用户名: 密码: 验证码:
井壁稳定性若干力学问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
井壁失稳问题是石油钻井过程中普遍存在并一直困扰石油工业界的一个重大问题。钻井过程中井壁失稳易造成井壁垮塌、缩径、漏失、卡钻及储层污染等井下复杂情况和事故,严重制约了油气田勘探开发的发展。在油气勘探开发中钻井费用占了勘探开发总费用的50%-80%,研究和应用具有先进、适用性的钻井技术是降低钻井成本的关键。
     钻井过程是地下工程,涉及到复杂的地质结构,因而井壁失稳问题是国内外石油钻井界十分关注和亟待解决的难题之一。论文从力学的角度,应用地质力学、弹塑性力学、有限变形弹塑性理论、断裂力学和损伤力学理论对井壁稳定机理进行研究。
     1、岩石材料的强度(破坏)准则在钻井工程中发挥着基础作用,对于硬脆岩石它为岩石材料的破坏提供判定标准,而对于塑性变形岩石,它是进一步建立岩石弹塑性本构关系重要的基础。论文对岩石材料的强度(破坏)准则进行了评述。在材料为均匀各向同性时,考虑到岩石材料从弹性到非线性变形过程的连续性,认为采用双参数强度准则,不但给处理问题带来方便,同时也具有物理意义上的合理性。
     2、当井眼完钻后,在井眼周围引起应力重新分布,形成井壁周围的应力集中。在外载荷作用下,井壁内部区域介质由于弹性而进入塑性变形阶段。将地层岩石视为多孔弹塑性介质,建立了考虑孔隙压力和渗流作用的影响以及岩石拉、压屈服强度不等的SD效应的井壁稳定问题的理论分析模型。采用自相似假设,对井壁周围岩石进行了弹塑性力学分析,给出了井壁周围的应力和位移分布。
     3、在岩盐层和塑性泥岩层中的井眼缩径问题的研究是钻井工程关注问题之一。从变形量级的分析和现场观测的结果可以发现,采用小变形理论分析井眼的缩径具有明显的缺陷。应用有限变形次弹--塑性理论,建立了井眼的缩径模型,分析井眼附近力学量随外载荷和本构参数的变化规律,力图为岩石材料本构参数的实验测定和调节钻井液密度防止井眼失稳提供理论参考依据。
     4、针对井壁附近的软岩在有限变形过程中产生的井眼挤毁问题,采用有限变形弹性理论研究井眼从圆形变形到椭圆形的变化过程,探讨了井眼挤毁的力学机理。
     5、通常在岩层中存在大量的随机分布的缺陷(孔洞、微裂纹等),岩石的微结构对井眼的稳定性有根本性的影响作用。在钻井工程中,人们把泥岩层作为含微裂纹的准脆性材料加以研究。论文采用细观力学和断裂力学相结合的方法,对井壁稳定性的问题中的井壁坍塌和地层破坏进行了定量的分析,确定了钻井液密度的范围。
     井壁失稳问题是一个复杂和需要进一步开展研究的问题,随着能源需求的加大和石油工业的不断发展,解决井壁失稳的问题就更加迫切,本文研究所得到的理论结果将为防止井壁失稳提供参考依据。
It is a big problem in petroleum industry for the wellbore to lose stability in the process of drilling. It exists everywhere and troubles the petroleum industry. Many complex situations and accidents, such as borehole wall caving, shrinkage, leakage, stickiness and reservoir pollution, are caused by the instability of wellbore in the process of drilling, seriously constraining the exploration and development of oil and gas field. Drilling costs are accounted for 50% to 80% of the total costs of exploration and development in the exploration and development of oil and gas. It is the key of reducing drilling costs to investigate and apply more advanced and applicable drilling technology.
     Since drilling process is an underground engineering and correlative with complicated geologic structures, it becomes worldwide and more sophisticated for the wellbore to lose stability, and receives the attention of petroleum drilling industry at home and abroad. In this thesis, the mechanism of wellbore stability is investigated from the perspective of mechanics, in geological mechanics, elastic-plastic mechanics, finite deformation elastic-plastic theory, fracture mechanics and damage mechanics.
     1. The strength (damage) criterion of rock material plays a fundamental role in drilling engineering. The strength criterion provides criteria for the damage of rock material in the case of hard and brittle rock, and is the important basis for further establishing the elastic-plastic constitutive relation of rock material in the case of plastic deformation rock. The strength criteria of rock material are reviewed in this thesis. When the material is homogeneous and isotropic, taking into account the continuity of the process for rock material to deform from elasticity to nonlinearity, it is believed that double parameter strength criterion used can bring the convenience of solving problems, and is reasonable in physical significance as well.
     2. When the wellbore is drilled, stresses around the wellbore are redistributed, stress concentration is formed around the wellbore. Under the application of external loads, wellbore internal region media enters the stage of plastic deformation because of the elasticity. Formation rock being thought as multi-aperture elastic-plastic medium, the theoretical analysis model of wellbore stability problem is established, considering the affect of pore pressure and seepage application, and the SD effect caused by different tension and compression yield strength of rocks. Self-similar assumption is used, elastic-plastic mechanics analysis is done for the rock around wellbores, and the distributions of stress and displacement are obtained.
     3. The investigation on the borehole shrinkage problem in rock salt and plastic mudstone formation is one of the problems widely concerned in drilling engineering. From the analysis of deformation order of magnitude and the results observed on site, it is found that the defect is obvious to analyze borehole shrinkage in small deformation theory. Finite deformation minor elastic-plastic theory being used, borehole shrinkage model is established, in order to provide theory reference for experimental determination of rock material, adjustment of drilling fluid density, prevention of wellbore instability.
     4. Aim at the borehole crush problem of the soft rock around borehole wall, which is produced in the process of finite deformation, the change process of borehole changing from circle shape to ellipse shape is investigated in finite deformation elastic theory, and the mechanics mechanism of borehole crush is discussed.
     5. There usually are a large number of random-distributed defects (cavities, micro-cracks, etc.) in rock formation. These micro-structures of rocks have fundamental influence on borehole stability. In drilling engineering, mudstone formations are investigated considering as quasi-brittle materials containing micro-cracks. The method of combining microscopic mechanics with fracture mechanics being used in the thesis, the borehole wall collapse and formation damage of borehole wall stability problems are analyzed quantitatively, the range of drilling fluid density is determined.
     The instability of wellbore is a complex problem which needs further investigation. With the more need of energy and the development of petroleum industry, it is urgent to solve the problem. The theory in present thesis provides references to avoid wellbore instability.
引文
[1]Roegiers J C. Applied mechanics problems in oil and gas industry. J. Apll. Mech. Rev.1986,39:1687-1696P
    [2]Mclean M R, Addis M A. Well bore Stability Analysis:A Review of Current Methods of Analysis and Their Field Application. SPE 1999, 41:261-274P
    [3]徐同台.井眼稳定——80年代国外文献综述.钻井液与完井液.1991增刊:12-16页
    [4]Bruce S. A mechanical stability. Log. IADC/SPE1999,42.
    [5]陈勉.我国深层岩石力学研究及在石油工程中的应用.岩石力学与工程学报,2004,23(14):2455-2462页
    [6]高德利、陈勉、王家祥.谈谈定向井井壁稳定问题.石油钻采工艺.1997,19(1):1-4页
    [7]陈勉,金衍.深井井壁稳定技术研究进展与发展趋势.石油钻探技术,2005,33(5):28-34页
    [8]王桂华, 徐同台.井壁稳定地质力学分析.钻采工艺,2005,28(2):7-10页
    [9]周长江等.水平气井井壁稳定性研究.天然气工业,2006,26(8):81-82页
    [10]刘玉石.地层坍塌压力及井壁稳定对策研究.岩石力学与工程学报,2004,23(14):2421-2423页
    [11]黄维安,邱正松,徐加放,于连香.吐哈西部油田井壁失稳机理实验研究.石油学报.2007,28(3):116-119页
    [12]刘尊文,王裕亮,曹广宇.新疆南缘井壁失稳的技术研究.西部探矿工.2007年第4期:62-63页
    [13]邹灵战,邓金根,徐显广,李维轩.山前高陡构造节理围岩的井壁失稳机制研究.岩石力学与工程学报.2008,27(增1):2733-2740页
    [14]屈东升.川东高陡构造井塌原因及防塌措施研究.钻采工艺.2000,23(5):85-86页
    [15]丰全会,祖峰,邓金根.井壁稳定性及其在盐城地区的应用.钻井工艺.2000,23(4):22-26页
    [16]郑有成,李向碧.川东北地区恶性井漏处理技术研究探索.天然气工业.2003,23(6):84-86页
    [17]赵普春,邓洪军.塔河油田碳酸盐岩裸眼段坍塌现状及认识.中外能源.2006,11(4):31-37页
    [18]张彦虎,汪建军.川西中江地区井壁失稳机理研究.钻采工艺.2001,24(1):10-12页
    [19]张传进.准噶尔盆地中部Ⅰ区块坍塌压力分析.岩石力学与工程学报.2004,23(14):2417-2420页
    [20]石永高,黄诚华等.大庆油田地面形变监测.石油规划设计.1995年第2期:34-37页
    [21]陈天愚,刘殿魁.油田注水产生的浸水域的数值模拟及参数确定.哈尔滨工业大学学报.2003,35(10):1235-1239页
    [22]蔚宝华,王治中,郭彬.泥页岩地层井壁失稳理论研究及其进展.钻采工艺.2007,30(3):16-20页
    [23]王炳印,蔚宝华,张跃群.泥页岩地层井壁失稳的一种新机理,内蒙古石油化工.2008年第8期:129-132页
    [24]刘向君,罗平亚.泥岩地层井壁稳定性研究.天然气工业.1998,17(1):45-48页
    [25]刘平德,李瑞营,张梅.斜井中泥岩井眼稳定性的研究.石油钻采工艺.2000,22(2):35-37页
    [26]冯京海,徐同台,王富华,白光勇.南堡油田馆陶组玄武岩井壁失稳机理和技术对策研讨.钻井液与完井液.2008,25(5):1-4页
    [27]刘之的,夏宏泉,汤小燕.防止碳酸盐岩地层井壁失稳的对策研究.天然气勘探与开发.2004,27(4):60-63页
    [28]Aednoy BS, Ong S.Introduction to special issue on borehole stability.Journal of Petroleum Science and Engineering.2003,38:79-82P
    [29]陈颙,黄庭芳.岩石物理学.北京:北京大学出版社,2001:1-4页
    [30]陈勉,金衍,张广清.石油工程岩石力学.北京:科学出版社,2008:99-160页
    [31]邓金根、张洪生.钻井工程中井壁失稳的力学机理.北京:石油工业出版社,1998页
    [32]李志明、张金珠.地应力与油气勘探开发.北京:石油工业出版社,1997:311-321页
    [33]Charlez, P et al. A New Way To Determine the State of Stress and the Elastic Properties of Rock Stress and Elastic Properties of Rocks Massive, Proc. Int. Symposium on Rock Stress and Rock Stress Measurement Stockholm, Sept 1-3,1986:313-320P
    [34]Fairhurst C. The phenomenon of rock splitting parallel to a free surface under comp ressive stress. Proceedings,1st Congress of Int. Soc.of Rock Mech., Lisbon,1968
    [35]Bradley W B. Failure of inclined bore holes. Trans.of ASME.1979,101: 232-239P
    [36]Bradley, W. B. Mathematical Stress cloud, Strss cloud can predict borehole failure.Oil and Gas J.1979,79(8):92-102P
    [37]Aednoy B S, Chenevert M E. Stability of highly inclined boreholes[J]. SPE Drilling Engineering. Dec.1987:364-374P
    [38]Mclellin, P J. Assessing the rock of well bore instability in horizorntal and inclined well. JCPT.1996,35(5):25-31P
    [39]Zhou Shaohua, Hillis R R, Sandiford M. On the mechanical stability of inclined wellbores. SPE Drilling & Completion, June,1996:67-73P
    [40]Fuh G F et al. Use of borehole stability analysis for successful drilling of high angle hole. IADC/SPE-17235
    [41]金衍,陈勉,柳贡慧,李俊峰.弱面地层斜井井壁稳定性分析.石油大学学报.1999,23(4):33-35页
    [42]金衍,陈勉,柳贡慧,陈治喜.大位移井井壁稳定力学分析.地质力学学报.1999,5(1):4-11页
    [43]谢和平,陈忠辉.岩石力学.北京:科学出版社,2004
    [44]徐曾和.渗流的流固耦合问题及应用.博士学位论文,东北大学,1998
    [45]Biot M A. General theory of three dimensional consolidation. J Appl Phy.1941,12:144-164P
    [46]Biot M A.Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phy.1955,25:182-185P
    [47]Biot, M.A. Exact simplified non-linear stress and fracture analysis around cavities in rock. Int.J. Rock Mech. Min.Sci. & Geomech. Abstr.1974, 11:261-266P
    [48]Bowen R M. Compressible porous media by use of the theory of mixtures. Int. J. Eng. Sci.1982,20:697-736P
    [49]Lubinski A. The Theory of elasticity for porous bodies displaying a strong pore structure. Proc and US. National Congress of Applied Mechanics.1954:247-256P
    [50]Roegiers J C. Well modelling and verview. Oil & Gas Science and Technology-Rev. IFP,2002,57 (5):569-577P
    [51]Yew C H, Gefer Liu. Pore fluid and wellbore stabilities. SPE 22381, 1992.
    [52]俞茂宏.强度理论百年总结.力学进展.2004,34(4):529-560页
    [53]陈良森,李长春.关于岩石的本构关系.力学进展.1992,22:173-181页
    [54]Charlez P A. The impact of constitutive laws on wellbore stability:ageneral review.SPE Drilling & Completion, June1997:119-127P
    [55]Benz T, Schwab R. A quantitative comparison of six rock failure criteria.International Journal of Rock Mechanics & Mining Sciences.2008,45(5):1176-1186P
    [56]Lade P, Duncan J. Elasto-plastic stress-strain theory for cohesionless soil. J. Geotech Eng Div ASCE 1975;101:1037-53P
    [57]Bardet J P. Lode dependences for isotropic pressure-sensitive elasto-plastic materials. Trans ASME 1990,57(9):498-506P
    [58]Hoek E. Strength of rock and rock masses. ISRMNews J 1994,2(2):4-16P
    [59]Hoek E, Carranza-Torres C, Corkum B. Hoek-Brown failure criterion. Edition. In:Proceedings of the 5th North American symposium of NARMS-TAC, Toronto,2002
    [60]宋建波等.岩体经验强度准则及其在地质工程中的应用.北京:地质出社版,2002
    [61]Mogi K. Fracture and flow of rocks under high triaxial compression.J Geophys Res 1971,76(5):1255-1269P
    [62]Benz T, Schwab R, Kauther RA, Vermeer PA. A Hoek-Brown criterion with intrinsic material strength factorization. Int J Rock Mech Min Sci 2008,45(2):210-220P
    [63]Coelho L C, et al. The impact of constitutive modeling of porous rocks on 2-D wellbore stability analysis. Journal of Petroleum Science and Engineering.2005,46(1):81-100P
    [64]Al-Ajmi A M, Zimmerman R W. Stability analysis of vertical boreholes using the Mogi-Coulomb failure criterion. International Journal of Rock Mechanics & Mining Sciences.2006,43 (9):1200-1211P
    [65]Al-Ajmi A M and Zimmerman R W. Relationship between the parameters of the Mogi and Coulomb failure criterion. Int J Rock Mech Min Sci 2005, 42(3):431-439P
    [66]Haimson BC, Chang C. A new true triaxial cell for testing mechanical properties of rocks, and its use to determine strength and deformability of Westerly granite. Int J Rock Mech Min Sci 2000,37:285-97P
    [67]刘向君,叶信斌,陈一健.岩石弱面结构对井壁稳定性的影响.天然气工业.2002,22(2):41-42页
    [68]李天太,孙正义.井壁失稳判断准则及应用分析.西安石油学院学报.2002,17(5):25-27页
    [69]Harris D. Plasticity models for soil, granular and jointed rock materials. J. Mech. Phys. Solids.1992,40(2):273-290P
    [70]张学言.岩土塑性力学基础.天津:天津大学出版社,2004
    [71]龚晓南.土塑性力学.浙江大学出版社,1990
    [72]Charlez P.A. Rock Mechanics-Theoretical fundamentals. Ed Technips. 1991
    [73]龚晓南主编.土工计算机分析.北京:中国建筑工业出版社,2000
    [74]Simoni L, Schrefler B A. Staggered finite-element solution for water and gas flow in deforming porous media. Commun Appl Numer Meth.1991, 7(3):213-23P
    [75]Muller A L et al. Borehole stability analysis considering spatial variability and poroelastoplasticity. International Journal of Rock Mechanics & Mining Sciences,2009,46(1):90-96P
    [76]Detournay E. Elastoplastic model of a deep tunnel for a rock with variable dilatancy. Rock Mech. Rock Eng.1986,19:99-108P
    [77]Veeken C, Walters J V and Davies D. Use of plasticity model for predicting borehole stability. Symp. Rock at Great Depth Pau.1989.A. A. Balkenma
    [78]Ewy R T.3D stress effect in Elastoplastic wellbore failure models. Proc. of the 32nd U.S.Symp.Rock Mechanics as a multidisciplinary science.Norman,1991, A. A. Balkenma
    [79]丰全会,程远方,张建国.井壁稳定的弹塑性模型及其应用.石油钻探技术.2000,Vol.28(4):9-11页
    [80]刘向君等.流体流动和岩石变形耦合对井壁稳定性的影响.西南石油学院学报.2002,24(2):50-52页
    [81]梁利喜,许强,刘向君.基于极限平衡理论定量评价井壁稳定性.石油钻探技术.2006,34(2):15-17页
    [82]Mclean M R, Addis M A. Well bore stability:The effect of strength criteria on mud weight recommendations. SPE 20405,1990
    [83]Mclean P L, Wang Y. Predicting the effects of pore pressure penetration oil the extent of wellbore instability Application of a versatile poro-dastoplastic model. SPE 28053,1994
    [84]Carter J P, Booker J R. Elastic consolidation around a deep circular tunnel. Int. J. Solid and Structere.1982,18(12):1059-1074P
    [85]Westergaard H M. Plastic State of stress around a deep well. J.Boston. Soc. of Civ. Engrs.1940.7 (1):27-29P
    [86]Risnnes R, Rilf K B and Horsrud P. Sand stresses around a wellbore. SPEJ.1882:883-898P
    [87]刘玉石,黄克累.孔隙流体对井眼稳定的影响.石油钻探技术,1995,23(3):4-6页
    [88]刘玉石等.考虑井壁岩石损伤时保持井眼稳定的泥浆密度.石油学报.1997,14(2):131-137页
    [89]李敬元 李子丰.渗流作用下井筒周围岩石内弹塑性应力分布规律及井壁稳定条件.工程力学,1997,V01.14(2):131-137页
    [90]徐曾和,徐小荷,路保平.弹塑性非线性渗流耦合问题的一个解析解.重庆大学学报.2000,23(增刊):184-187页
    [91]李忠华,潘一山.有渗流作用的油井井壁稳定性的解析分析.工程力学,2002,19(3):105-107页
    [92]陆明万,罗学富,弹性理论基础,清华大学出版社,1990:184-206页
    [93]Gnirk P F.The mechanical behavior of uncased wellbore situated in elastic/plastic media under hydrostatic stress.1972, SPE 3224:49-59P
    [94]金衍,陈勉,柳贡慧.盐膏岩地层的井眼缩径变形分析.石油大学学报.1999,23(2):37-39页
    [95]赵华,陈磊,齐亚民.基于有限元的井眼径向位移、井周应力和井眼稳定性研究.内蒙古石油化工,2008年第9期:133-135页
    [96]丁振龙,刘绘新.有限元法在油气井井壁稳定计算中的应用.钻采工艺.2006,29(2):23-25页
    [97]Hsiao C. Growth of Plastic Zone in Porous Medium Around a Wellbore. Haliburton Service. OTC 5858:439-447P
    [98]谭英杰.泥岩膨胀机理的弹塑性力学分析.哈尔滨:哈尔滨工程大学博士论文.2005页
    [99]黄桢.泥页岩石膏盐岩层卡钻的流变模型探讨.钻井工艺.1995,18(4):24-26页
    [100]邓金根,刘书杰,石得勤,张利.软泥岩井眼弹塑性变形的拉格朗日法计算,地质力学学报,5(1)1999:33-37页
    [101]黄克智,肖纪美.材料的损伤断裂机理和宏微观力学理论.北京:清华大学出版社,1999:7-32页
    [102]卡恰诺夫L M.著.杜善义王殿富译.连续介质损伤力学引论.哈尔滨:哈尔滨工业大学出版社,1989:123-138页
    [103]余寿文,冯西桥.损伤力学.北京:清华大学出版社,1997
    [104]Rabatnov Y N, Creep problems in structural members, North-Holland, Amsterdam,1969
    [105]Lemaitre J, Chaboche J L. Aspect phenomenologique de la rupture par endommagemeat. J. Meca, Appl.1978,2(3):317-365P
    [106]Chaboche J L and Rousselter G.. On the plastic and viscoplastiec constitutive equation-Part Ⅰ:Rules developed with internal variable concept; Part Ⅱ:Application of internal variable concepts to the 316 stainless steel. Journal of Pressure Vessel Technology.1983,105: 153-158,159-164P
    [107]Krajcinovic, D. Continuum damage mechanics. J. Appl. Mech. Reviews.1884,37(1):1-6P
    [108]Krajcinovic D and Fonseka G U. The continuous damage theory of brittle materials. Part 1:general theory. J. Appl. Mech.1981,48:809-815P
    [109]Whitmen L. Int. J. Numerical Analy. Methods Geomech.1985,9-71P
    [110]Budiansky, B. Hutchinson, J_ W. and Slutsky, S. Void growth and collapse in viscous solids, Mechanics of solids, the Rodney Hill 60th Anniversary Volume, Eds. Hopkins. H. G and Selvell, M. J.1982.
    [111]李朝弟,刘信声.考虑材料损伤时厚壁圆筒的承载能力.力学与实践.1993,15(1):23-26页
    [112]郑贵.井壁稳定问题的断裂损伤力学机理的研究.哈尔滨工程大学博士学位论文.2005:42-63页
    [113]王自强,黄筑平.细观塑性理论.北京:科学出版社,1996
    [114]Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Roy. Soc., London,1957, A241: 376-396P
    [115]Hill R. Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids.1965,13:89-101P
    [116]Tanaka K. and Mori T. Note on volume integrals of the elastic field around an ellipsoidal inclusions. J. Elasticity,1972,2:199-200P
    [117]Gurson A L. Continuum theory of ductile rupturein void nucleation and growth part I:yield criteria and flow rules for porous ductile media. J Eng Mater Teeh,1977(4):2-15P
    [118]McClintock F A. A criterion for ductile fracture by the growth of holes. J Appl Mech,1968(35):363-371P
    [119]Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids,1969(17):201-217P
    [120]Asheby M.F.and Hallam S D. The failure of brittle solids containing small cracks under compressive stress states. Acta Metall.1986,34: 497-510P
    [121]Horii, H and S.Nemat-Nasser. Overall moduli of solids with microcracks load induced anisotropy. J.Mech.Phys. Solids.1983,31:155-171P
    [122]Horii H and S. Nemat-Nasser. Brittle fracture in compression:splitting, faulting and brittle-ductile transition. Phil. Trans. Roy. Soc. London. 1986,319:337-374P
    [123]高玉臣,朱葳.含微裂纹材料的损伤理论.力学学报.1987,19:541-549页
    [124]杨卫.宏微观断裂力学.北京:国防工业出版社,1995:67-87页
    [125]Collins I F. Elastic/plastic models for soils and sands. Int.J. of Mechanical Sciences,2005,47(4-5):493-508P
    [126]Collins I F, Kelly P A. A phermo mechanics analysis of a family of Soil models. Geotechnique,2002,26:1313-1347P
    [127]Collins I F, Hilder T A. A theoretical framework for constructing elastic/ plastic constitutive models of triaxial tests. Int. J. of Numerical and Analytical Methods in Geomechanics.2002,26(13):1313-1347P
    [128]陈惠发,萨里普遍AF.混凝土和土的本构关系.北京:中国建筑工业出版社,2004
    [129]Drucker, D. C, and Prager, W. J. Soil mechanics and plastic analysis or limit design. Quat. of Appl. Math.1952,10:157-165P
    [130]Morris A P, Ferrill D A.The importance of the effective intermediate principalstress (σ2) to fault slip patterns. Journal of Structural Geology.2008,30(1):1-10P
    [131]陈惠发.土木工程材料的本构关系-塑性与建模.武汉:华中科技大学出版社,2001
    [132]Schajer G S. Mohr-Coulomb failure criterion expressed in terms of stress invariants. J.of Applied Mechanics.1998,65:1066-1068P
    [133]Deshpande VS, Fleck N A. Isotropic constitutive models for metallic foams, Journal of the Mechanics and Physics of Solids,2000,48: 1253-1283P
    [134]Gibson L J, Ashby M F. Cellular Solids:Structure and Properties[M]. Oxford:Pergamon Press,1997
    [135]Tschoegl N W. Failure Surfaces in Principal Stress Space. J. of Polymer Sci. Sym.,1971,32:239-267P
    [136]Raghava R and Caddell R M. A macroscopic yield criterion for crystalline polymers. Int. J. Mech. Sci.,1973,15:967-974P
    [137]Inoue N. Plane strain slip lines fields for polymer deformation Processes. ISME,1986,29:408-415P
    [138]Lee J H. Some exact and approximate solutions for the modified von Mises yield criterion. J. Appl. Mech.,1988,55:260-266P
    [139]Christensen R M. A comparative evaluation of three isotropic two property failure theories. J. Applied Mechanics.2006,73:852-859P
    [140]Christensen R M. A two property yield, failure(fracture) criterion for homogeneous, isotropic materials. J. Egn. Mater. Technol.2004, 126:45-52P
    [141]Lade P. V., Nelson R. B. and Ito Y. M. Instability of Granular materials with non-associated flow. J. Eng. Mech. ASCE.1988,114:2173-2194P
    [142]唐立强,田德谟.一个压力敏感材料的本构方程.哈尔滨船舶工程学院学报.1994,15(1):6-12页
    [143]Tang L Q and Gao YC. Elastic-plastic fields near a stationary crack-tip in a compact material. Proc.Int.Conft.on nonlinear mechanics, Shanghai, China,1985
    [144]陈会军,李永东,唐立强.多孔材料中裂纹尖端的渐近场.哈尔滨工程大学学报.2000,21(3):58-63页
    [145]Chandler H. W. Homogeneous and localized deformation in granular materials:A mechanistic model. Int. J. Eng. Sci.1990,28(8):719-134P
    [146]Tvergaard V, Needleman A. Analysis of cup-cone fracture in a round tensile bar. Acta Metall,1984(32):157-189P
    [147]王自强,秦嘉亮.含空洞非线性材料的本构势和空洞扩展率.固体力学学报,1989(2):127-41页
    [148]Lee J H and Oung J. Yield functions and flow rules for porous pressure dependent strain hardening polymeric materials. J Appl. Mech.2000, 67:288-297P
    [149]冯文光.油气渗流力学基础.北京:科学出版社,2007:49-113页
    [150]唐立强,何水清.MVM材料中轴对称平面问题的弹塑性解.固体力学学报.1992,12(4):313-321页
    [151]高玉臣.裂纹起始扩展的弹塑性场.固体力学学报.1980,1(1):69-76页
    [152]高玉臣,黄克智.理想弹塑性平面应变问题.固体力学学报增刊.1982:1-16页
    [153]高玉臣,黄克智.理想弹塑性平面应力问题.固体力学学报.1982,3(3):339-350页
    [154]匡震邦.非线性连续介质力学基础.西安:西安交通大学出版社,1989:1-251页
    [155]王自强.理性力学基础.北京:科学出版社,2000
    [156]黄筑平.连续介质力学基础.北京:高等教育出版社,2003:1-115页
    [157]黄克智,黄永刚.固体本构关系.北京:清华大学出版社,1999
    [158]Rice J R. Inelastic constitutive relations for solids:An internal variable theory and its application to metal plasticity. J. Mech. Phys. Solids,1971, 19(6):433-455P
    [159]Rice J R. Continuum mechanics and thermodynamics of plasticity in relation to micro-scale deformation mechanisms, in Constitutive Equations in Plasticity. Cambridge:MIT Press,1975:23-75P
    [160]Guo Z H and Man C S. Conjugate stress and tensor equation. Int. J. Solids Struct.,1992,29(16):2063-2076P
    [161]LehmannT H and Liang H Y. The stress conjugate to the logarithmic strain. ZAMM/Math. Mech.,1993,73(12):357-363P
    [162]Lubarda V A. Elasto-plasticity theory. New york:CRC Press LLC,2002
    [163]Lubarda V A. Deformation theory of plasticity revisited. Proc. Montenegr. Acad. Sci. Arts,2000,13:117-143P
    [164]Durban D and Fleck N. A spherical cavity expansion in a drucker-prager solid. Journal of Applied Mechanics,1997,64(4):743-750P
    [165]M F Beatty. Topics in finite elasticity:hyperelasticity of rubber, elastomer, and biological tissues-with example. Appl. Mech. Rev.1987, 40:1699-1734P
    [166]郭仲衡.非线性弹性理论.北京:科学出版社,1980:135-154页
    [167]Gao Y C. Elastostatic crack tip behavior for a rubber like material[J]. Theoretical and Applied Fracture Mechanics,1990,14(3):219-231P
    [168]Gao Y C, Liu B. A rubber cone under the tension of a concentrated force[J]. International Journal of Solids and Structures,1995,32(11): 1485-1493P
    [169]Gao Y C, Chen S H. Large strain field near a crack tip in a rubber sheet[J]. Mechanics research Communications,2001,28(1):71-78P
    [170]胡海昌.的弹性力学变分原理及其应用.北京:科学出版社,1981
    [171]孙学增等.椭圆度对井眼拉伸和挤毁破坏的影响.大庆石油学院学报.1998,Vol.22(3):14-17页
    [172]陈永明.椭圆型井眼的稳定性分析.中国海上油气(工程).1996,8(5):28-31页
    [173]刘玉石, 白家祉, 黄荣樽, 周煜辉.硬脆性泥页岩井壁稳定问题研究.石油学报,1998,19(1):85-88页
    [174]HaimsonB. Fracture-like borehole breakouts in high-porosity sandstone: are they caused by compaction bands?. Physics and Chemistry of the Earth. Part A:Solid Earth and Geodesy.2001,26 (1):15-20P
    [175]Issen K A. The Influence of constitutive models on localization conditions for porous rock. Engineering Fracture Mechanics.2002,69:1891-1906P
    [176]Conil N, Djeran-Maigre I, Cabrillac R and Su K. Poroplastic damage model for claystones. Applied Clay Science.2004,26, (3):473-487P
    [177]Chen X, Tan C P andDetournay C.A study on wellbore stability in fractured rock masses with impact of mud infiltration. Journal of Petroleum Science and Engineering.2003,38 (2):145-154P
    [178]Aadnoy BS, Belayneh M Elasto-plastic fracturing model for wellbore stability using non-penetrating fluids. Journal of Petroleum Science and Engineering.2004,45 (2):179-192P
    [179]于骁中.岩石混凝土断裂力学[M].湖南:中南工业大学出版社,1991: 439-482页
    [180]Fam M A, Dusseault M B, Fooks J C. Drilling in mudrocks:rock behavior issues. Journal of Petroleum Science and Engineering,2003,38 (1) 155-166P
    [181]金衍,陈勉,张旭东.钻前井壁稳定预测方法的研究.石油学报.2001.22(3):96-99页
    [182]金衍,陈勉.工程井壁稳定分析的一种实用方法.石油钻探工艺,2000,23(1):31-33页
    [183]彭商平等.用模糊综合评判法评价井壁的稳定性.断块油气田.2004,11(4):5-8页
    [184]邬春学等.神经网络技术在滩海地区井壁稳定计算机辅助分析中的应用研究.中国石油勘探.2002,7(4):87-90页
    [185]王建华,鄢捷年,苏山林.硬脆性泥页岩井壁稳定评价新方法.石油钻探工艺,2006,28(2):3-5页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700