用户名: 密码: 验证码:
掺杂型镧锰氧化物的制备及其红外发射率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
任何材料在一定温度下均存在红外发射率。根据斯忒藩-玻尔兹曼定律E=σεT~4可知,红外发射率是影响物体红外辐射能量大小的重要因素,发射率越大,物体向外辐射的能量也就越大。碱土金属掺杂的镧锰氧化物不仅具有优良的庞磁电阻效应,同时伴随有金属-绝缘态转变和相应的铁磁-顺磁转变。由于金属具有较低的发射率,而绝缘体具有较高的发射率,因此这种具有金属-绝缘态转变的镧锰氧化物,其发射率就会随着温度的变化而自主地发生变化,作为一种新型的热控材料有着广阔的应用前景。本论文以掺杂型镧锰氧化物为研究对象,鉴于其ABO_3型结构与性能的密切关系,从调整镧锰氧化物ABO_3结构掺杂出发,对不同掺杂体系镧锰氧化物的红外发射率特性及其变化规律作一些有益的探索,并在此基础上进一步提高镧锰氧化物的可变发射率性能。重点研究了A位二价离子掺杂体系La_(1-x)Sr_xMnO_3和La_(1-x)Ca_xMnO_3,A位一价离子掺杂体系La_(1-x)Na_xMnO_3和La_(1-x)K_xMnO_3,A位离子缺位体系(La_(0.8)Sr_(0.2))_(1-x)MnO_3,B位离子掺杂体系La_(0.8)Sr_(0.2)Mn_(1-x)Cu_xO_3和La_(0.8)Sr_(0.2)Mn_(1-x)Ti_xO_3体材料的红外发射率特性,以现代分析手段从多方面对不同离子价态、不同位置、不同形式掺杂样品的红外发射率与结构、电磁特性、红外吸收特性之间的相互关系进行了系统的研究,确定了合适的热控制材料体系及其适用范围,利用离子缺位成功地提高了可变发射率性能,对镧锰氧化物ABO_3结构掺杂与红外发射率的若干关系作了探讨,在以上研究基础上对镧锰氧化物薄膜和涂层的红外发射率特性进行了初步研究。
     1.分别制备了A位二价Sr和Ca离子掺杂样品,首次系统地研究了不同掺杂浓度、温度、波段、表面粗糙度和晶格结构对样品发射率的影响,以及可变发射率性能与波段的对应响应问题。掺Sr样品呈菱方相结构,但随着掺杂浓度的增大,Mn~(3+)离子迅速减少导致体系晶格结构向高对称性转变为立方相;掺Ca样品呈立方相结构。由于Mn~(3+)-O-Mn~(4+)之间的双交换作用,掺Sr样品的导电性和铁磁性随着掺杂浓度的增大而增强,发射率减小;由导电性与磁性能的密切相关性得出,发射率不仅与导电性相关,与磁性能也有关系,并且铁磁性越强,发射率越低。掺Ca样品的导电性随着掺杂浓度的增加呈现出先增大后减小的趋势,但是由于铁磁性一直增强,轨道有序作用使样品中出现了铁磁-绝缘相,发射率减小。由此推断得出,镧锰氧化物铁磁性对发射率的影响大于导电性的影响。对于镧锰氧化物体材料,表面粗糙度对发射率影响不大。为了研究晶格结构对红外发射率的影响,分别用固相反应法与溶胶凝胶法制得菱方相与正交相样品,发现不同晶格结构样品的发射率特性明显不同。由于金属-绝缘态转变,Sr掺杂浓度x=0.2样品在8~14μm波段的发射率随温度出现了突变现象,在288~373 K之间的变化值为0.13,计算得出328 K时其向外辐射能量达到536.8 W/m~2,辐射性能提高18 %,但是在3~5μm波段不存在可变发射率性能。Ca离子掺杂样品的发射率在288 K~373 K之间逐渐减小。因此,Sr掺杂浓度x=0.2样品作为在8~14μm波段的热控制材料有潜在的应用前景。
     2.采用一价Na离子和K离子分别替代La离子,发现一价离子在钙钛矿结构中的溶解度较低,离子很难融入晶格中。一价离子掺杂使体系转变为顺磁态,电子自旋共振波谱强度随掺杂浓度的增大而减小,表明样品中不成对电子浓度减小,从而降低了轨道跃迁几率,发射率减小。由于自发极化增强了偶极矩的振动,在8~14μm波段出现了新的红外吸收峰。磁性能的降低与8~14μm波段的红外吸收使一价掺杂样品的发射率偏高,K掺杂样品的发射率大于Na掺杂样品的发射率,并且一价掺杂样品的发射率在288~373 K之间随着温度没有明显变化。因此,一价掺杂体系不适合作为热控制材料。
     3.首次研究了A位离子缺位体系的红外发射率特性,并成功制备出发射率变化差值较大的样品。由于A位缺位量的增加造成空间结构的变化以及所产生的内应力,体系中电子-声子散射和磁散射增强,导电性和铁磁性减小。同时,畸变的晶格导致体系在8~14μm波段出现新的红外吸收。然而体系的发射率呈现出先增大后减小的趋势,当缺位量x=0.2时,样品的发射率最大,这与样品在8~14μm波段强的红外吸收有关。由此得出,红外吸收对体系发射率的影响大于导电性和铁磁性的影响。缺位量x=0.2样品的发射率在288~373 K之间的变化值为0.2,仅在室温288~313 K附近发射率变化值就达0.159,计算得出313 K时其向外辐射的能量为440.8 W/m~2,辐射性能增加24.6 %。可见,缺位样品作为热控制材料有更广阔的应用前景。
     4.鉴于Mn-O-Mn网络结构对样品性能的重要影响,利用Cu离子和Ti离子替代占据B位的Mn,考察B位掺杂样品的红外发射率特性。随着Cu掺杂浓度的增加,样品结构趋于有序化,体系对称性降低,因此不对称振动引起的红外吸收变大,电子自旋共振波谱的宽度变窄。Ti掺杂样品在8~14μm波段出现了两个新的红外吸收峰。由于掺杂使体系由铁磁态转变为顺磁态,以及在8~14μm波段强的红外吸收,B位掺杂样品的发射率偏高,并且在288~373 K之间随着温度的变化没有明显变化。可见,B位掺杂样品不适合做热控制材料。
     5.从镧锰氧化物ABO_3结构掺杂特性出发,分析和总结了镧锰氧化物的晶格结构、电磁特性和红外吸收与红外发射率之间的相互关系,得出掺杂镧锰氧化物的红外发射率特性是红外辐射与晶格结构、电子结构与磁结构相互耦合作用的结果。
     6.在镧锰氧化物体材料红外发射率研究的基础上,制备镧锰氧化物薄膜和涂层材料,并初步研究它们的红外发射率特性。利用溶胶凝胶法和反提拉涂膜工艺制备了掺锶镧锰氧化物薄膜,薄膜的红外发射率随着膜厚的增加而逐渐减小,当厚度达到1400 nm时发射率保持不变。紫外辐照结果表明,辐照前后薄膜发射率特性基本不变。以掺锶镧锰氧化物为颜料,环氧改性聚氨酯为基体树脂制备了镧锰氧化物涂层,涂层的发射率随着颜料用量的增加而减小。
Infrared emissivity is a physical property for material under certain temperature. According to Stefan-Boltzman law: E=σεT4, infrared emissivity is an important factor for infrared radiant energy. Higher emissivity can lead to higher radiant energy. Besides colossal magnetoresistance effects, metal-insulator and corresponding ferromagnetism-paramagnetism transition are found to occurr in alkaline earth doped lanthanum manganites. Emissivity of metal is low, while that of insulator is high. Thus, due to metal-insulator transition, infrared emissivity of doped lanthanum manganites can change significantly with temperature, which makes them attractive as thermal control material. In this work, we focus on the infrared emissivity and improvement of variable emissivity of ABO_3-type lanthanum manganites, investigating the structure, electromagnetic properties, infrared absorption and emissivity of La_(1-x)A_xMnO_3 (A=Sr and Ca), La_(1-x)A_xMnO_3 (A=Na and K), (La_(0.8)Sr_(0.2))_(1-x)MnO_3 and La_(0.8)Sr_(0.2)Mn_(1-x)B_xO_3 (B=Cu and Ti) systems. Appropriate thermal control systems have been confirmed and variable emissivity property has been improved successfully. The relationship between ABO_3 doped structure and infrared emissivity has been discussed. On the basis of this, infrared emissivity of Sr doped lanthanum manganites film and coating has been primarily investigated.
     1. Divalent Sr and Ca doped lanthanum manganites have been prepared, respectively, and the relationship between emissivity and doping level, temperature, waveband, roughness, crystal lattice has been systematically investigated for the first time. The results indicate that Sr-doped samples are rhombohedral, but with increasing doping level, greatly reducing Mn~(3+) ions result in the transformation of crystal lattice from rhombohedral to cubic, and the structure of Ca-doped samples are cubic. Due to double-exchange interaction between Mn~(3+) and Mn~(4+), electrical resistivity and ferromagnetism of Sr doped samples are enhanced with increasing doping level, which leads to the decrease of emissivity. According to the close relationship between electric and magnetic properties, we conclude that emissivity of lanthanum manganites relates to, not only electrical resistivity, but also ferromagnetism, and intenser ferromagnetism can lead to lower emissivity value. For Ca doped samples, electrical resistivity was enhanced for doping level x=0.1~0.3 samples, but weakened for x=0.4 sample. The ferromagnetism was enhanced for all the Ca doped samples. Ferromagnetic-insulated phase occurred in the sample due to orbital ordering. Emissivity of Ca doped samples decreased with increasing doping level. Thus, we concluded that the ferromagnetism has stronger effect on emissivity than electrical resistivity. Roughness has no drastic influence on emissivity for bulk lanthanum manganites, and emissivity of rhombohedral and orthorhombic samples, prepared by solid-state reaction and sol-gel method, respectively, was significantly different. The emissivity in the 8~14μm waveband for x=0.2 Sr doped sample increases significantly with temperature, due to the metal-insulator phase transition, and the variable range is 0.13 between 288 K and 373 K. The calculated radiant energy arrives to 536.8 W/m2 at 328 K, and radiant property is improved about 18 %. However, in the 3–5μm waveband, no drastic emissivity change occurs. Emissivity of Ca-doped samples gradually decreases with increasing temperature. Therefore, x=0.2 Sr doped sample may have the potential for application as thermal control material.
     2. The monovalent-doped lanthanum manganites La_(1-x)A_xMnO_3 (A= Na and K) were prepared by standard solid-state reaction method. The solubility of Na and K ions in the system is low. The monovalent doped samples are in the paramagnetic state, and the intensity of electron spin resonance decreases with doping level, indicating decreasing concentration of single electron and orbital transition probabilities, which results in the decrease of emissivity. Due to increasing vibrating dipole moments induced by spontaneous polarization, new infrared absorption occurs in the 8~14μm waveband. Due to the weakening of magnetic properties and infrared absorption, the emissivity of monovalent-doped lanthanum manganites is higher and K doped samples exhibit higher emissivity values than Na doped samples. The emissivity of monovalent-doped lanthanum manganites remains constant in the whole temperature range. Therefore, the monovalent-doped system is not suitable as thermal control material.
     3. The emissivity of non-stoichiometric (La_(0.8)Sr_(0.2))_(1-x)MnO_3 system was systematically investigated for the first time and sample with bigger variable-emissivity range has been prepared successfully. The electrical resistivity and ferromagnetism of the samples decrease with A-site deficient levels, due to the increase of electron-phonon and magnetism scatter induced by the change of space structure and inner stress. And new infrared absorption occurs in the 8~14μm waveband induced by distorted crystal lattice. The emissivity of the samples shows increase-decrease trend with deficient level, and highest value has been obtained when deficient level x is 0.2, which may be related to intense infrared absorption in the 8~14μm waveband. Thus, we conclude that the influence of infrared absorption on the emissivity is stronger than that of electrical resistivity and ferromagnetism. The emissivity change of x=0.2 sample is 0.2 in the temperature range of 288~373 K, and even 0.15 near room temperature 288~313 K. The calculated radiant energy arrives to 440.8 W/m~2, and radiant property is improved about 24.6 %. Therefore, non-stoichiometric samples have greater potential for application as thermal control material.
     4. Due to the important effect of Mn-O-Mn network, the emissivity of Cu and Ti doped system was investigated, respectively. With increasing Cu doping level, ordered structure was formed, and then ordering lowers the symmetry, which enhances asymmetric vibration absorption and narrows electron spin resonance linewidth. Two new infrared absorption peaks occur in the 8~14μm waveband for Ti doped samples. The emissivity of B-site doped lanthanum manganites is higher, due to magnetic transformation from ferromagnetic to paramagnetic and intense infrared absorption in the 8~14μm waveband. No drastic change occurs in the whole temperature range for B-site doped samples. Therefore, the B-site doped system is not suitable as thermal control material.
     5. The relationship between infrared emissivity and crystal structure, electromagnetic properties, infrared absorption has been analysed on the basis of ABO_3 doping structure. We conclude that the emissivity property of doped lanthanum manganites is strongly related to the coupling effect between infrared radiation and crystal, electric, magnetic structure.
     6. On the basis of research on emissivity of bulk lanthanum manganites, Sr doped lanthanum manganites films and coatings have been prepared, and emissivity of the samples is primarily investigated. The films were prepared by sol-gel and reversed-dip-coating method. The emissivity of the films decreases with thickness, and remains constant when the thickness arrives to 1400 nm. Ultraviolet radiation results show that emissivity property is changeless after radiation. The lanthanum manganites coatings were prepared by Sr doped manganites and epoxy modified polyurethane. The emissivity of the coatings decreases with increasing pigment concentration.
引文
[1]常本康,蔡毅.红外成像阵列与系统.北京:科学出版社,2006:40~47.
    [2]陈衡.红外物理学.北京:国防工业出版社,1985:51~53.
    [3]陈永甫.红外辐射红外器件与典型应用.北京:电子工业出版社,2004:10~12.
    [4]白长城,张海兴,方湖宝.红外物理.北京:电子工业出版社,1989:51~52.
    [5]克罗塞.红外技术基础.上海:科学技术出版社,1965:73~74.
    [6]AG Emslie. Sgm on thermal radiation of solids. San Francisco:NASA,1965:3~4.
    [7]C Piccirillo, R Binions, IP Parkin. Synthesis and Functional Properties of Vanadium Oxides. Chemical Vapor Deposition, 2007, 13 (4):145~151.
    [8]JR Platt. Electrochromism, a possible change of color producible in dyes by an electic field. The Journal of Chemical Physics, 1961, 34(3): 862~867.
    [9]CG Granqvistc, A Hultaker. Transparent and conducting ITO films: new development and applications. Thin Solid Films, 2002, 411(1): 1~5.
    [10]JS Hale, JA Woollam. Prospects for IR emissivity control using electrochromic structures. Thin Solid Films, 1999, 339(1~2): 174~180.
    [11]EB Franke, CL Trimble, M Schubert, et al. All solid state electrochromic reflectance device for emittance modulation in the far infrared spectral region. Applied Physics Letters, 2000, 77(7): 930~932.
    [12]GB Smith, GA Niklasson, J Svensson, et al. Noble metal based transparent infrared reflectors: experiments and theoretical analyses for very thin gold films. Journal of Applied Physics, 1986, 59(2): 571~581.
    [13]RB Goldner, FO Arntz, TE Haas. D-Electrons and two active thin film devices for achieving a solar energy economy. Solar Energy Materials and Solar Cells, 1994, 32(4): 421~428.
    [14]JG Zhang, DK Benson, CE Trancy, et al. Optimization study of solid-state electrochromic devices based on WO_3/lithium-polymer electrolyte/V2O5 structures. Journal of the Electrochemical Society, 1994, 141(10): 2795~2800.
    [15]P Schlotter, G Baur, R Schmidt, et al. Laminated electrochromic device for smart windows. Proceedings of SPIE, 1994, 2255: 351~362.
    [16]B Munro, P Conrad, S Kramer, et al. Development of electrochromic cells by the sol-gel process. Solar Energy Materials and Solar Cells, 1998, 54(1~4): 131~137.
    [17]RB Goldner, FO Arntz, K Dickson, et al. Some lessons learned from research on a thin film electrochromic window. Solid State Ionics, 1994, 70~71: 613~618.
    [18]SF Cogan, RD Rauh, JD Klein, et al. Variable transmittance coatings using electrochromic lithium chromate and amorphous WO3 thin films. Journal of the Electrochemical Society, 1997, 144(3): 956~960.
    [19]JGH Mathew, SP Sapers, MJ Cumbo, et al. Large area electrochromics for architectural applications. Journal of Non-Crystal Solids, 1997, 218: 342~346.
    [20]MG Hutchins, NS Butt, AJ Topping, et al. Tantalum oxide thin film ionic conductors for monolithic electrochromic devices. Proceedings of SPIE, 2001, 4458: 120~127.
    [21]A Azens, L Kullman, G Vaivars, et al. Sputter-deposited nickel oxide for electrochromic applications. Solid State Ionics, 1998, 113~115: 449~456.
    [22]P Topart, P Hourquebie. Infrared switching electroemissive devices based on highly conducting polymers. Thin Solid Films, 1999, 352(1~2): 243~248.
    [23]CG Granqvist. Handbook of inorganic electrochromic materials. New York: Elsevier, 1995: 19~20.
    [24]SK Deb. Optical and photoelectric properties and color centers in thin films of tungsten oxid. Philosophical Magazine, 1973, 27(4): 801~822.
    [25]CJ Schoot, JJ Ponjee, TH Van Dam, et al. New electrochromic memory display. Applied Physics Letters, 1973: 23(2): 64~65.
    [26]CM Lampert. Electrochromic materials and devices for efficient windows. Solar Energy Materials, 1984, 11(1~2): 1~27.
    [27]C Trimble, M DeVries, JS Hale, et al. Infrared emittance modulation devices using electrochromic crystalline tungsten oxide, polymer conductor, and nickel oxide. Thin Solid Films, 1999, 355~356: 26~34.
    [28]YS Huang, YZ Zhang, XT Zeng, et al. Study on Raman spectra of electrochromic c-WO3 films and their infrared emittance modulatin characteristics. Applied Surface Science, 2002, 202(1~2): 104~109.
    [29]EB Franke, CL Trimble, JS Hale, et al. Infrared switching electrochromic devices based on tungsten oxide. Journal of Applied Physics, 2000, 88(10): 5777~5784.
    [30]A Bessiere, C Marcel, M Morcrette, et al. Flexible electrochromic reflectance device based on tungsten oxide for infrared emissivity control. Journal of Applied Physics, 2002, 91(3): 1589~1594.
    [31]AL Larsson, GA Niklasson. Infrared emittance modulatin of all-thin-film electrochromic devices.Materials Letters, 2004, 58(20): 2517~2520.
    [32]E Franke, H Neumann, M Schubert, et al. Low orbit environment protective coating for all solid state electrochromic surface heat radiation control device. Surface & Coating Technology, 2002, 151~152: 285~288.
    [33]CL Trimble, E Franke, JS Hale, et al. Electrochromic emittance modulation devices for spacecraft thermal control. AIP Conference Proceedings, 2000, 504(1): 797~802.
    [34]JS Hale, MD Vries, JA Woollam, et al. Visible and infrared optical constants of electrochromic materials for emissivity modulation applications.Thin Solid Films, 1998, 313~314: 205~209.
    [35]AG Darrin, R Osiander, J Champion, et al. Variable emissivity through MEMS technology. AIP Conference Proceedings, 2000, 504: 803~810.
    [36]DM Douglas, T Swanson, R Osiander, et al. Development of variable emittance thermal suite for space thechnology 5 microsatellite. AIP Conference Proceedings, 2002, 608(1): 204~210.
    [37]黄良甫,贾付云.空间微机电系统的研究与进展.真空与低温,2002,8(4):187~190.
    [38]王熙元,陈学康等.卫星静电热开关辐射散热器热性能分析.真空与低温,2009,15(1):25~29.
    [39]S Tachikawa, A Ohnishi, Y Shimakawa, et al. Development of a variable emittance radiator based on a perovskite manganese oxide. 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 2001: 1~8.
    [40]K Shimazaki, A Ohnishi, Y Nagasaka. Computational design of solar reflection and far infrared transmission for a variable emittance device. Applied Optics, 2003, 42(7):1360~1366.
    [41]S Tachikawa, A Ohnishi, K Shimazaki, et al. Design and ground test results of variable emittance radiator. SAE Technical Paper, 2000: 8~13.
    [42]Y Shimakawa, T Yoshitake, Y Kubo, et al. A Variable emittance radiator based on metal-insulator transition of (La,Sr)MnO_3 thin films. Applied Physics Letters, 2002, 80(25): 4864~4866.
    [43]SN Ruddlesden and P Popper. On the crystal structure of the nitrides of silicon and germanium. Acta Crystallographica, 1958, 11(7): 465~468.
    [44]BAA Elemans, B van Laar, et al. The crystallographic and magnetic structures of La_(1-x)Ba_xMn_(1-x)Me_xO_3 (Me=Mn or Ti). Journal of Solid State Chemistry, 1971, 3(2): 238~242.
    [45]P Schiffer, AP Ramirez, W Bao, et al. Low-temperature magnetoresistance and the magnetic phase diagram of La_(1-x)Ca_xMnO_3. Physical Review Letters, 1995, 75(18): 3336~3339.
    [46]RD Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 1976, 32(5): 751~767.
    [47]LM Rodriguez-Martinez and JP Attfield. Cation disorder and size effects in magnetoresistivemanganese oxide perovskites. Physical Review B, 1996, 54(22): R15622~R15625.
    [48]F Damay, C Martin, A Maignan, et al. Cation disorder and size effects upon magnetic transitions in Ln0.5A0.5MnO_3 manganites. Journal of Applied Physics, 1997, 82(12): 6181~6185.
    [49]HA Jahn and E Teller. Stability of polyatomic molecules in degenerate electronic states. Proceedings of the Royal Society of London, 1937, 161(905): 220~235.
    [50]S Satpathy, ZS Popovic, FR Vukajlovic. Electronic structure of the perovskite oxides La_(1-x)Ca_xMnO_3. Physical Review Letters, 1996, 76(6):960~963.
    [51]AJ Millis, BI Shraiman, R Mueller. Dynamic Jahn-Teller effect and colossal magnetoresistance in La_(1-x)Sr_xMnO_3. Physical Review Letters, 1996, 77(1):175~178.
    [52]AJ Millis. Cooperatice Jahn-Teller effect and electron-phonon coupling in La_(1-x)A_xMnO_3. Physical Review B, 1996, 53(13): 8434~8441.
    [53]G Dezanneau, A Sin, H Roussel, et al. Synthesis and characterization of La_(1-x)MnO_3±δnanopowder prepared by acrylamide polymerization. Solid State Communications, 2002, 121(2~3): 132~137.
    [54]HL Yakel. On the structures of some compounds of the perovskite type. Acta Crystallographica, 1955, 8(7): 394~398.
    [55]P Dai, J Zhang, HA Mook, et al. Experimental evidence for the dynamic Jahn-Teller effect in La_(0.65)Ca_(0.35)MnO_3. Physical Review B, 1996, 54(6):R3694~R3697.
    [56]A Lanzara, NL Saini, M Brunelli, et al. Crossover from large to small polarons across the metal-insulator transition in manganites. Physical Review Letters, 1998, 81(4): 878~881.
    [57]JMD Coey, M Viret and S Von Molnar. Mixed-valence manganites. Advances in Physics, 1999, 48(2): 167~293.
    [58]C Zener. Interaction between the d-shells in the transition metals. Physical Review, 1951, 82(3): 403~405.
    [59]E Dagotto, T Hotta and A Moreo. Colossal magnetoresistant materials: the key role of phase separation. Physics Reports, 2001, 344(1~3): 1~153.
    [60]JB Goodenough. Theory of the role of covalence in the perovskite type manganites [La,M(Ⅱ)]MnO_3. Physical Review, 1955, 100(2): 564~573.
    [61]J Sacanell, F Parisi, et al. Magnetoresistive memory in phase-separated La_(0.5)Ca_(0.5)MnO_3. Physica B, 2004, 354(1~4): 43~46.
    [62]ZQ Li, XH Zhang, H Liu, et al. Magnetic properties of the charge ordered Nd_(0.75)Na_(0.25)MnO_3. Solid State Communications, 2004, 130(8): 563~566.
    [63]PW Anderson and H Hasegawa. Considerations on double exchange. Physical Review, 1955, 100(2): 675~681.
    [64]W Zhang, X Wang, M Elliott and IW Boyd. Stress effect and enhanced magnetoresistance in La_(0.67)Ca_(0.33)MnO_(3-δ) films. Physical Review B, 1999, 58 (21) 14143~14146.
    [65]A Urushibara, Y Moritomo, T Arima, et al. Insulator-metal transition and giant magnetoresistance in La_(1-x)Sr_xMnO_3. Physical Review B, 1995, 51 (20) 14103~14109.
    [66]A Dhahri, J Dhahri, et al. Synthesis, structural, magnetic and electrical properties of La_(1-x)Cd_xMnO_3 manganites (0.1≤x≤0.5). Journal of Alloys and Compounds, 2008, 450(1~2):12~17.
    [67]R von Helmolt, J Wecker, B Holzapfel, et al. Giant negative magnetoresistance in perovskitelike La_(2/3)Ba_(1/3)MnO_x ferromagnetic films. Physical Review Letters, 1993, 71 (14) 2331~2333.
    [68]S Jin, TH Tiefel, M McCormack, et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science, 1994, 264 (5157) 413~415.
    [69]WE Pickett and DJ Singh. Electronic structure and half-metallic transport in the La_(1-x)Ca_xMnO_3 system. Physical Review B, 1996, 53(3): 1146~1160.
    [70]A Chainani, M Mathew and DD Sarma. Electron spectroscopic investigation of the semiconductor metal transition in La_(1-x)Sr_xMnO_3. Physical Review B, 1993, 47(23): 15397~15403.
    [71]T Saitoh, AE Bocquet, T Mizokawa, et al. Electronic structure of La_(1-x)Sr_xMnO_3 studied by photoemission and x-ray-absorption spectroscopy. Physical Review B, 1995, 51(20): 13942~13951.
    [72]A Fujimori, I Hase, M Nakamura, et al. Doping-induced changes in the electronic structure of La_(1-x)Sr_xTiO_3. Physical Review B, 1992, 46(15): 9841~9844.
    [73]JW Allen, CG Olson, MB Maple, et al. Resonant photoemission study of Ne_(2-x)Ce_xCuO_(4-y). Physical Review Letters, 1990, 64(5): 595~598.
    [74]F Moussa, M Hennion, G Biotteau, et al. Magnetic coupling induced by hole doping in perovskites La_(1-x)Ca_xMnO_3: A neutron scattering study. Physical Review B, 1999, 60(17):12299~12308.
    [75]PG De Gennes. Effects of double exchange in magnetic crystals. Physical Review, 1960, 118(1): 141~154.
    [76]VA Bokov, NA Grigoryan, MF Bryzhina, et al. Effect of lattice distortions on the magnetic behaviour of perovskite type manganites. Physica Status Solidi, 1968, 28(2):835~847.
    [77]EO Wollan and WC Koehler. Neutron diffraction study of the magnetic properties of series of the La_(1-x)Ca_xMnO_3. Physical Review, 1955, 100(2):545~563.
    [78]G Matsumoto. Study of La_(1-x)CaxMnO_3: Magnetic structure of LaMnO_3. Journal of the Physical Society of Japan, 1970, 29(3):606~615.
    [79]J Inoue and S Maekawa. Spiral state and giant magnetoresistance in perovskite Mn oxides. Physical Review Letters, 1995, 74(17):3407~3410.
    [80]T Arima and Y Tokura, Optical study of electronic structure in perovskity-type RMO_3 (R=La,Y; M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu). Journal of the Physical Society of Japan, 1995, 64(7): 2488~2501.
    [81]KH Kim, JY Gu, et al. Frequency shifts of the internal phonon modes in La_(0.7)Ca_(0.3)MnO_3. Physical Review Letters, 1996, 77(9):1877~1880.
    [82]K Shimazaki, S Tachikawa, A Ohnishi, et al. Radiative and optical properties of La_(1-x)Sr_xMnO_3(0≤x≤0.4)in the vicinity of metal-insulator transition temperature from 173 to 414 K. International Journal of Thermophysics, 2001, 22(5):1549~1561.
    [83]G Tang, Y Yu, W Chen and Y Cao. The electrical resistivity and thermal infrared properties of La1?xSrxMnO_3 compounds. Journal of Alloys and Compound, 2008, 461(1~2):486~1880.
    [84]G Tang, Y Yu, W Chen, Y Cao, Thermochromic properties of manganese oxides La_(1-x)A_xMnO_3 (A=Ca, Ba). Material Letters, 2008, 62 (17~18):2914~2916.
    [85]X Hong, A Posadas, CH Ahn. Examining the screening limit of field effect devices via the metal-insulator transition. Applied Physics Letters, 2005, 86(14):142501~142503.
    [86]V Moshnyaga, K Gehrke, OI Lebedev, et.al., Electrical nonlinearity in colossal magnetoresistance manganite films. Physical Review B, 2009, 79 (13):134413~134420.
    [87]C Hartinger, F Mayr, A Loidl and T Kopp, Polaronic excitations in colossal magnetoresistance manganite films. Physical Review B, 2006, 73 (2):024408~024423.
    [88]P Padhan and RC Budhani. Interfacial disorder-driven metal-insulator transition and enhanced low-temperature magnetoresistance in La_(0.7)Ca_(0.3)MnO_3/LaNiO_3 superlattices. Physical Review B, 2003, 67 (2):024414~024419.
    [89]HY Hwang, SW Cheong, PG Radaelli, et al. Lattice Effects on the Magnetoresistance in Doped LaMnO_3. Physical Review Letters, 1995, 75 (5):914~917.
    [90]HL Ju, J Gopalakrishnan, JL Peng, et al. Dependence of giant magnetoresistance on oxygen stoichiometry and magnetization in polycrystalline La0.67Ba0.33MnOz. Physical Review B, 1995, 51 (9):6143~6146.
    [91]K Khazeni, YX Jia, L Lu, et al. Effect of Pressure on the Magnetoresistance of Single Crystal Nd_(0.5)Sr_(0.36)Pb_(0.14)MnO_(3-δ). Physical Review Letters, 1996, 76 (2):295~298.
    [92]A Gupta, GQ Gong, G Xiao, et al. Grain-boundary effects on the magnetoresistance properties of perovskite manganite films. Physical Review B, 1996, 54 (22):R15629~ R15632.
    [93]Jérome Coulon, Awatef Hassini, Monique Gervais, et al. Growing and characterization ofLa0.8Sr0.2MnO_3 thin films on single crystal oxide substrate. Materials Science and Engineering B, 2003, 104 (3):141~144.
    [94]YH Huang, CH Yan, ZM Wang, et al. Variation of structural, magnetic and transport properties in RE0.7Sr0.3MnO_3 granular perovskites. Solid State Communications, 2001, 118 (10):541~546.
    [95]A Dutta, N Gayathri, R Ranganathan. Effect of particle size on the magnetic and transport properties of La_(0.875)Sr_(0.125)MnO_3. Physical Review B, 2003, 68 (5):054432~054439.
    [96]J Fontcuberta, B Martinez, A Seffar, et al. Colossal Magnetoresistance of Ferromagnetic Manganites: Structural Tuning and Mechanisms. Physical Review Letters, 1996, 76 (7):1122~1125.
    [97]S Bhattacharya, R Mukherjee, BK Chaudhuri. Effect of Li doping on the magnetotransport properties of La_(0.7)Ca_(0.3)–yLiyMnO_3 system: Decrease of metal–insulator transition temperature. Applied Physics Letters, 2003, 82 (23):4101~4103.
    [98]A Benerjee, S Pal, BK Chaudhuri. Nature of small-polaron hopping conduction and the effect of Cr doping on the transport properties of rare-earth manganite La0.5Pb0.5Mn1-xCrxO3. Journal of Chemical Physics, 2001, 115 (3):1550~1558.
    [99]AJ Millis, PB Littlewood, BI Shraiman. Double Exchange Alone Does Not Explain the Resistivity of La_(1-x)Sr_xMnO_3. Physical Review Letters, 1995, 74(25):5144~5147.
    [100]AP Ramirez, SW Cheong, P Schiffer. Colossal magnetoresistance and charge order in La_(1-x)Ca_xMnO_3. Journal of Applied Physics, 1997, 81 (8):5337~5342.
    [101]Richmond JC. Effect of Surface Roughness on Emittance of Nonmetals. Journal of the Optical Society of America B, 1966, 56 (2):253~254.
    [102]JH Wu and JG Lin. Electron magnetic resonance study on the surface states of La_(0.7)Sr_(0.3)MnO_3 nanoparticles. Journal of Applied Physics, 2006, 99 (8):08Q316~08Q318.
    [103]AK Heilman, YY Xue, B Lorenz, BJ Campbell, et al. Distinct insulating state below the Curie point in Pr_(0.7)Ba_(0.3)MnO_3, Physical Review B, 2002, 65(21):214423~214427.
    [104]S Ishihara, M Yamanaka, and N Nagaosa. Orbital liquid in perovskite transition-metal oxides. Physical Review B, 1997, 56(2):686~692.
    [105]YS Sung, H Takeya and K Hirata. Specific heat capacity and hemispherical total emissivity of liquid Si measured in electrostatic levitation. Applied Physics Letters, 2003, 83 (6):1122~1124.
    [106]M Uehara, S Mori, CH Chen, SW Cheong. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature, 1999, 399 (6736):560~563.
    [107]SL Ye, WH Song, JM Dai, et al. Large room-temperature magnetoresistance and phase separation in La_(1-x)Na_xMnO_3 with 0.1≤x≤0.3. Journal of Applied Physics, 2001, 90(6):2943~2948.
    [108]Boudaya C, Laroussi L, Dhahri E, et al. Magnetic and magnetoresistance properties in rhombohedral La_(1-x)K_xMnO_3 perovskite-type compounds. Journal of Physics, 1998, 10(33):7485~7492.
    [109]M Sahana, RN Singh, C Shivakumara, et al. Colossal magnetoresistance in epitaxial La_(1-x)-yNayMnO_3 thin film. Applied Physics Letters, 1997, 70 (21):2909~2911.
    [110]Y Teraoka, K Kanada and S Kagawa. Synthesis of La-K-Mn-O perovskite-type oxides and their catalytic property for simultaneous removal of NO_x and diesel soot particulates. Applied Catalysis B: Environmental, 2001, 34 (1):73~78.
    [111]Soma Das and TK Dey. Magnetic entropy change in polycrystalline La_(1-x)K_xMnO_3 perovskites. Journal of Alloys and Compound, 2007, 440 (1~2):30~35.
    [112]Soma Das and TK Dey. Thermoelectric power of potassium doped lanthanum manganites at low temperatures. Journal of Magnetism and Magnetic Materials, 2007, 311 (2):714~723.
    [113]Soma Das and TK Dey, Electrical conductivity and low field magnetoresistance in polycrystalline La_(1-x)K_xMnO_3 pellets prepared by pyrophoric method. Solid State Communications, 2005, 134 (12):837~842.
    [114]T Tang, QQ Cao, KM Gu, et al. Giant magnetoresistance of the La_(1-x)Ag_xMnO_3 polycrystalline inhomogeneous granular system. Applied Physics Letters, 2000, 77(5):723~725.
    [115]许恒毅.曹庆琪,沈亚涛,等.磁性材料及器件.2000(3l):l~4.
    [116]T Satoh, Y Kikuchi, K Miyano, et al. Irreversible photoinduced insulator-metal transition in the Na-doped manganite Pr_(0.75)Na_(0.25)MnO_3. Physical Review B, 2002, 65(12):125103~125106.
    [117]C Autret, A Maignan, C Martin, et al. Magnetization steps in a noncharge-ordered manganite, Pr_(0.5)Ba_(0.5)MnO_3. Applied Physics Letters, 2003, 82(26):4746~4748.
    [118]S Roy, YQ Guo, S Venkatesh, et al. Interplay of structure and transport properties of sodium-doped lanthanum manganites. Journal of Physics, 2001, 13(42):9547~9559.
    [119]T Shimura, T Hayashi, Y Inaguma, et al. Magnetic and electrical properties of La_yA_xMnwO_3 (A=Na, K, Rb, and Sr) with perovskite-type structure. Journal of Solid State Chemistry, 1996, 124 (2):250~263.
    [120]S Nakamura, K Nanba, S Iida. Possible giant magnetoresistance effect in La_(1-x)A_xMnO_3 (A: Li, Na). Journal of Magnetism and Magnetic Materials, 1998, 177~181(2):884~885.
    [121]XH Zhang, ZQ Li, W Song, et al. Magnetic properties and charge ordering in Pr_(0.75)Na_(0.25)MnO_3 manganite. Solid State Communications, 2005, 135(6):356~360.
    [122]ZQ Li, XH Zhang, H Liu, et al. Magnetic properties of the charge orderd Nd_(0.75)Na_(0.25)MnO_3.Solid State Communications, 2004, 130(8):563~566.
    [123]XJ Liu, EY Jiang, ZQ Li, et al. Magnetic, electrical transport and electron spin resonance studies of charge-ordered Nd_(0.75)Na_(0.25)MnO_3. Physica B, 2004, 348(1~4):146~150.
    [124]ZQ Li, XH Zhang, JS Yu, et al. Competition between the charge ordered and ferromagnetic states in (La, Nd)_(0.75)Na_(0.25)MnO_3 manganites. Physics Letters A, 2004, 325(5~6):430~434.
    [125]裘祖文.电子自旋共振波谱.北京:科学出版社,1980:1~21.
    [126]陈贤镕.电子自旋共振实验技术.北京:科学出版社,1986:22~30.
    [127]JB Neaton, C Ederer, UV Waghmare, et al. First-principles study of spontaneous polarization in multiferroic BiFeO3. Physical Review B, 2005, 71 (1):014113~014120.
    [128]JY Yu, SY Zhang, GH Liu, et al. Electrical and magnetic properties of non-stoichiometric (La0.8Sr0.2)1-xMnO_3 perovskites. Solid State Communications, 2007, 142 (6):333~336.
    [129]G Venkataiah, V Prasad, P Venugopal Reddy. Influence of A-site cation mismatch on structural, magnetic and electrical properties of lanthanum manganites. Journal of Alloys and Compound, 2007, 429(1~2):1~9.
    [130]V Ferris, G Goglio, L Brohan, O Joubert, P Molinie, M Ganne. Transport-Properties and Magnetic-Behavior in the Polycrystalline Lanthanum-Deficient Manganate Perovskites. Materials Research Bulletin, 1997, 32(6):763~777.
    [131]R Suryanarayanan, V Gasumyants, N Ageev. Giant Nernst effect in La_(0.88)MnO_3 and La_(0.7)Ca_(0.3)MnO_3. Journal of Magnetism and Magnetic Materials, 2000, 211(1~3):226~231.
    [132]H Vincent, M Audier, S Pignard, G Dezanneau, JP Senateur. Crystal Structure Transformations of a Magnetoresistive La_(0.8)MnO_(3–δ) Thin Film. Journal of Solid State Chemistry, 2002, 164(2):177~187.
    [133]Nglee Y, Sapina F, Martinerz Tamayo E, et al. Low-temperature synthesis, structure and magnetoresistance of submicrometric La_(1-x)K_xMnO_(3+δ) perovskites. Journal of Materials Chemistry, 1997, 7(9):1905~1909.
    [134]GM Zhao, K Conder, et al. Giant oxygen isotope shift in the magnetoresistive perovskite La_(1-x)Ca_xMnO_(3+y). Nature, 1996, 381(6584):676~678.
    [135]L Pi, L Zheng, Y Zhang. Transport mechanism in polycrystalline La_(0.825)Sr_(0.175)Mn_(1-x)Cu_xO_3. Physical Review B, 2000, 61(13):8917~8921.
    [136]SL Yuan, J Zhang, et al. Effect of sintering temperature on electronic transport and low-field colossal magnetoresistance in sol-gel prepared polycrystals of nominal La2/3Ca1/3Mn0.96Cu0.04O3. Physical Review B, 2003, 68(17):1724081~1724084.
    [137]SL Yuan, ZY Li, et al. Magnetic behavior in the Cu-doped samples ofLa2/3Ca1/3Mn1?xCuxO3(0≤x≤0.3). Solid State Communications, 2001, 117(11):661~666.
    [138]SL Yuan, YP Yang, et al. A substantial improvement in magnetoresistance by Cu doping at Mn sites of La2/3Ca1/3MnO_3. Solid State Communications, 2002, 123(1~2):55~58.
    [139]K Ghosh, SB Ogale, et al. Transition-element doping effects in La_(0.7)Ca_(0.3)MnO_3. Physical Review B, 1999, 59(1):533~537.
    [140]JH Park, SW Cheong, and CT Chen. Double-exchange ferromagnetism in La(Mn_(1-x)Co_x)O_3. Physical Review B, 1997, 55(17): 11072~11075.
    [141]PA Joy, YB Khollam, and SK Date. Spin states of Mn and Co in LaMn0.5Co0.5O3. Physical Review B, 2000, 62(13): 8608~8610.
    [142]IO Troyanchuk, NV Samsonenko, A Nabialek, and H Szymczak. Magnetic interactions and phase transitions in the Co- and Ni-doped manganites. Journal of Magnetism and Magnetic Materials, 1997, 168(3): 309~315.
    [143]IO Troyanchuk, NV Samsonenko, NV Kasper, et al. Magnetic ordering in perovskites containing manganese and cobalt. Journal of Physics, 1997, 9(39): 8287~8295.
    [144]ZQ Yang, L Ye, and XD Xie. Electronic and magnetic properties of the perovskite oxides: LaMn_(1-x)Co_xO_3. Physical Review B, 1999, 59(10): 7051~7057.
    [145]JB Goodenough, A Wold, RJ Arnott, and N Menyuk. Relationship between crystal symmetry and magnetic properties of ionic compounds containing Mn~(3+). Physical Review, 1961, 124(2): 373~384.
    [146]K Asai, K Fujiyoshi, N Nishimori, and Y Satoh. Magnetic properties of REMe_(0.5)Mn_(0.5)O_3 (RE = Rare Earth Element, Me = Ni, Co). Journal of Physical Society of Japan, 1998, 67(12): 4218~4228.
    [147]IO Troyanchuk, LS Lobanovsky, DD Khalyavin, et al. Magnetic and magnetotransport properties of Co-doped manganites with perovskite structure. Journal of Magnetism and Magnetic Materials, 2000, 210(1~3): 63~72.
    [148]Y Sun, W Tong, XJ Xu, and YH Zhang. Possible double-exchange interaction between manganese and chromium in LaMn_(1-x)Cr_xO_3. Physical Review B, 2001, 63(17): 1744381~1744385.
    [149]R Gundakaram, A Arulraj, PV Vanitha, et al. Effect of substitution of Cr~(3+) in place of Mn~(3+) in rare-earth manganates on the magnetism and magnetoresistance: role of superexchange interaction and lattice distortion in LnMn1-xCrxO3. Journal of Solid State Chemistry, 1996, 127(2): 354~358.
    [150]J Deisenhofer, M Paraskevopoulos, HAK von Nidda, and A Loidl. Interplay of superexchangeand orbital degeneracy in Cr-doped LaMnO_3. Physical Review B, 2002, 6605(5): 0544141~0544147.
    [151]W Tong, B Zhang, S Tan, and YH Zhang. Probability of double exchange between Mn and Fe in LaMn_(1-x)Fe_xO_3. Physical Review B, 2004, 70 (1) 0144221~0144227.
    [152]RW Li, ZH Wang, et al. Magnetic properties and colossal magnetoresistance of the perovskites La_(2/3)Ca_(1/3)Mn_(1-x)Ti_xO_3. Journal of Applied Physics, 2000, 87(9):5597~5599.
    [153]MS Kim, JB Yang, Q Cai, et al. Structure, magnetic, and transport properties of Ti-substituted La_(0.7)Sr_(0.3)MnO_3. Physical Review B, 2005, 71 (1):0144331~0144338.
    [154]IO Troyanchuk, MV Bushinsky, H Szymczak, et al. Magnetic interaction in Mg, Ti, Nb doped manganites. The European Physical Journal B, 2002, 28(1): 75~80.
    [155]JB Goodenough, RI Dass, and J Zhou. Spin-glass to ferromagnet transition in LaMn_(1-x)Sc_xO_3. Solid State Sciences, 2002, 4(3): 297~304.
    [156]JS Zhou, HQ Yin, and JB Goodenough. Vibronic superexchange in single-crystal LaMn_(1-x)Ga_xO_3. Physical Review B, 2001, 63(18): 1844231~1844235.
    [157]T Mizokawa, DI Khomskii, and GA Sawatzky. Orbital polarons and ferromagnetic insulators in manganites. Physical Review B, 2000, 63(2): 0244031~0244035.
    [158]LB Hu, W Tong, H Zhu and YH Zhang. The effects of Jahn-Teller distortion changes on transport properties in LaMn1-xZnxO3. Journal of Physics, 2003, 15(12): 2033~2043.
    [159]N Noginova, R Bah, D Bitok, et al. Effect of diamagnetic dilution and non-stoichiometry on ESR spectra in manganites. Journal of Physics, 2005, 17(7): 1259~1269.
    [160]MC Sánchez, J García, G Subías, and J Blasco. