用户名: 密码: 验证码:
多座不对称焦炉集气管压力智能解耦与优化控制策略及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在炼焦生产过程中同时伴随产生大量的副产品——焦炉煤气。集气过程回收利用副产煤气,不仅节约能源,而且减少环境污染,是钢铁生产的重要环节。集气管压力稳定与否,影响到煤气质量、设备寿命以及生产环境。研究多座不对称焦炉集气管压力控制对钢铁工业生产有着重要的意义。
     多座不对称焦炉煤气集气过程是一个高度复杂的工业生产过程,具有多变量、强耦合、不对称、非线性、时变、难以建立数学模型等控制难点,采用传统的控制方法或者单一的智能化技术很难达到理想的效果。本文提出一种智能解耦与优化控制策略,为有效解决焦炉集气管压力的优化控制问题提供一种新的途径。论文的研究成果主要包括下述四个方面:
     (1)基于灰色预测和BP神经网络的集气管压力预测模型
     针对焦炉煤气集气过程是一个高度复杂的工业生产过程,难以获得焦炉集气管压力的精确数学模型,提出一种基于灰色预测和BP神经网络的集成建模方法。通过对焦炉的过程机理和数据进行分析,将集气管压力过程工况分为两种,采用灰色预测和BP神经网络方法建立的集气管压力预测模型,可以更加准确地预测焦炉集气管压力。
     (2)基于耦合度分析的焦炉集气管压力模糊解耦算法
     针对焦炉容量不同、管道布局不同等不对称特性而造成焦炉煤气集气过程具有强耦合特性的特点,提出一种基于耦合度分析的模糊解耦方法。该方法从概率统计的角度出发,采用耦合度分析的方法实时确定不对称焦炉集气管压力的强弱耦合组,降低控制的输入维数;然后分别选用强、弱模糊解耦控制器对相应的集气管压力进行解耦控制,实现焦炉集气管压力的解耦。
     (3)焦炉集气管压力智能优化控制算法
     针对集气管压力扰动变化激烈且幅度大的情况,提出一种基于粒子群优化的变结构模糊控制方法。为获得切换的平稳性,根据已建立的集气管压力预测模型,选用模糊切换策略实现。该方法针对集气管压力的不同波动范围,采用不同的控制规则设计两个模糊控制器。针对模糊量化因子调节的困难,采用粒子群优化惯性系数的自适应调整机制,以寻优模糊控制器量化因子。根据蝶阀的流量特性曲线设计蝶阀专家控制器,使蝶阀更好的响应控制量,提高控制品质。针对炼焦生产过程中集气管压力难以根据不同工况进行实时调整的问题,提出采用基于线性回归与RBF神经网络方法建立焦炉集气管压力设定值优化模型,实现了不同工况下的集气管压力优化设定,保证焦炉的稳顺运行。
     (4)智能优化控制系统及工业应用
     从控制实时性、数据的采集和获取、系统的可靠性和安全性考虑,设计系统的整体框架,采用OPC通信技术实现应用软件与基础自动化系统的通信,从而实现焦炉集气管压力的智能解耦与优化控制策略。控制算法在某钢铁公司的三座焦炉煤气集气过程中得到实际应用。运行结果表明,算法具有简便、易行、可靠、易扩充及抗干扰能力强等优点,实现了多座不对称焦炉集气管压力的稳定,为多座不对称焦炉煤气集气过程的解耦与优化控制提供了一种有效的途径。
Coke is the main raw material in the metallurgical industry. In the coking process, large amount of by-product gas will be generated from coke-ovens, and the process of recycling by-product gas is called gas collecting process. It is an important link in the iron and steel production, which not only saves energy but also reduces environmental pollution. The stability of gas collector pressure directly influences the gas quality, the life-time of coke-ovens and the producing environment. Therefore, it is a vital significance for the iron and steel enterprise to study on the control of gas collecting process of multi asymmetrical coke ovens.
