用户名: 密码: 验证码:
布里渊光纤陀螺有源腔关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤陀螺是一种基于Sagnac效应的惯性角速度传感器,它在各种导航及制导系统中起着重要的作用。目前干涉型光纤陀螺已经发展成熟,但它在系统小型化等方面存在困难。与干涉型光纤陀螺相比,布里渊光纤陀螺(BFOG)采用的光纤长度要短很多,信号处理系统大大简化,在实现光纤陀螺高精度和小型化方面的优势明显。因此,开展BFOG的研究具有重要意义。布里渊光纤有源环形腔是BFOG的核心和主体,也是BFOG实现的难点,因此本课题主要针对布里渊光纤环形腔的若干关键问题进行了研究。论文的主要工作如下:
     首先对布里渊光纤环形腔的光强进行了深入研究。采取由浅入深的方法进行光路分析,在研究了无源腔的基本特性后再进行布里渊有源腔的研究。利用泰勒级数简化了腔特性的描述,并结合递归思想,推导出入射光强、腔内循环光强、各阶斯托克斯光强及出射光强之间的关系。结合BFOG的要求,得出入射光强必须控制在第一窗口,腔体必须处于过耦合态的结论。设计了自由谱线宽度为19.35MHz,精细度为70的环形腔,验证了关于泵浦阈值、斯托克斯光出射功率等方面的理论,并提出一种“过损耗熔接”的方法进行BFOG的腔体设计,测试表明这种腔体能够有效抑制腔内循环光强的流出,符合BFOG的要求。
     然后针对试验中遇到的谐振峰漂移以及谐振峰振动问题,研究了布里渊光纤环形腔的动态性能,并设计了稳频电路实现腔中的谐振稳定。分析指出光纤双折射产生的偏振波动是导致谐振峰漂移的根本原因,研究了它对于受激布里渊散射及腔内循环光强的影响,得出保持腔内偏振稳定的两种方法,并对其中偏振主轴旋转的方法进行了验证。理论上证明了正弦波调制下谐振峰振动现象的根本原因来自于PZT的调制速率过快,并据此研究了对陀螺输出的影响。分析了实际环境中腔长难以保持谐振稳定的原因,提出了基于PID控制原理的透射腔直流稳频方案,设计了基于FPGA的稳频电路,使得腔内谐振频率的稳定度控制在9.45Hz的范围内。
     之后开展了BFOG的光路建模及其它相关理论研究,完善了BFOG的理论体系。采取Jones矩阵光学的原理建立了BFOG的光传输模型,根据该模型研究了器件理想与非理想情况下的光路输出,结果表明光源的功率波动及偏振波动对于陀螺输出信号的检测灵敏度影响较大,焊点、耦合器及偏振器的参数对陀螺也有一定的影响。参照RLG频率读出系统,分析了布里渊光纤陀螺的拍频读出方法。探讨了光源及光纤环的选取依据,得出了光源峰值输出光功率应大于4mW,功率波动小于10μW,频率波动小于10KHz,光纤环最佳长度为10m的结论。针对BFOG动态范围和阈值光功率对于光纤环长度要求的矛盾,提出了光纤环“双向缠绕”法,在保证阈值光功率的前提下提高了陀螺的动态范围。
     最后开展了BFOG克尔效应方面的研究。克尔效应被公认为BFOG的主要误差源,因此这一部分的研究具有重要意义。通过对光纤中非线性光学克尔效应的基础分析,指出交叉相位调制是导致光纤中折射率差的主要原因。理论分析指出克尔效应可产生腔内光强的光学双稳态,实验在输入功率440μW时验证了这一现象,并且指出该双稳态可通过调节耦合器的参数进行抑制。分析得出BFOG克尔效应误差的主要原因来自于稳频过程中产生的谐振偏离,它不仅导致陀螺输出非线性,并且把陀螺的动态范围限制在±22°/s。据此提出双环BFOG工作方案,理论上避免了克尔效应对于陀螺输出的不利影响。对双环方案中存在的参数误差研究表明,该误差导致的陀螺总附加拍频小于10Hz,对陀螺零漂的影响优于0.015°/s,双环BFOG方案能够满足中等精度光纤陀螺的要求。
Fiber optic gyro (FOG) is an inertial angular velocity sensor based on the Sagnac effect, which plays an important role in a variety of navigation and guidance system. At present, the interferential fiber-optic gyro (IFOG) has reached a mature state, but it faces some difficulties such as miniaturization. Compared with IFOG, Brillouin fiber optic gyro (BFOG) has great predominance in fiber length and signal processing system. Therefore, the research on BFOG is of great significance. Brillouin fiber ring resonator (BFRR) is the core and main part in BFOG, and it is also the linchpin to achieve BFOG. So a number of key issues in BFRR were studied in this dissertation, detailed as follows:
     First of all, the optical intensity in BFRR was studied in detail. The easy-to-digest method was taken on optical analysis, in order to analyze the basic characteristics of passive cavity before BFRR. And then the Taylor series was used to simplify the description of characteristics of cavity. Combined with recursive thinking, the relationship among incident light, circuiting light, different order Stokes light and transmitted light were derived. Considering BFOG requirements, the incident light should be controlled in the first window, and the cavity must be over-coupled. At last, the BFRR was designed, in which the FSR is 19.35MHz and the finesse is 70. In our experiments, theory of pump threshold and Stokes optical power was testified, and the over-tear welding method was utilized to design the cavity which suitable for BFOG.
