42406.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700