     The gas collecting process of multi asymmetrical coke ovens is a highly complex industrial process, which is multi-variable, strong coupling, asymmetry and nonlinearity, time-varying and hard in modeling, so it is difficult to acquire good control results with classical control theory or unique intelligent technology. An intelligent decoupling and optimization technology is proposed in this paper and a valid way is presented for the optimization problem in the gas collector pressure. The main achievement in this paper includes several aspects as follows:
     (1) Prediction model of gas collector pressure based on gray forecasting and BP neural network
     As the gas collecting process of multi asymmetrical coke ovens is a highly complex industrial process, which is difficult to obtain accurate mathematical model, an integrated modeling method which incorporated gray forecasting and BP neural network is proposed. Through analysis of the process mechanism and data of coke-ovens, the process of the gas collector pressure conditions has been divided into two, and the prediction modle of gas collector pressure based on gray forecasting and improved BP neural network is established, whichi can obtain accurate predictions of gas collector pressure.
     (2) Fuzzy doucoupling method based coupling analysis of gas collector pressure of coke-ovens
     The gas collector pressure of a coke-oven with asymmetry has different capacity and its steel enterprises has different channels, which make the gas collecting process strong coupling, and based on this characteristics, a fuzzy decoupling control approach based on coupling analysis is developed. From the perspective of probability and statistics, the strong or weak coupling group for the asymmetrical gas collector pressure is real-time determined by coupling analysis method, which can reduce the inputs dimension of the follow-up control. And then strong or weak fuzzy decoupling controller is chosen for the corresponding gas collector pressure, which can realize decoupling of the gas collector pressure.
     (3) Intelligent control method of gas collector pressure of coke-ovens
     The gas collector pressure of a coke-oven fluctuates sharply and changes suddenly, and based on this characteristic, a variable structure fuzzy control approach based on particle swarm optimization method is developed. In order to obtain a smooth switch, according to the established prediction model of gas collector pressure, fuzzy switching strategy is seclected. Two fuzzy controllers which use different control rules are designed according to different ranges of gas collector pressure. For the situation that fuzzy controller quantifiable factors are difficult to be modified, the adaptive tuning laws of PSO inertia coefficient are adopted to obtain the preferable fuzzy controller quantifiable factors. And butterfly valve controller is developed to adapt to the characteristics of butterfly valve so as to enhance the control quality. In coking plant production process, the target of gas collector pressure is difficult to adjust timely according to different conditions, the linear regression and RBF neural network are integrated to build dynamitic model for the gas collector pressure, which can obtain the different set point of the gas collector pressure according to different conditions, thus the cock-ovens can be ensure good run.
     (4) Intelligent decoupling and optimal control system and its application
     The system frame is designed after the real-time, data collection and acquisition, reliability and safety are considered. The communication between the application soft and basic automation is realized with OPC and intelligent decoupling and optimization control technique for multiple gas collector pressure in coke-ovens with asymmetry is realized. The control algorithm has been applied in gas collecting processes of three coke ovens in an iron and steel enterprise. The actual running result shows that the control algorithm is simple, feasible, reliable, and easy to expand and has strong anti-disturbance ability. The control algorithm has realized the pressure stability of the gas collecting process of multi coke-ovens. In a word, it provides an efficient method for the decoupling and optimazation control of the gas collecting process of multi asymmetrical coke ovens.