     In the experiments, the resonance peaks shift and vibration was discovered, so the dynamic performance of BFRR were researched in the dissertation. First the impact of polarization fluctuations that arises from optical birefringence on stimulated Brillouin scattering and cavity effects were studied, and the technique of achieving a stable resonant cavity were analysed. Theoretic analysis showed that, the root causes of resonance peaks vibration came from too fast PZT modulation rate, and then its impact on gyroscope were studied. Analysis showed it is difficult to maintain stable cavity length in actual environment, so the DC frequency stabilization method based on PID control was derived, and FPGA-based frequency stabilization circuit was designed. Results showed that the resonant frequency stability was controlled under 9.45Hz.
     Then, the research of BFOG modeling and other related theory were carried out to improve BFOG theoretical system. The Jones optics was adopted to establish the optical transmission model of BFOG. According to this model, the optical output under ideal and non-ideal condition was discussed. Results showed that the light source power fluctuations and polarization fluctuations played an important role in the gyro sensitivity, and the parameters of coupler and polarizer also had appreciable effect. How to choose the optical source power and fiber ring length was discussed afterwards, and the conclusion showed that, the peak output optical source power should be larger than 4mW, the power fluctuations should be less than 10μW, the frequency fluctuations should be less than 10KHz, and the best fiber length is 10m. Aimed at the conflict between the threshold power and BFOG dynamic range, the "two-way winding" method was brought forward, which enhanced the gyro dynamic range under the premise of optical power threshold. At last, the BFOG frequency read out system was designed on reference of RLG.
     Finally, research of Kerr effect in BFOG was carried out. Kerr effect was recognized as the main error sources in BFOG, so the research of this part is of great significance. Through basic analysis of fiber-optic nonlinear optics, the cross-phase modulation had been shown to be the main reason of refractive index change. Though theoretic analysis, Kerr effect may produce optical bistablity. Experiment showed it happened as the input power was 440μW, and the bistablity could be restrained by adjusting the coupling parameters. The main reason for Kerr effect in BFOG was resonant detuning. It brought not only the nonlinear output, but also restricted-the gyro dynamic range. The double-loop BFOG program was proposed for this suit, and the adverse effects of gyro output was avoided theoretically. Then the parameter error of double-loop scheme was discussed, and results showed that total additional frequency was less than 10Hz, which means its impact on gyro zero-drift was less than 0.015°/s. The results could meet moderate FOG requirements.
