用户名: 密码: 验证码:
12/8极无轴承开关磁阻电机的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开关磁阻电机(SRM)由于其双凸极结构的简单坚固的优点,以及恶劣工况下的良好运行特性,引起了学界和业界的广泛关注。将磁悬浮技术中的无轴承技术引入SRM中,可充分发挥SRM的高速适应性。同时,通过对定、转子间不对称径向力的主动控制,有望改善SRM固有的振动和噪声问题。作为美国未来多电/全电飞机电源系统的首选方案,高速开关磁阻起动/发电机系统已引起各国学者的密切关注,而无轴承开关磁阻起动/发电机的研究也将为具有磁悬浮功能的未来多电/全电航空发动机的发展提供必要的技术储备。此外,无轴承技术的应用也为开关磁阻发电机(SRG)在分布式发电系统、不间断电源(UPS)和可再生能源发电的飞轮储能系统、以及电动/混合动力汽车等领域的应用创造了条件。
     针对起动/发电机系统的两项关键技术,本文主要研究无轴承开关磁阻电动机(BSRM)的实现方案和无轴承开关磁阻发电机(BSRG)的运行理论与实现。
     基于双绕组BSRM,分别研究其麦克斯韦应力法建模、双绕组的分配设计方法、以及平均转矩和径向悬浮力独立控制策略。首先,从麦克斯韦应力法角度建立瞬时转矩和径向悬浮力的数学公式,为电流控制算法的设计提供理论依据。该方法避免了电感矩阵推导的繁琐过程,同时考虑了电机的磁饱和问题,能够为电机的本体设计和运行特性的离线分析提供理论参考。其次,研究了两套绕组安匝数随悬浮力和转矩变化的基本规律,为两套绕组的分配提供设计依据。最后,提出了平均转矩和径向悬浮力的独立控制策略。该方法简化了电机驱动和悬浮的控制算法,避免了平均转矩和径向悬浮力的耦合控制,减小了转矩脉动。
     但是,双绕组无轴承电机为了实现磁悬浮功能,增加了一套悬浮绕组,这增加了电机设计和装配时的复杂性。为此,研究了BSRM的单绕组悬浮技术。在建立径向悬浮力模型的基础上,提出了电动悬浮控制策略,并通过实验实现了BSRM的单绕组悬浮运行。单绕组BSRM的研究丰富了无轴承电机的研究理论,为BSRM的应用提供了新途径。所提出的控制策略简单、易实现,有利于其更好地工业化应用。
     将磁悬浮功能与发电机技术相结合,提出了BSRG的全周期发电运行方式。“全周期”的概念是针对传统SRG的“后半周期”发电的概念提出的。在BSRG全周期发电运行时,发电绕组在整个导通周期内均能向负载输出电能,因而称之为“全周期发电”。在探析BSRG全周期发电运行的基本理论后,建立了其电感模型和径向悬浮力模型。同时,基于两套绕组的电压平衡方程组,推导了励磁电流和发电电流的分段解析式,分析了机电能量转换过程。基于径向悬浮力模型,提出了BSRG的悬浮力控制算法,该算法实现了输出电压和径向悬浮力的协调控制。最后,通过仿真和实验验证了BSRG全周期发电运行方式的可行性和控制方法的有效性,实现了BSRG在发电状态下的稳定悬浮。
Due to its simple structure and resilience to harsh operating conditions, the switched reluctance machine (SRM) has caused extensive concern over the recent years. The introduction of bearingless technology could fully take advantage of the high-speed ability of SRM. Meanwhile, the active control, over the unbalanced radial force between stator and rotor poles, is suitable for avoiding the vibration and noise in SRM. As the preferred implementation of power system for the more/all electric aircraft in USA, the high-speed switched reluctance starter/generator system has drawn more attention by scholars of all nations. Accordingly, the study of bearingless switched reluctance starter/generator will provide a solution for the future more/all electric aeroengine with the function of magnetic levitation. Moreover, the bearingless technology enhances the application of the switched reluctance generator (SRG) in the distributed power generation system, UPS, magnetic flywheel storage system, and electric/hybrid-electric vehicles.