引文
[1]S Jun, T Keihachirou, N Youichi, "Automatic coking control system," in Proc [J]. IEEE Conf. Control Applications,1993,2:531-538
    [2]R Loison, P Foch, A Boyer. Coke:quality and production [M]. London: Butterworths,1989
    [3]E J Osinski, P V Barr, J K Brimacombe. Mathematical model for tall coke oven battery, part 2, calculation of gas flow and related phenomena for oven charge [J]. Ironmaking and Steelmaking,1993,20 (6):453-467
    [4]D R Jenkins. Plastic layer permeability estimation using a model of gas pressure in a coke oven [J]. Fuel,2001,80(14):2057-2065
    [5]Coking experts group, Coking technologies [M]. Beijing:Metallurgical Industry Press,1978
    [6]2008年中国钢铁产量排名http://www.icandata.com/data/200902/0216103H2009.html,2009-02-16
    [7]阎瑾.多座不对称焦炉煤气集气过程智能解耦与协调控制算法[A].中南大学:硕士学位论文,2008
    [8]专家论坛:中国需要绿色化钢铁业http://www.people.com.cn/GB/keji/1059/ 2347355.html,2004-02-19
    [9]吴惟有.自调系统解耦消除集气管煤气压力振荡[J].燃料与化工,1996,1(3):216-219
    [10]张玠.7.63 m焦炉集气管压力调节系统——PROven系统调节概述[J].科技情报开发与经济2007,17(27):275-276
    [11]C H Yang, M Wu, D Y Shen. Hybrid intelligent control of gas collectors of coke ovens [J]. Control Engineering Practice,2001,9 (7):725-733
    [12]余刚强,李超.7.63 m焦炉PROven系统故障分析及改进[J].武钢技术,2008,46(3):9-11
    [13]曲法泉.焦炉集气管中出炉煤气压力的稳定[J].国外炼焦化学,1990,9(4):24-26
    [14]C T Truett, D G Fohner. Electro hydraulic control system for coke oven back-pressure regulation [J]. Iron and Steel Engineer,1997,74 (11):32-33
    [15]V I Chaichenko, K G Lavrov. Pressure stabilization of direct coke oven gas in the gas collectors of coke batteries [J]. Coke & Chemistry (USSR) (English translation of Koks i Khimiya),1989,64 (7):72-76
    [16]侯来灵,杨惠平,赵英杰.焦炉集气管压力微机控制系统的研制[J].煤炭转化,1995,18(2):91-95
    [17]蔡自兴,徐光祐.人工智能及其应用[M].北京:清华大学出版社,2003.
    [18]K. Funahashi. On the approximate Realization of continuous mappings by neural networks [J]. Neural Networks,1989,2 (3):183-192.
    [19]Asif Iqbal, Ning He, Liang Li, and etc al. A fuzzy expert system for optimizing parameters and predicting performance measures in hard-milling process [J]. Expert Systems with Applications,2007,32 (4):1020-10272
    [20]L. X. Wang. Automatic design of fuzzy controllers [J]. Automatica,1999,35 (8): 1471-1475.
    [21]焦李成,刘静,钟伟才.协同进化计算与多智能体系统[M].北京:科学出版社,2006.
    [22]阳春华,沈德耀.集气管压力的智能控制设计与实现[J].1999,20(7):550-553.