引文
[1]张桂才,王巍译.光纤陀螺仪.国防工业出版社,2002
    [2]高秀花译.选用陀螺仪—动调陀螺,激光陀螺,光纤陀螺的比较.惯导与仪表.1995,4:16-21页
    [3]盛钟延,季杭峰,周柯江.光纤陀螺的最新进展.红外与激光工程.1995,28(3):59-63页
    [4]孙丽,王德钊.光纤陀螺的最新进展.航天控制.2003,3:77-80页
    [5]刘兰芳,陈刚.光纤陀螺仪基本原理与分类.现代防御技术.2007,4(6):33-37页
    [6]张桂才.光纤陀螺原理与技术.国防工业出版社,2008
    [7]F.Zarinetchi, Stimulated Brillouin Fiber optic Laser Gyroscope. Opt. Lett. 1991,16(4):229-231P
    [8]裴金成,杨熙春,朱汝德等.受激布里渊光纤陀螺.光纤光学.2006,43(11):53-60页
    [9]P. J. Thomas, H. M. Driel and D. I. A. Stegeman. Possibility of using an optical fiber Brillouin ring laser for inertial sensing. Appl. Opt.1980,19: 1906-1908P
    [10]Michael Raab, Thomas Quast. Two-color Brillouin ring laser gyro with gyro-compassing capability. Opt. Lett.1994,19(18):1492-1494P
    [11]F. Zarinetchi, S. P. Smith, S. Ezekiel. Stimulated Brillouin fiber-optic laser gyroscope. Opt. Lett.1991,16(4):229-231P
    [12]S. Huang, K. Toyama, P. A. Nicati et al.. Brillouin fiber optic gyro with push-pull phase modulator and synthetic heterodyne detection. SPIE,1992, 1795:48-59P
    [13]章燕申.高精度导航系统.中国宇航出版社,2005
    [14]Y. Tanaka. S. Yamasaki. K. Hotate. Brillouin fiber optic gyro with directional sensitivity. IEEE Photonics technology letters.1996,8(10): 1367-1369P
    [15]延凤平,单英.受激布里渊散射光纤陀螺中光偏振特性的研究.中国激光,2001,28(10):913-917页
    [16]延凤平,单英,简水生.受激布里渊散射光纤陀螺温度效应的理论分析.压电与声光.2001,23(2):97-99页
    [17]单英,延凤平,简水生.受激布里渊散射光纤陀螺中光偏振特度的研究.压电与声光.2000,22(2):75-80页
    [18]延凤平,单英,简水生.受激布里渊散射光纤陀螺中光纤光源的阈值光功率研究.中国激光.2000,27(9):790-794页
    [19]延凤平,单英,简水生.受激布里渊散射光纤陀螺中受激布里渊散射效应的机理研究.光电子激光.2000,11(1):32-35页
    [20]董永康,吕志伟,吕月兰等.布里渊光纤环形激光器及其应用.激光技术.2004,28(5):498-502页
    [21]P. P. Yupapin. Coupler-loss and coupling-coefficient-dependent bistability and instability in a fiber ring resonator. Optik.200811(9):492-494P
    [22]M. R. Shirazi, S. W. Harun, M. Biglary, and H. Ahmad. Linear cavity Brillouin laser with improved characteristics. Optics Letters.2008,33(8): 770-772P
    [23]Valeri I Kovalev and Robert G. Harrison. Means for easy and accurate measurement of the stimulated Brillouin scattering gain coefficient in optical fiber. Optics Letters.2008,33(21):2434-2436P
    [24]G. F. Lima, K. D. A. Saboia Optical short pulse switching characteristics of ring resonators. Optical Fiber Technology.2008,4(14):79-83P
    [25]L. M. Zhao, D. Y. Tang, H. Zhang. Period-doubling of vector solitons in a ring fiber laser. Optics Communictions.2008,2(81):5614-5617P
    [26]L. M. Zhao, D. Y. Tang, H. Zhang. Polarization rotation locking of vector solitons in a fiber ring laser. Optics Express.2008,16(14):10054-10058P
    [27]Ke Yun, Jing Li. Simple and highly accuate technique for time delay measurement in optical fibers by free-running laser configuration. Optics Letters,2008,13(15):1732-1734P
    [28]John E. Mcelhenny, Randha K. Pattnaik. Unique characteristic features of stimulated Brilloin scattering in small-core photonic crystal fibers. Opt. Soc.2008,25(4):582-593P