     To aim at these two key techonologies in the starter/generator system, this dissertation focuses on the control scheme of the bearingless switched reluctance motor (BSRM) and the theory and implementation of the bearingless switched reluctance generator (BSRG).
     Based on the dual-winding BSRM, the modeling using Maxwell Stress Tensor method, the distributing design of two sets of windings, and the independent control of the average torque and the levitation force are proposed, respectively. Firstly, Maxwell Stress Tensor method is adopted to derive the mathematical models of instantaneous torque and radial force that can be used to design the current control algorithm. The derivation avoids the sophisticated deduction of the inductance matrix and partly considers the magnetic saturation, which can be referenced for machine design and offline analysis for motor characteristics. Secondly, in dual-winding bearingless motors, another winding is added in the stator to achieve the levitation function; hence, how to distribute the two windings becomes the key consideration for the machine designer. Therefore, the two-winding ampere-turn distribution is proposed for the machine design. Thirdly, in conventional control scheme of BSRM, both of the torque and the radial force are determined by main-winding and radial-force-winding currents. The current algorithm is complex and requires more digital memory resources. Therefore, an independent control is proposed for the average torque and the radial force. This method avoids the coupled control between the torque and the radial force, and simplifies the control algorithm of rotation and levitation.
     A set of levitation winding is added in dual-winding bearingless motors, which complexes the machine design and assembly. Hence, chapter 4 studies the single-winding technology of BSRM. Based on the radial-force mathematical model, the levitation control scheme is proposed for single-winding BSRM. The experimental results are included to verify the proposed bearingless strategy. The study of single-winding BSRM expands the theory of bearingless motors and provides a new approach for the application of BSRM.
     With the magnetic levitation and the generator being integrated, the BSRG is developed which is operated in a full-period generating mode. The concept of full-period stems from the latter half-period generation in the conventional SRG. In full-period generators, the mechanical energy is also converted into the electrical energy in the excitation region, which is why it is called“full-period generation”. The theory of the BSRG is demonstrated based on the full-period generation. The inductance and radial-force models are also deduced. In addition, the excitation and generation currents are expressed in different regions via the winding-voltage equations. The flux-linkage-current curves are depicted in order to illustrate the energy conversion in the full-period generator. The radial-force control algorithm is proposed for the BSRG based on the derived radial-force model, which coordinately controls the output voltage and the levitation force. Finally, the proposed operation of BSRG is verified by simulation and experimental results.
引文
[1] P. K. Hermann. A radial active magnetic bearing, London Patent. No.1478868, Nov. 20, 1973.
    [2] G. Schweitzer, H. Bleuler, A. Traxler. Active magnetic bearings-basics. Properties and application of active magnetic bearing, Hochschulverlag AG, 1994.
    [3] P. K. Hermann. A radial active magnetic bearing have a rotating drive. London Patent No.1500809, Feb. 9, 1974.
    [4] R. Bosch. Development of a bearingless electric motor. Proc. Int. Conf. Electric Machines (ICEM’88), Pisa, Italy, 1988:373-375.
    [5] J. Bichsel. The bearingless electrical machine. Proceedings of Int. Symp. Magn. Suspension. Technol. NASA Langley Res. Center, Hampton, 1991:561-573.
    [6] A. O.Salazar, A. Chiba, T. Fukao. A Review of Developments in Bearingless Motors. 7th Int. Symp. Magnetic Bearings, ETH Zurich, Switzerland, 2000:335-340.
    [7] W. Amrhein, S. Silber, K. Nenninger. Developments on bearingless drive technology. 8th Int. Symp. Magnetic Bearings, Japan, 2002:229-234.
    [8] M. A. Rahaman, T. Fukao, T. Ohishi. Principles and developments of bearingless AC motors. IPEC, Yokohama, Japan, 1995:1334-1339.
    [9] A. Chiba, T. Fukao, O. Ichikawa, et al.. Magnetic bearings and bearingless drives. Oxford, UK: Newnes Publishers, 2005: 1-15.
    [10]邓智泉,严仰光.无轴承交流电机的基本理论和研究现状.电工技术学报,2000,15(2):29-35.