    [23]李春华.焦炉集气管压力多变量模糊控制系统[J].煤炭学报,2001,26(2):195-198
    [24]李秀珍,孟令春,宁芳青,等.焦炉集气管压力解耦控制系统[J].安徽工业大学学报,2008,25(2):155-158
    [25]张中明,吴晓苏.焦炉集气管压力数学建模及自动调节的实现[J].中国矿业,2007,16(3):100-103
    [26]吴晓苏,张中明.焦炉集气管压力工业过程控制的研究[J].煤炭转化,2007,30(1):27-30
    [27]孟月波,嵇启春,王学雷.焦炉集气管压力系统建模与仿真[J].系统仿真学报,2005,17(10):2314-2316
    [28]C T Truett, D G Fohner. Electro hydraulic control system for coke oven back-pressure regulation [J]. Iron and Steel Engineer,1997,74 (11):32-33
    [29]刘晓强,郝榕,谭得健,等.补偿解耦算法在集气管压力控制中的应用[J].中国矿业大学学报,2000,29(3):215-218
    [30]孙伟,杨东平,岳东,等.焦炉集气管压力系统智能控制策略[J].中国矿业大学学报,2000,29(5):503-505
    [31]潘海鹏.基于解耦控制的焦炉集气管压力控制系统[J].化工自动化及仪表,2004,31(1):16-17
    [32]嵇启春,刘光辉,孟月波.焦炉集气管压力系统智能控制与仿真[J].西安科技大学学报,2005,23(5):361-364
    [33]阳春华,沈德耀.集散控制系统中一种智能协调器的设计与实现[J].电子技术应用,1999,3:37-39
    [34]秦斌,吴敏,王欣,等.基于模糊神经网络的多变量解耦控制[J].小型微型计算机系统,2002,23(5):561-564
    [35]B Qin, X Wang, M Wu. Application of multi-agent system to coke ovens[J]. Kang T'ieh/Iron and Steel (Peking),2005,40 (10):25-28
    [36]王学雷,尚文生,庄诚.焦炉集气管压力智能协调控制系统及其应用[J].东南大学学报(自然科学版),2005,32(S2):236-239
    [37]秦斌,吴敏,王欣,等.基于MAS的分布式焦炉集气管压力解耦控制[J].控制理论与应用,2006,23(6):961-966
    [38]吴定坤,谢卫国.焦炉集气管压力调节方法的改进[J].燃料与化工,1998,6(4):263-270
    [39]吴惟有.自调系统解耦,消除集气管煤气压力振荡[J].燃料与化工,1996,12(3):216-219
    [40]张可仁,侯国强.一种焦炉压力微机控制系统[J].化工自动化及仪表,1994,21:16-19
    [41]侯来灵,杨惠平,赵英杰.焦炉集气管压力微机控制系统的研制[J].煤炭转化,1995,18(2):91-95
    [42]侯来灵,王学倍,王淼.多集气管压力微机控制系统[J].化工自动化及仪表,1995,22(2):18-20
    [43]李春华,刘春生,李海军,等.焦炉集气管压力自寻优模糊控制系统的研制与应用[J].冶金自动化,1997,(5):32-34
    [44]刘晓强,郝榕,谭得健.焦炉集气管分管压力自适应模糊控制算法[J].辽宁工程技术大学学报(自然科学版),2000,19(4):390-393
    [45]李春华.焦炉集气管压力多变量模糊控制系统[J].煤炭学报,2001,26(2):195-198
    [46]K. L. Fang, H. J. Zhou, W. H. Huang. Fuzzy decoupling adjustment for the pressure of coke oven collecting main[C].2003 International Conference on Machine Learning and Cybernetics Proceedings,2003:2605-2608
    [47]B. Zhou, W.Y. Li. Application of fuzzy theory on gas collector control[C].2003 International Conference on Machine Learning and Cybernetics Proceedings, 2003:2516-2519
    [48]韩金旭,周宝昌,于宝川,等.模糊控制在焦炉自动控制系统上的应用[J].制造业自动化,2004,26(7):62-65
    [49]康春清,于振东,刘成汇,等.多焦炉集气管压力模糊动态控制[J].燃料与化工,2006,37(9):10-12
    [50]肖志刚.基于模糊理论的焦炉集气管压力控制系统的设计与实现[J].科学技术与工程,2007,12(7):2983-2986
    [51]阳春华,沈德耀.集气管压力的智能控制设计与实现[J].小型微型计算机系统,1999,20(7):550-553
    [52]C H Yang, M Wu, D Y Shen. Hybrid intelligent control of gas collectors of coke ovens [J]. Control Engineering Practice,2001,9:725-733
    [53]易以锋,方康玲,李威.焦炉集气管压力控制的一种新方法[J].微计算机信息,2006,22(1-1):45-47
    [54]Mesarovic M D, Macko D, Takahara Y. Two corrdination principles and their application in large scale systems control [J]. Automatica,1970,6 (2):261-270
    [55]Findeisen W. Puaczewski J, Manitius A. Multilevel optimization and dynamic coordination of mass flows in a beet sugar plant [J]. Automatica,1970,6 (4): 581-589
    [56]万百五,黄正良.大工业过程计算机在线稳态优化控制[M].科学出版社,1998:1-20
    [57]冯明琴,张靖,孙政顺.催化裂化过程稳态优化控制研究[J].自动化学报,2003,29(6):1015-1022.
    [58]陈威,王桂棠,潘振鹏,等.塑料件模具材料优化专家系统的研制[J].广东工业大学学报,2005,22(1):20-25
    [59]胡志坤,桂卫华,阳春华.连续碳酸化分解过程专家优化系统[J].东南大学学报(自然科学版),2006,36(S1):9-12
    [60]雷琪.焦炉加热燃烧过程的智能集成优化控制策略及其应用研究[A].中南大学:博士学位论文,2008
    [61]张美玉,侯向辉.一种融合专家和数据的综合知识建模框架[J].浙江工业大学学报,2007,35(4):441-443
    [62]韩祯祥,钱源平,文福拴.基于模糊外展推理和‘Tabu搜索方法的电力系统故障诊断[J].清华大学学报(自科版),1999,39(3):56-59
    [63]王金梅.基于范例推理系统的实时道路交通行程安排研究[J].计算机工程,2004,30(17):130-132
    [64]李智,卢兰光.模拟退火优化算法在混匀配料中的应用[J].钢铁研究,2001, 3:38-40.
    [65]Kalynmoy Deb, Sachin Jain. Multi-speed gearbox design using multi-objective evolutionary algorithms [J]. ASME, Journal of Mechanical Design,2003,125 (3):609-619.
    [66]李智,李伟.模拟退火算法在铸铁生产配料优化中的应用[J].铸造技术,2004,25(11):816-818
    [67]陈连.函数优化的模拟退火算法及其在盘式制动器优化设计中的应用[J].煤矿机械,2006,27(10):38-41
    [68]屈志毅,文雪飞,范志明,等.基于遗传模拟退火算法的多约束QOS组播路由优化算法[J].计算机应用与软件,2007,24(12):182-184
    [69]陈海虹,殷国富,陈伦军.基于遗传模拟退火算法的电磁齿轮结构参数优化[J].华中科技大学学报(自然科学版),2007,35(11):9-11
    [70]王建维,张建明,魏小鹏.基于模拟退火算法的减速器多目标优化设计[J].农业机械学报,2006,37(10):120-123
    [71]F Xiang, L Junzhou, W Jiey, I G Guanqun. QoS Routing based on genetic algorithm [J]. Computer Communications,1999,22 (9):1394-1399
    [72]王国平,芮筱亭.遗传算法在优化多管火箭射序中的应用[J].弹箭与制导学报,2006,26(3):146-150
    [73]徐振宇,李晓豁.基于遗传算法的连续采煤机参数的优化设计[J].辽宁工程技术大学学报(自然科学版),2007,26(S1):208-209
    [74]常玉连,范立华,高胜,等.基于遗传算法的轮式管道机器人的参数优化[J].机械与设计,2007,23(6):51-53+64
    [75]S Motlaghi, F Jalali, M Nili Ahmadabadi. An expert system design for a crude oil distillation column with the neural networks model and the process optimization using genetic algorithm framework [J]. Expert Systems with Applications,2008,35 (4):1540-1545
    [76]Brain Birge. POST-A Particle Swarm Optimization Toolbox for Use with Matlab [A]. Proc of the IEEE Swarm Intelligence Symposium [C]. Indianapolis, 2003:182-186
    [77]Peram T, Veeramachaneni K, Mohan C K. Fitness-distance-ratio Based on Particle Swarm Optimization [A]. Proc of the IEEE Swarm Intelligence Symposium [C]. Indianapolis,2003:174-181
    [78]Schutte J F, Reinbolt J A, Fregly B J, et al. Parallel Global Optimization with the Particle Swarm Optimization Algorithm [J]. International Journal of Numerical Methods in Engineering,2004,61 (13):2296-2315
    [79]El-Zonkoly A M. Optimal tuning of power systems stabilizers and AVR gains using particle swarm optimization [J]. Expert Systems with Applications,2006, 31 (3):551-557.
    [80]SEO J H, IM C H, HEO C G, et al. Multimodal function optimization based on Particle swarm optimization [J]. IEEE Trans on Magnetics,2006,42 (4):1095-1098
    [81]廖迎新,吴敏,佘锦华,等.基于HPSO的钢坯加热过程炉温优化设定[J].控制理论与应用,2007,24(2):1010-1014
    [82]Cheng-Jian Lin, Hung-Ming Tsai. FPGA implementation of a wavelet neural network with particle swarm optimization learning [J]. Mathematical and Computer Modeling,2008,47 (9):982-996
    [83]Idel Montalvo, Joaquin Izquierdo, Rafael Perez, et al. Particle Swarm Optimization applied to the design of water supply systems [J]. Computers & Mathematics with Applications,2008,56 (3):769-776
    [84]范金城,梅长林.数据分析[M].北京:科学出版社,2002
    [85]邓聚龙.灰色控制系统[M].武汉:华中理工大学出版社,1993
    [86]王天堃,周黎辉,韩璞,等.基于灰色广义预测控制的网络化控制系统丢包补偿[J].信息与控制,2007,36(3):322-327
    [87]王春生.铅锌烧结配料过程的智能集成建模与优化控制策略研究[A].中南大学:硕士学位论文,2008
    [88]Xue Yali, Jiang Changsheng. Trajectory linearization control of an aerospace vehicle based on RBF neural network [J]. Journal of Systems Engineering and Electronics,2008,19 (4):799-805
    [89]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术出版社,1999,6(9):64-72
    [90]Wen-Chin Chen, Pei-Hao Tai, Min-Wen Wang, et al. A neural network-based approach for dynamic quality prediction in a plastic injection molding process [J]. Expert Systems with Applications,2008,35 (3):843-849
    [91]Alevisakis G, Seborg D. An extension of the Smith predictor to multivariable linear systems containing time delays [J].Int J Control (0020-7179),1973,17 (3):541-551.
    [92]胡守仁,余少波,戴葵.神经网络导论[M].长沙:国防科技大学出版社,1993
    [93]戚德虎,康继昌.BP神经网络的设计[J].计算机工程与设计,1998,19(2):48-50
    [94]王科俊,李国斌.几种变学习率的快速BP算法比较研究[J].哈尔滨工程大学学报,1997,18(3):31-35
    [95]A. Azaron, C. Perkgoz, M. Sakawa. A genetic algorithm approach for the time-cost trade-off in PERT networks [J]. Applied Mathematics and Computation,2005,168 (2):1317-1339.
    [96]D. R. Lewin, A. Parag. A constrained genetic algorithm for decentralized control system structure selection and optimization [J]. Automatica,2003,39 (10): 1801-1807.
    [97]A. Kalinli, N. Karaboga. Artificial immune algorithm for IIR filter design [J]. Engineering Applications of Artificial Intelligence,2005,18 (8):963-972.
    [98]M. Zandieh, S. M. T. Fatemi Ghomi, S. M. Moattar Husseini. An immune algorithm approach to hybrid flow shops scheduling with sequence-depent setup times [J]. Applied Mathematics and Compution,2006,180 (1):111-127.
    [99]马忠丽,王科俊,莫宏伟.免疫遗传算法及其在电力系统EELD中的应用[J].哈尔滨工程大学学报,2006,27(3):408-412.
    [100]A.S.Boksenhoom, R.Hood. General Algebraic Method to Control Analysis of Complex Engine Types.1949
    [101]刘晨晖.多变量过程控制系统解耦理论[M].北京:水利电力出版社,1984
    [102]蒋慰孙.变量控制系统分析与设计[M].北京:中国石化出版社,1997.
    [103]杨辉,王金章.多变量解耦模糊控制器的研究[J].控制与决策,1988,3(1):17-21
    [104]J B Kiszka, M Gupta, G M Trojan. Multivariable fuzzy controller under Godel an implication [J]. Fuzzy Sets and Systems,1990,34(3):301-321
    [105]胡泽新,邵惠鹤.基于神经网络的解耦控制新方法及其应用[J].控制与决策,1993,8(6):409-412
    [106]宫清先,张化光,孟祥萍.一类MIMO非线性系统的稳定干扰解耦控制[J].控制理论与应用,2006,23(2):199-203
    [107]富月,柴天佑,岳恒.一类非线性多变量系统的多模型自适应解耦控制[J].控制与决策,2006,21(2):139-147
    [108]刘国荣.多变量系统模糊解耦自适应控制.控制理论与应用,1997,14(2):152-159.
    [109]T Y Chai, S J Lang, X Y Gu. A generalized self-tuning feed-forward controller and multivariable application [J]. Florida:Proceedings of 24th IEEE Conference on Decision and Control,1985:1279-1281
    [110]H N Koivo. A multivariable self-tuning controller [J]. Automatica,1980,16(4): 315-366
    [111]柴天佑.多变量间接自适应解耦控制算法[J].自动化学报,1991,17(5):51-54
    [112]湖泽新.基于神经网络的解耦控制新方法及其应用[J].控制与决策,1993,8(6):409-412
    [113]舒迪前,尹怡欣.多变量神经网络解耦广义预测控制及其应用[J].电气传动,1996,26(4):44-51
    [114]徐承伟.模糊关系系统的反馈解耦[J].自动化学报,1989,15(6):537-539
    [115]徐承伟,吕勇哉.模糊系统的串联补偿解耦[J].自动化学报,1987,13(3):177-183
    [116]阎瑾,吴敏,曹卫华.基于耦合度的集气管压力智能解耦控制[J].冶金自动化,2008,32(2):9-14
    [117]吴敏,周国雄,雷琪,等.多座不对称焦炉集气管压力模糊解耦控制[J].控制理论与应用,2010,27(1):94-98
    [118]申欲晓,谢克明.动态结构耦合性分析方法及其应用[J].太原理工大学学报,1998,29(3):233-236
    [119]E H Bristol. On a New Measure of Interaction for Multivariable Process Control [J]. IEEE Trans. Automatic Control,1966,11 (1):133-138
    [120]M F Wither, T J Macvoy, Interacting Control Systems:Steady State and Dynamic Measurement of Interaction [J]. ISA, Trans,1977,16 (3):36-39
    [121]F G Shinskey. Process Control System, fourth Ed [J]. New York:McGraw Hill Book Company,1966
    [122]胡泽新,邵惠鹤,蒋慰孙.工业大系统递阶多目标优化的分解协调方法[J].华东理工大学学报,1991,17(1):87-94
    [123]王永初.工程解耦的一种新方法——闭环反馈解耦[J].兵工自动化,1985,10(s1):65-71
    [124]V Manousiouthakis, R Savage and Y Arkun. Synthesis of Decentralized Process Control Structures Using the Concept of Block Relative Gain [J]. AlchE. J,1986, 32 (6):99-101
    [125]杨双华,王骥程.一种新的结构耦合性的度量[J].化工自动化及仪表,1990,17(5):43-45
    [126]王启志,王晓霞,吴文得,等.系统耦合度及其弱化方法[J].仪器仪表学报,2000,21(2):218-220.
    [127]谭功全.动态耦合度的定义与表示[J].四川轻化工学院学报,2002,15(2):10-13.
    [128]谢克明,杨博,谢刚.一种基于概率统计算法的耦合度分析法[J].太原理工大学学报,1999,30(2):111-114
    [129]申欲晓,谢克明.多变量系统耦合度分析[J].电力学报,1997,12(2):8-12
    [130]周国雄,吴敏,曹卫华,雷琪.焦炉集气管压力的变结构模糊控制研究[J].信息与控制,2007,36(6):732-738
    [131]周国雄,吴敏,曹卫华,雷琪.基于粒子群优化的焦炉集气管压力变结构模糊控制[J].信息与控制,2008,37(3):327-333
    [132]Y Hao. A general technique for deriving analytical structure of fuzzy controllers using arbitrary trapezoidal input fuzzy sets and Zadeh AND operator [J]. Automatica,2003,1 (7):1171-1184
    [133]C W Tao, J S Taur. Fuzzy adaptive approach to fuzzy controllers with special model [J]. Fuzzy Sets and Systems,2002,1 (1):61-77
    [134]C B Cheng. Fuzzy process control:construction of control charts with fuzzy numbers [J]. Fuzzy Sets and Systems,2005,1 (2):287-303
    [135]Y H Kin, A S Chul, Kwon. Computational complexity of general fuzzy logic control and its simplification for a loop controller [J]. Fuzzy Sets and Systems, 2000,1(2):215-224
    [136]S Jagannathan. Fuzzy control as a fuzzy deduction system [J]. Fuzzy Sets and Systems,2001,1 (11):409-425
    [137]T T Chen, S Tzuu-Hseng. Simplex-Type fuzzy sliding-mode control [J]. Fuzzy Sets and Systems,2001,124 (2):249-261
    [138]M Y Chen, D A Linkenes. Rule-base self-generation and simplification for data-driven fuzzy models [J]. Fuzzy Sets and Systems,2001,1 (2):243-265
    [139]周国雄,吴敏,雷琪,曹卫华.多输入模糊协调控制算法及应用研究[J].系统仿真学报,2008,20(13):3366-3370
    [140]赖旭芝,周国雄,曹卫华,吴敏.焦炉集气管的模糊专家控制方法及其应用[J].控制工程,2006,13(2):108-110.
    [141]周国雄,赖旭芝,曹卫华,吴敏.焦炉集气管压力智能解耦控制系统的应用[J].中南大学学报(自科版),2006,37(3):558-561
    [142]沙天杰.调节阀组性能及应用[J].中国仪器仪表,2003,20(1):16-19
    [143]Wen-Chin Chen, Pei-Hao Tai, Min-Wen Wang, et al. Chen A neural network-based approach for dynamic quality prediction in a plastic injection molding process [J]. Expert Systems with Applications,2008,35 (3):843-849
    [144]S Motlaghi, F Jalali, M Nili Ahmadabadi. An expert system design for a crude oil distillation column with the neural networks model and the process optimization using genetic algorithm framework [J]. Expert Systems with Applications,2008,35 (4):1540-1545
    [145]SEO J H, IM C H, HEO C G, et al. Multimodal function optimization based on Particle swarm optimization [J]. IEEE Trans on Magnetics,2006,42 (4):1095-1098
    [146]Xue Yali, Jiang Changsheng. Trajectory linearization control of an aerospace vehicle based on RBF neural network [J]. Journal of Systems Engineering and Electronics,2008,19 (4):799-805
    [147]康立山,谢云,尤矢勇,等.模拟退火算法[M].北京:科学出版社,1994:50-97
    [148]李爱平.基于多目标优化模型的炼焦生产过程优化方法研究与应用[A].中南大学:硕士学位论文,2008
    [149]Martin Gudgin. Essential IDL:Interface Design for COM[M]. Reading; Mass.: Addison-Wesley Pub. Co.,2000:3-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700