    [29]N. D. Nguyen, L. N. Binh. Genaration of bound solitons in actively phase modulation mode-locked fiber ring resonators. Optics Communications. 2008,4(15):2012-2022P
    [30]Anthony L. Franz, Rajarshi Roy. Effect of multiple time delays on intensity fluctuation dynamics in fiber ring lasers. Physical Review.2008, 12(08):1-19P
    [31]H. J. Arditty and H. C. Lefevre. Sagnac Effect in Fiber Gyroscopes. Opt.Lett.1981,6(8):401-403P
    [32]张兴周.Sagnac效应光纤陀螺.传感器技术.1998,17(1):59-62页
    [33]程光煦.拉曼布里渊散射—原理及应用.科学出版社,2001
    [34]季家镕,冯莹.高等光学教程—非线性光学与导波光学.科学出版社,2008
    [35]沈一春.受激布里渊散射在ROF中的应用.浙江大学博士论文.2005
    [36]Michael Andrew Davis. Stimulated Brillouin scattering in single mode optical fiber. College of William and Mary. Phd dissertation.1997P
    [37]K. Toyama. BRILLOUIN FIBER-OPTIC GYROSCOPE AND DIGITAL INTEGATING GYRASCOPE. Stanford University, Phd dissertation. 1996:34-39,63-65P
    [38]周萍.横向受激布里渊散射的数值模拟.国防科技大学硕士论文.2003
    [39]E. M. Dianov, A. Y. Karasik, A. V. Lutchnikov, and A. N. Pilipetskii, Opt. Quantum Elec.19892(21):381-383P
    [40]毛献辉,田芊,滕云鹤,章燕申.几种光学陀螺的研究进展.压电与声光.2003,25(1):15-18页
    [41]姚琼,宋章启,谢元平,胡永明.谐振腔光纤陀螺光纤谐振环特性研究.光子学报.2007,36(4):676-680页
    [42]姚琼,胡永明,谢元平,宋章启.基于长程光纤网络的谐振腔光纤陀螺. 光电子激光.2005,16(5):562-565页
    [43]姚琼.光纤谐振腔及谐振腔光纤陀螺关键技术研究.国防科技大学博士论文.2006
    [44]R. D. Stokes. Stimulated Brillouin scattering:its generation and applications in optical fiber. Phd dissertation of the Standford University. 1982:24-25P
    [45]Lon A. Wang, Chun Te Li, Gia Wei You. Polarized erbium-doped superfluorescent fiber source utilizing double pass backward configuration. Applied optics.2005,44(1):77-82P
    [46]Dmitrii Yu. Stepanov and Gregory J. Cowle. Properties of Brillouin Erbium Fiber Lasers. IEEE journal of selected topics in quantum electronics.1997,3(4):1049-1056P
    [47]Gregory J. Cowle. Brillouin/Erbium Fiber Lasers. Journal of lightwave technology.1997,15(7):1198-1204P
    [48]李绪友,张勇.布里渊光纤陀螺光纤环形腔研究.光电工程.2008,35(11):111-116页
    [49]S. Randoux, V. Lecueuche. Dynamical behavior of a Brillouin fiber ring laser emitting two stokes components. Physical review.1995,52(3): 2331-2334P
    [50]S. Randoux, V. Lecoeuche, and J. Zemmouri. Polarization instabilities and antiphase dynamics in a Brillouin fiber ring laser. Physical review.1997, 56(3):1717-1720P
    [51]V Lecoeuche, S Randoux, B S'egard and J Zemmouri. Dynamics of stimulated Brillouin scattering with feedback. Quantum Semiclass.1996, 8:1109-1145P
    [52]廖延彪.偏振光学.科学出版社,2003
    [53]Honpu Li, Kazuhiko Ogusu. Dynamic behavior of stimulited Brillouin scattering in single mode optical fiber. Appl. Phys.1999,38(11): 6309-6315P
    [54]S. Randoux and J. Zemmouri. Polarization dynamics of a Brillouin fiber ring laser. Physical review.1999,59(2):1644-1653P
    [55]Carlos Montes, Derradji Bahloul, Isabelle Bongrand. Self-pulsing and dynamic bistability in cw-pumped Brillouin fiber ring lasers. Opt. Soc. 1999,16(6):932-951P
    [56]张旭琳,马慧莲,金仲和等.谐振式光纤陀螺中偏振波动的影响.传感技术学报.2003,6(2):150-154页