    [11]王宝国,王凤翔.磁悬浮无轴承电机悬浮力绕组励磁及控制方式分析.中国电机工程学报,2002,22(5):105-108.
    [12] W. Bu, S. Huang, S. Wan, et al.. A kind of generalized analytical model on magnetic suspension force of bearingless motor and its application. 2nd IEEE Conference on Industrial Electronics and Applications 2007 (ICIEA 2007), Harbin, China, May 2007:1663-1668.
    [13] A. Chiba, D. T. Power, M. A. Rahman. Analysis of no-load characteristics of a bearingless induction motor. IEEE Trans. Ind. Appl., 1995, 31(1):77-83.
    [14] A. Chiba, R. Furuichi, Y. Aikawa, et al.. Stable operation of induction-type bearingless motors under loaded conditions. IEEE Trans. Ind. Appl., 1997, 33(4):919-924.
    [15] A. Chiba, D. Akamatsu, T. Fukao, et al.. An improved rotor resistance identification method for magnetic field regulation in bearingless induction motor drives. IEEE Trans. Ind. Electron., 2008, 55(2):852-860.
    [16] K. Kobayashi, M. Yamashita, A. Chiba, et al.. Principles of self-excitation at radial force winding terminals in bearingless induction motors with a squirrel cage rotor. IEEE IAS 2000 Annual Meeting, Rome, Italy, 2000:235-240.
    [17] A. Chiba, T. Fukao, M. A. Rahman. Vibration suspension of a flexible shaft with a simplified bearingless induction motor drive. IEEE Trans. Ind. Appl., 44(3), 2008:745-752.
    [18] Z. Deng, Y. Yan. The nonlinear decoupling control of the bearingless induction motors based on the airgap motor flux orientation. Acta Aeronautica Et Astronautica Sinica, 2002, 15(1):38-43.
    [19]贺益康,年珩,阮秉涛.感应型无轴承电机的优化气隙磁场定向控制.中国电机工程学报,2004,26(6):116-121.
    [20]邓智泉,王晓琳,张宏荃,等.无轴承异步电机的转子磁场定向控制.中国电机工程学报,2003,23(3):89-92.
    [21] Z. Deng, X. Wang, Y. Yan. An independent controller of radial force subsystem for super-high-speed bearingless induction motors. Proceedings of the 9th International Symposium on Magnetic Bearings (ISMB-9), Lexington, Kentucky, USA, Aug., 2004.
    [22]邓智泉,王晓琳,李冰,等.无轴承异步电机悬浮子系统独立控制的研究.中国电机工程学报,2003,23(9):107-111.
    [23] X. Wang, Z. Deng, Y. Lin, et al.. Magnetic flux detecting of bearingless induction motors with search coils. Proceedings of the 9th International Symposium on Magnetic Bearings (ISMB-9), Lexington, Kentucky, USA, Aug., 2004.
    [24]王晓琳,林盈杰,邓智泉,等.基于探测线圈的无轴承异步电机气隙磁场测量方法研究.中国电机工程学报,2004,24(10):109-114.
    [25]王晓琳.无轴承异步电机基本控制策略研究与实现,[博士学位论文].南京:南京航空航天大学,2004.
    [26]张宏荃.无轴承异步电机非线性解耦控制的研究,[博士学位论文].南京:南京航空航天大学,2004.
    [27] Y. Okada, K. Dejima, T. Ohishi. Analysis and comparison of pm synchronous motor and induction motor type magnetic bearings. IEEE Trans. Ind. Appl., 1995, 31(5):1047-1053.
    [28] M. Oshima, S. Miyazawa, T. Deido, et al.. Characteristics of a permanent magnet type bearingles motor. IEEE Trans. Ind. Appl., 1996, 32(2):363-370.
    [29] M. Oshima, S. Miyazawa, T. Deido, et al.. Design and analysis of permanent magnet-type bearingless motor. IEEE Trans. Ind. Electron., 1996, 43(2):290-299.
    [30] M. Ooshima, S. Miyazawa, Y. Shima, et al.. Increase in radial force of a bearingless motor with buried permanent magnet-type rotor. Proc. of the Fourth International Conference on MOVIC, 1998:1077-1082.