    [57]李佳程,张炎华.被动式谐振腔光纤陀螺的偏振分析.上海交通大学学报.1999,33(10):1307-1309页
    [58]Y. Tanaka, K. Hotate. Analysis of fiber Brillouin ring laser composed of signal-polization signal-mode fiber. Journal of lightwave technology.1997, 15(5):838-844P
    [59]Koichi Takiguchi, Kazuo Hotate. Evaluation of the Output Error in an Optical Passive Ring-Resonator Gyro with a 90°Polarization-Axis Rotation in the Polarization-Maintaining Fiber Resonator. IEEE photonics technology letters.1991,3(1):88-90P
    [60]谢增华,严凤平等.环形腔光纤陀螺中减少偏振噪声的方法研究.压电与声光.1997,19(6):372-374页
    [61]严凤平,简水生.SBS-FOG中受激布里渊散射光偏振特性的理论分析.光电子激光.2001,12(4):340-343页
    [62]严凤平,单英,简水生.受激布里渊光纤陀螺中传输光偏振稳定性的研究.铁道学报.2001,23(2):39-41页
    [63]Alain Kung, Luc Thevenaz, and Philippe A. Robert. Polarization Analysis of Brillouin Scattering in a Circularly Birefringent Fiber Ring Resonator. Journal of lightwave technology.1997,15(6):977-982P
    [64]Koichi Takiguchi, Kazuo Hotate. Evaluation of the Output Error in an Optical Passive Ring-Resonator Gyro with a 90°Polarization-Axis Rotation in the Polarization-Maintaining Fiber Resonator. IEEE photonics technology letters.1991,3(1):88-90P
    [65]Kazuo Hotate. Polarization Problem and Countermeasures in Passive/Active Resonator Fiber Optic Gyros. SPIE. Vol.2292:227-239P
    [66]廖延彪.光纤光学.清华大学出版社,2000
    [67]张文,金世龙.激光陀螺光路稳定技术的研究.中国惯性技术学报.2006,14(1):72-76页
    [68]孙祥贵,冯铁荪等.稳频激光陀螺中闭锁阈值的变化.中国激光.1992,19(10):744-748页
    [69]许光明,张斌,蒋安国等.四频差动激光陀螺中的激光稳频.光电子激光.2000,11(1):49-51页
    [70]杨恒,蒋东方等.环形激光陀螺频率稳定性的研究.西北工业大学学报.1999,17(8):414-418页
    [71]杨雪锋,郑阳明,马慧莲.谐振式光纤陀螺环路锁频技术研究.传感技术学报.2007,20(5):991-994页
    [72]郭伟.谐振式光纤陀螺的基础研究.浙江大学硕士论文.2003
    [73]谭新洪,杜建邦.激光陀螺数字式稳频方法的研究.计量学报.2002,23(3):216-218页
    [74]潘献飞,江明明,李长虹,胡小平.激光陀螺数字直流稳频系统设计.中国惯性技术学报.2006,14(3):60-64页
    [75]李友善.自动控制原理.国防工业出版社,1989
    [76]黄智伟,王彦FPGA系统设计与实践.电子工业出版社,2005
    [77]亿特科技CPLD/FPGA应用系统设计与产品开发.人民邮电出版社,2005
    [78]赵家贵.电子电路设计.中国计量出版社,2005
    [79]赵继文,何玉彬.传感器与应用电路设计.科学出版社,2004
    [80]刘畅生等.新型集成电路简明手册及典型应用.西安电子科技大学出版社,2005
    [81]倪道友,赵岳均.保偏光纤耦合器.光纤与电缆及其应用技术.1997(3):30-32页
    [82]延凤平,简水生.光纤陀螺温度补偿的实验研究.光电子激光.1999,3(1):14-17页
    [83]K. Hotate, Y. Tanaka. Analysis of state of polarization of stimulated brillouin scattering in an optical fiber ring-resonator. Journal of lightwave technology.1995,13(3):384-390P
    [84]阎吉祥,魏光辉,哈流柱等.矩阵光学.兵器工业出版社,1995
    [85]Gu Hong, Yang GongLiu, Yang Ye, et al. Analysis and simulation of optical polarization fluctuation of interferometric fiber optic gyroscope. Proceedings of SPIE.2007,6595:1705-1709P
    [86]马慧莲,金仲和,丁纯,王跃林.激光器线宽对光纤环形谐振腔谐振特性的影响.中国激光.2003,30(8):731-734页
    [87]S. P. Smith, F.Zarinetchi and S.Ezekiel. Narrow-linewidth stimulated Brillouin fiber laser and applicationas. Opt. Lett.1991,16:393-395P
    [88]Jae Chul Yong, Luc Th venaz, Byoung Yoon Kim. Brillouin fiber laser pumped by a DFB laser diode. Lightwave Technology.2003,21(2): 546-554P
    [89]Agrawal G P. Nonliear Fiber Optics. ACADEMIC PRESS. INC.1989: 14-15,210-214P
    [90]Yariv晶体中的光波.于荣金,金峰译.科学出版社,1992
    [91]S. J. Ezekiel, et al. Intensity dependent nonrecirocal phase shift in a fiber optic gyroscope. Springer series in optical sciences.1982,32:332-336P
    [92]S. Huang, L. Thevenaz, K. Toyama. Optical Kerr-Effect in Fiber-Optic Brillouin Ring Laser Gyroscope. IEEE Photonics Technology Letters. 1993,5(3):365-367P
    [93]R.A.Bergh, All-fiber gyroscope with optical-kerr-effect compensation, chapter 4,Ph.D dissertation, Standford University, Standford, CA 1983
    [94]严凤平,简水生SBS-FOG中克尔效应的理论分析.光电子激光.2001,12(4):344-346页
    [95]单英.受激布里渊散射光纤陀螺偏振特性及信号处理机理的研究.北方交通大学硕士学位论文.2000
    [96]G. A. Sanders, B. Szafraniec, R. Y. Liu, et al. Fiber optic gyros for space, marine, and aviation applications. in Fiber Optic Gyros:20th Anniversary Conf. Proc. SPIE.1996,2837:61-71P
    [97]李绪友,赵玉新,郝燕玲.数字闭环光纤陀螺信号处理方法研究.中国 惯性技术学报.2001,9(4):74-76页
    [98]李迪,孙尧,李绪友.闭环光纤陀螺数字检测方法研究及实现.弹箭与制导学报.2003,23(4):90-92页
    [99]马科斯·波恩,埃米尔·沃尔夫著.光学原理.杨葭荪译.电子工业出版社,2006
    [100]张靖华.损耗对光纤耦合器输出相位差的影响.光纤与电缆及其应用技术.1999,3(6):17-21页
    [101]K. Hotate, S.Yamashita. Grasp of the behavior of lock-in phenomenon and a manner to overcome it inBrillouin Fiber Optic Gyro. SPIE. Vol.3541: 57-65P
    [102]K.Takiguchi, K.Hotate. Removal of lock-in phenomenon in optical passive ring-resonator gyro by using optical Kerr-effect in fiber ring resonator. IEEE Photon Technol Lett.1992,4(7):810-812P
    [103]Kazuo Hotate, Michiko Harumoto. Resonator fiber optic gyro using digital-serrodyne modulation. Journal of Lightwave Technology.1997,15(3): 1809-1813P
    [104]刘思科.光纤陀螺建模及误差特性研究.西北工业大学硕士学位论文.2007
    [105]G. Huyet, S. Balle, M. Giudici, et al. Low frequency fluctuations and multimode operation of a semiconductor laser with optical feedback. Optics Communications.1998,149(4):341-347P
    [106]李绪友,王长伟,邹继斌.集成光学器件对光纤陀螺影响的研究.光子学报.2005,34(6):830-834页
    [107]K. Hotate. Fibre ring resonator with stable eigenstate of polarization using twisted single-mode optical fiber. Electronics Letters.1996,32(10): 330-339P
    [108]李佳程.被动式谐振腔光纤陀螺研究.上海交通大学博士学位论文.1999
    [109]Gu Hong, Yang GongLiu, Yang Ye, et al. Analysis and simulation of optical polarization fluctuation of interferometric fiber optic gyroscope. Proceedings of SPIE.2007,5:595-599P
    [110]祝曙光,徐安士,李正斌等.双环谐振型光纤陀螺的特性分析.北京大学学报(自然科学版).2004,40(3):367-371页
    [111]姚琼,胡永明,宋章启等.谐振型光纤陀螺克尔效应误差消除方法研究.光子学报.2005,34(9):1320-1323页
    [112]戴旭涵等.光纤陀螺的信号处理方案评述.光子学报.1999,3(11):1043-1048页
    [113]Overton G. The miniature gyroscope evolves. Laser Focus World,2005, 41(9):53-56P
    [114]Wong K, LOGAN R. Optical. Integration improves fiber optic gyroscope. Laser Focus World.2005,41(7):S3-S8P
    [115]金锋,姬文越.对光纤PZT相位调制器的研究.光通信技术.1989,10(1):84-87页
    [116]李嵘等.光纤陀螺PZT相位调制器特性研究.自动驾驶仪与红外技术.2003,12(3):22-26页
    [117]胡广书.数字信号处理.清华大学出版社,2003
    [118]高辉,刘邦群.掺铒石英光纤中的受激布里渊散射.光散射学报.1998,10(1):345-347页
    [119]李淳飞.非线性光学.哈尔滨工业大学出版社,2005
    [120]H. J. Arditty and H. C. Lefevre. Sagnac Effect in Fiber Gyroscopes. Opt.Lett.1981,6(8):401-403P
    [121]Tateda M, Horiguchi Y, Kurashima T, et al. First measurement of strain distribution along field-instralled optical fibers using brillouin spectroscopy. Lightwave Technol.1990,8(9):1266-1276P
    [122]延凤平,单英,简水生.受激布里渊散射光纤陀螺温度效应的理论分析.压电与声光.2001,23(2):97-99页
    [123]Alexis Debut, Ste'phane Randoux, and Jaouad Zemmouri. Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers. Opt. Soc.Am. B.2001,18(4):556-5674P
    [124]Jean Botineau, Gerard Cheval, Carlos Montes. CW-pumped polarization maintaining Brillouin fiber ring laser:Self-structuration of Brillouin solitons. Optics communications.2006,257:319-333P
    [125]P. Bayvel, I. P. Giles. Evaluation of performance parameters of signal mode all fiber brillouin ring lasers. Optics letters.1989,14(11):581-583P
    [126]Y. Tanaka, K. Hotate. Fiber Brillouin ring laser without instability due to interation between the polarization Lateral Modes. IEEE photonics technology letters.1995,7(5):482-484P
    [127]Shangyuan Huang. Winding technique for decreasing the pump power requirement of a brillouin fiber optic gyroscope. American petents.1995, NO.5406370
    [128]Xulin Zhang, Huilian Ma, et al. Experiments by PM spectroscopy in resonator fiber optic gyro. Optical fiber technology.2007,13:135-138P
    [129]Toshiaki Sonehara, Eriko Tatsu, and Seishiro Saikan. Temperature dependence of the Brillouin frequency shift in crystals. Journal of applied physics.2007,101(10):103507:S1-S6P
    [130]V. I. Kovalev and R. G. Harrison. Threshold for stimulated Brillouin scattering in optical fiber. Optics express.2007,15(26):17625-17630P
    [131]Jihong Geng and Shibin Jiang. Pump-to-Stokes transfer of relative intensity noise in Brillouin fiber ring lasers. Optics letters.2007,32(1): 11-13P
    [132]Hsien-kai Hsiao and K. A. Winick. Planar glass waveguide ring resonators with gain. Optics express.2007,15(26):17783-17797P
    [133]K. D. Ridley and A. M. Scott. Phase-locked phase conjugation using a Brillouin loop scheme to eliminate phase fluctuations. Opt. Soc. Am. B. 1996,13(5):900-907P
    [134]Guanshi Qin, Atsushi Mori, and Yasutake Ohishi. Brillouin lasing in a single-mode tellurite fiber. Optics letters.2007,32(15):2179-2181P
    [135]S. P. Smith, F. Zarinetchi. Fiber laser gyros based on stimulated brillouin scattering. SPIE. Vol.1585:302-308P
    [136]Fengping YAN, Jianbo WU, Weiwei XUE, Lili ZHAO, Shuisheng JIAN. Experimental investigation of the stimulated Brillouin scattering fiber optic gyros. SPIE. Vol,5279:675-678P
    [137]S. Huang, K. Toyama, H. J. Shaw. Lock-in reduction technique for fiber optic ring laser gyros. Optics letters.1993,18(7):555-557P
    [138]P. A. Nicati, K. Toyama, H. J. Shaw. Frequency stability of brillouin fiber ring laser. Journal of lightwave technology.1995,13(7):1445-1451P
    [139]L. F. Stokes. Signal-mode optical-fiber resonator and applications to sensing. Phd dissertation of the Standford University.1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700