    [31] W. Amrhein, S. Silber, K. Nenninger. Levitation forces in bearingless permanent magnet motors. IEEE Trans. Magn., 1999, 35(5):4052-4054.
    [32] M. Ooshima, A. Chiba, A. Rahman. An improved control method of buried-type IPM bearingless motors considering magnetic saturation and magnetic pull variation. IEEE Trans. Energy Convers., 2004, 19(3):569-575.
    [33] K. Raggl, B. Warberger, T. Nussbaumer, et al.. Robust angle-sensorless control of a PMSM bearingless pump. IEEE Trans. Ind. Electron., 2009, 56(6):2076-2085.
    [34]仇志坚,邓智泉,严仰光.无轴承永磁同步电动机的原理与实现.电工技术学报,2004, 19(11):8-13.
    [35]邓智泉,仇志坚,王晓琳,等.无轴承永磁同步电机的转子磁场定向控制研究.中国电机工程学报,2005,25(1):104-108.
    [36]孟令孔,邓智泉,王晓琳,等.无轴承永磁同步电机悬浮子系统LQG/LTR控制器设计.航空学报,2007,28(2):385-390.
    [37]仇志坚,邓智泉,王晓琳,等.计及偏心及洛仑兹力的永磁型无轴承电机建模与控制研究.中国电机工程学报,2007,27(9):64-70.
    [38]王凤翔,郑柒拾,王宝国.不同转子结构无轴承电动机的磁悬浮力分析与计算.电工技术学报,2002,17(5):6-10.
    [39] R. Schob, N. Barletta. Principle and application of a bearingless slice motor. Proceedings of the 5th international symposium on magnetic bearings (ISMB-5), Kanazawa, Japan, 1996:313-318.
    [40] S. Silber, W. Amrhein, P. Bosch, et al., Design aspects of bearingless slice motors. IEEE/ASME Trans. Mechatronics, 2005, 10(6):611-617.
    [41] H. Zhu, L. Fang. Suspension principle and digital control for bearingless permanent magnet slice motors. Proceedings of IEEE 5th International Power Electronics and Motion Control Conference (IPEMC 2006), Shanghai, China, Aug. 2006:818-821.
    [42]廖启新,邓智泉,王晓琳.无轴承薄片电机磁体形状优化设计及系统实现.中国电机工程学报,2007,27(12):28-32.
    [43]陈姝,邓智泉,王晓琳,等.无轴承薄片电机系统被动悬浮特性的研究.电子机械工程,2007,23(5):1-5.
    [44]徐龙祥,朱小春,姚凯.片状无轴承磁电机的研究.中国电机工程学报,2006,26(6):141-145.
    [45]朱俊.单绕组无轴承永磁薄片电机的研究,[硕士学位论文].南京:南京航空航天大学,2008.
    [46]詹琼华.开关磁阻电动机.武汉,华中理工大学出版社,1992.
    [47]刘迪吉,张焕春,傅丰礼,等.开关磁阻调速电动机.北京,机械工业出版社,1994.
    [48]王宏华.开关磁阻电动机调速控制技术.北京,机械工业出版社,1995.
    [49]吴建华.开关磁阻电机设计与应用.北京,机械工业出版社,2000.
    [50]陈昊.开关磁阻调速电动机系统理论研究与实践,[博士学位论文].南京:南京航空航天大学,1996.
    [51] T. J. E. Miller. Switched reluctance motors and their control. UK, Magna Physics Publishing and Clarendon Press. Oxford, 1993.
    [52] T. J. E. Miller. Electronic control of switched reluctance machines. UK, Reed educational and professional publishing Ltd, 2001.
    [53] S. R. MacMinn, W. D. Jones. A very high speed switched reluctance starter/generator for aircraft engine application. Proceedings of the IEEE 1989 National Aerospace and Electronics Conference, 1989:1758-1764.
    [54] S. R. MacMinn, J. W. Somber. Control of a switched reluctance aircraft engine starter- generator over a very wide speed range. Proceedings of IECEC'89, 1989:631-638.
    [55] C. A. Ferreira, S. R. Jones, W. S. Heglund, et al.. Detailed design of a 30-KW switched reluctance starter generator system for a gas turbine engine application. IEEE Trans. Ind. Appl., 1995, 31(3):553-561.
    [56] A. Radun, E. Richter. A detail power inverter design for a 250KW switched reluctance aircraft engine starter/generator. SAE, Aerospace Atlantic Conference and Exposition, Apr. 1993:20-23.
    [57] D. E. Cameron, J. H. Lang. The control of high-speed variable reluctance generator in electric power systems. IEEE Trans. Ind. Appl., 1993, 29(6):1106-1109.
    [58] A. V. Radun, C. A. Ferreira, E. Richter. Two channel switched reluctance starter/generator results. IEEE Trans. Ind. Appl., 1998, 34(5):1026-1034.
    [59] M. Barnes, C. Pollock. Power electronic converters for switched reluctance drives. IEEE Trans. Power Electron., 1998, 13(6):1100-1111.
    [60] N. Schofield, S. Long. Generator operation of a switched reluctance starter/generator at extended speeds. IEEE Trans. Veh. Technol., 2009, 58(1):48-56.
    [61] R. Cardenas, R. Pena, M. Perez, et al.. Control of a switched reluctance generator for variable-speed wind energy applications. IEEE Trans. Energy Convers., 2005, 20(4):781-791.
    [62] I. Kioskeridis, C. Mademlis. Optimal efficiency control of switched reluctance generators. IEEE Trans. Power Electron., 2006, 21(4):1062-1072.
    [63] D. Panda, V. Ramanarayananm. Mutual coupling and its effect on steady-state performance and position estimation of even and odd number phase switched reluctance motor drive. IEEE Trans. Magn., 2007, 43(8):3445-3456.
    [64] M. Farshad, J. Faiz, C. Lucas. Development of analytical models of switched reluctance motor in two-phase excitation mode:Extended Miller model. IEEE Trans. Magn., 2005, 41(6):2145-2155.
    [65] A. K. Jain. Two phase modeling, experimental characterization, and power converter with fast demagnetization for switched reluctance motor drives. Ph.D. dissertation, Dept. Elect. Eng, University of Minnesota, Minneapolis, Minnesota, 2003.
    [66] R. Gobbi, K. Ramar. Optimisation techniques for a hysteresis current controller to minimise torque ripple in switched reluctance motors. IET Electr. Power Appl., 2009, 3(5):453-460.
    [67] D. Liang, W. Ding. Modelling and predicting of a switched reluctance motor drive using radial basis function network-based adaptive fuzzy system. IET Electr. Power Appl., 2009, 3(3):218-230.
    [68]丁文,梁得亮.12/8极双通道开关磁阻电机非线性数学模型与有限元分析.电机与控制学报,2009,13(2):190-196.
    [69]刘闯,朱学忠,曹志亮,等.6kW开关磁阻起动/发电系统设计及实现.南京航空航天大学学报,2000,32(3):245-250.
    [70]李声晋,卢刚,马瑞卿,等.开关磁阻组合起动机/发电机设计及实验.中国电机工程学报,2000,20(2):10-14.
    [71]李声晋,励庆孚,卢刚.开关磁阻起动/发电机控制方法研究.西安交通大学学报,2001,35(8):771-775.
    [72]马瑞卿,吉攀攀,王翔,等.开关磁阻发电机系统的故障仿真研究.计算机仿真,2010,27(4):21-23.
    [73]宋受俊,刘卫国,Uwe Schaefer. Optimal Control of a High Speed Switched Reluctance Starter/Generator for the More/All Electric Aircraft.电工技术学报,2010,25(4):44-52.
    [74]刘卫国,宋受俊,Uwe Schaefer.无位置传感器开关磁阻电机初始位置检测方法.中国电机工程学报,2009,29(24):91-97.
    [75]巩建英,刘卫国,谢拴勤.开关磁阻发电系统仿真与稳定性分析.系统仿真学报,2009,21(20):6634-6638.
    [76]严加根.航空高压直流开关磁阻电机起动/发电系统的研究,[博士学位论文].南京:南京航空航天大学,2006.
    [77] A. Chiba, T. Fukao, C. Michioka. Switched reluctance rotator, U.S. Patent, No.5880549, Mar. 9, 1999.
    [78] M. Takemoto, K. Shimada, A. Chiba, et al.. A design and characteristics of switched reluctance type bearingless motors. Proceedings of the 4th International Symposium on Magnetic Suspension Technology, NASA/CP-1998-207654, May 1998:49-63.
    [79] M. Takemoto, A. Chiba, T. Fukao. A method of determining advanced angle of square-wave currents in a bearingless switched motor. IEEE Trans. Ind. Appl., Nov./Dec. 2001, 37(6):1702-1709.
    [80] M. Takemoto, H. Suzuki, A. Chiba, et al.. Improved analysis of a bearingless switched reluctance motor. IEEE Trans. Ind. Appl., Jan./Feb. 2001, 37(1):26-34.
    [81] M. Takemoto, A. Chiba, H. Suzuki, et al.. Radial force and torque of a bearingless switched reluctance motor operating in a region of magnetic saturation. IEEE Trans. Ind. Appl., Jan./Feb. 2004, 40(1):103-112.
    [82] M. Takemoto, A. Chiba, T. Fukao. A feed-forward compensator for vibration reduction considering magnetic attraction force in bearingless switched reluctance motors. Proceedings of the 7th International Symposium on Magnetic Bearings (ISMB-7), ETH Zurich, 2000:395-400.
    [83] M. Takemoto, A. Chiba, T. Fukao. A new control method of bearingless switched reluctance motors using square-wave currents. Proceedings of the 2000 IEEE Power Engineering Society Winter Meeting, Singapore, CD-ROM, Jan. 2000:375-380.
    [84]邓智泉,杨钢,张媛,等.一种新型的无轴承开关磁阻电机数学模型.中国电机工程学报,2005,25(9):139-146.
    [85] S. Ye, Z. Deng, Y. Yan. New formulae based on Fourier extension for bearingless switched reluctance motors. Proceedings of the 8th International Symposium on Magnetic Bearings (ISMB-8). Mito, Japan, 2002:53-58.
    [86]杨钢,邓智泉,张媛,等.无轴承开关磁阻电机实验平台的设计与实现.中国电机工程学报,2006,26(22):97-103.
    [87]张媛,邓智泉.无轴承开关磁阻电机控制系统的设计与实现.航空学报,2006,27(1):77-81.
    [88]杨钢.无轴承开关磁阻电机实验平台的开发与研制,[硕士学位论文].南京:南京航空航天大学,2003.
    [89]叶霜.无轴承开关磁阻电机的基础研究,[硕士学位论文].南京:南京航空航天大学,2003.
    [90]曹鑫,邓智泉,杨钢,等.无轴承开关磁阻电机独立控制策略的研究.中国电机工程学报,2008,28(24):94-100.
    [91]曹鑫,邓智泉,杨钢,等.基于角度调节的无轴承开关磁阻电机控制方案.第二届中国磁悬浮轴承学术会议论文集,2007年8月,南京.
    [92]罗建震,杨钢,曹鑫,等.无轴承开关磁阻电机模糊控制器的设计与实现.第二届中国磁悬浮轴承学术会议论文集,2007年8月,南京.
    [93]杨钢,邓智泉,曹鑫,等.适用于无轴承开关磁阻电机的功率变换器设计.航空学报,2008,29(1):110-116.
    [94]杨钢,邓智泉,曹鑫,等.无轴承开关磁阻电机功率变换器的研究.第二届中国磁悬浮轴承学术会议论文集,2007年8月,南京.
    [95]杨钢.无轴承开关磁阻电动机的基础研究,[博士学位论文].南京:南京航空航天大学,2008.
    [96]曹鑫,邓智泉,杨钢,等.新型无轴承开关磁阻电机双相导通数学模型.电工技术学报,2006,21(4):50-56.
    [97]杨钢,邓智泉,曹鑫,等.无轴承开关磁阻电机平均悬浮力控制策略.航空学报,2009,30(3):505-511.
    [98]孙玉坤,吴建兵,项倩雯.基于有限元法的磁悬浮开关磁阻电机数学模型.中国电机工程学报,2007,27(12):33-40.
    [99]孙玉坤,刘羡飞,王德明,等.基于有限元分析的磁悬浮开关磁阻电机数学模型的全角度拓展.电工技术学报,2007,22(9):34-39.
    [100] J. Ji, Y. Sun, W. Zhao, et al.. Calculation and remedial strategy of radial force of switched reluctance motors with eccentricity. 11th International Conference on Electrical Machines and Systems (ICEMS 2008), Wuhan, China, 2008:3932-3935.
    [101] J. Ji, Y. Sun, H. Zhu, et al.. Magnetic field analysis of bearingless switched reluctancemotor using finite element method. 8th International Conference on Electrical Machines and Systems (ICEMS 2005), Nanjing, China, 2005:2121-2123.
    [102]吴建兵,孙玉坤,吉敬华.磁悬浮开关磁阻电动机研究.微电机,2007,40(7):79-85.
    [103]张亮,孙玉坤.基于微分几何的磁悬浮开关磁阻电机径向力的变结构控制.中国电机工程学报,2006,26(19):121-126.
    [104]刘国海,孙玉坤,张浩,等.基于神经网络逆系统的磁悬浮开关磁阻电动机的解耦控制.电工技术学报,2005,20(9):39-43.
    [105]刘羡飞,孙玉坤,王德明,等.磁悬浮开关磁阻电机径向位置解耦及仿真研究.系统仿真学报,2007,19(7):1527-1530.
    [106]何炜.一种磁悬浮开关磁阻电机的自适应控制器.大电机技术,2004,34(5):57-60.
    [107]项倩雯,孙玉坤.磁悬浮开关磁阻电动机转子径向偏心时的仿真.微特电机,2007,35(8):18-20.
    [108]刘羡飞,孙玉坤,王德明,等.磁悬浮开关磁阻电动机径向位移解耦及变结构控制.农业机械学报,2007,38(9):147-150.
    [109]刘羡飞,孙玉坤,王德明,等.磁悬浮开关磁阻电机悬浮系统变结构鲁棒控制.系统工程与电子技术,2007,29(10):1704-1708.
    [110] J. Wu, Y. Sun, G. Liu, et al.. Nonlinear decoupling control of suspending Force and torque of bearingless switched reluctance motors. World Journal of Modelling and Simulation, 2007, 3(1):66-72.
    [111] G. Liu, Y. Sun, Y. Shen, et al.. Dynamic decoupling control of bearingless switched reluctance motors based on neural network inverse system. Proceedings of the 8th International Conference on Electric Machines and Systems (ICEMS 2005), Nanjing, China, Sep. 2005:1811-1815.
    [112]王秋蓉,葛宝明.无轴承开关磁阻电机磁场及力特性的分析.电机与控制学报,2007,11(3):217-220.
    [113]王秋蓉,葛宝明.无轴承开关磁阻电机的转矩与径向力特性分析.北京交通大学学报,2007,31(2):107-110.
    [114]王秋蓉,葛宝明.无轴承开关磁阻电机磁饱和特性的电磁场分析.防爆电机,2007,42(1):19-25.
    [115]伍峰,张艺腾.双口RAM在无轴承开关磁阻电动机控制系统中的应用.电气时代,2007,(5):102-105.
    [116]曹家勇,周祖德,陈幼平,等.开关磁阻型动力磁轴承瞬时转矩控制策略的研究.机械工程学报,2004,40(5):23-29.
    [117] J. Sun, Q. Zhan, L. Liu. Modelling and control of bearingless switched reluctance motor based on artificial neural network. Proceedings of 31st Annual Conference on Industrial Electronics Society (IECON’05), North Carolina, USA, 2005:1638-1643.
    [118] A. Mark, P. James, E. Richter, et al.. Integrated magnetic bearing/switched reluctance machine, U.S. Patent, No.5424595, Jun. 13, 1995.
    [119] B. B. Choi, M. Siebert. A bearingless switched reluctance motor for high specific power applications. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, California, 2006.
    [120] F. C. Lin, S. M. Yang. Instantaneous shaft radial force control with sinusoidal excitations for switched reluctance motors. Proceedings of IEEE IAS Annu. Meeting, Seattle, WA, 2004:424-430.
    [121] W. T. Liu, S. M. Yang. Modeling and control of a self-bearing switched reluctance motor. Proceedings of IEEE IAS Annu. Meeting, Kowloon, Hong Kong, 2005:2720-2725.
    [122] F. C. Lin, S. M. Yang. Radial force control of a switched seluctance motor with two-phase sinusoidal excitations. Proceedings of IEEE IAS Annu. Meeting, Tampa, FL, 2006:1171-1177.
    [123] F. C. Lin, S. M. Yang. An approach to producing controlled radial force in a switched reluctance motor. IEEE Trans. Ind. Electron., 2007, 54(4):2137-2146.
    [124] F. C. Lin, S. M. Yang. Self-bearing control of a switched reluctance motor using sinusoidal currents. IEEE Trans. Power Electron., 2007, 22(6):2518-2526.
    [125] L. Chen, W. Hofman. Analytically computing winding currents to generate torque and levitation force of a new bearingless switched reluctance motor. 12th International Power Electronics and Motion Control Conference, Portoroz Slovenia, 2006:1058-1063.
    [126] L. Chen, W. Hofman. Performance characteristics of one novel switched reluctance bearingless motor drive. Power Conversion Conference 2007 (PCC '07), Nagoya, Japan, 2007:608-613.
    [127] C. R. Morrison, M. W. Siebert, E. J. Ho. Electromagnetic forces in a hybrid magnetic-bearing switched-reluctance motor. IEEE Trans. Magn., 2008, 44(12):4626-4638.
    [128] H. Wang, D. H. Lee, J. W. Ahn. Calculation of suspending force for new bearingless switched reluctance motor. Proceedings of the 11th International Symposium on Magnetic Bearings (ISMB-11). Nara, Japan, 2008:366-372.
    [129] D. H. Lee, H. Wang, J. W. Ahn. Modeling and control of novel bearingless switched reluctance motor. IEEE Energy Conversion Congress and Exposition 2009 (ECCE2009), San Jose, CA, 2009:276-281.
    [130] X. Zhu, C. Pollock. New design of radial displacement sensor for control of a switched reluctance motor without bearings. Conference Record of 2005 IEEE Industrial Applications Conference, 40th IAS Annual Meeting, Hong Kong, 2005:2160-2167.
    [131]贾淑芝,徐雪.基于涡扇发动机的多电技术研究初步设想.航空发动机,2009,35(5):58-60.
    [132] P. Charl, H. Winston, G.Earl. Magnetic bearing controls for a high-speed, high-power switched reluctance machine (SRM) starter/generator, SAE 2000 San Diego, 2000.
    [133]曹鑫.无轴承开关磁阻发电系统的基础研究,[硕士学位论文].南京:南京航空航天大学,2006.
    [134]汤蕴璆.电机内的电磁场.北京:科学出版社,1981.
    [135]阎秀恪,谢德馨,高彰燮,等.电磁力有限元分析中麦克斯韦应力法的积分路径选取的研究.电工技术学报,2003,18(5):32-36.
    [136] N. R. Garrigan, W. L. Soong, C. M. Stephens, et al.. Radial force characteristics of a switched reluctance machine. Proceedings of IEEE IAS Annual Meeting, Phoenix, Oct. 1999:2250-2258..
    [137]周波,相蓉,王川云,等.电磁式双凸极电机电磁特性的理论分析.航空学报,2003,24(4):355-359.
    [138]张卓然,陈志辉,杨善水,等.电励磁双凸极电机数字电压调节器的研究与实现.电气应用,2005,24(10):103-106.
    [139]孟小利,王莉,严仰光.一种新型电励磁双凸极无刷直流发电机.电工技术学报,2005,20(11):10-15.
    [140]王莉.电励磁双凸极电机高压直流发电系统研究,[博士学位论文].南京:南京航空航天大学,2007.
    [141]秦海鸿.混合励磁双凸极电机基本性能研究,[博士学位论文].南京:南京航空航天大学,2007.
    [142]戴卫力.飞机无刷直流起动/发电系统的研究,[博士学位论文].南京:南京航空航天大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700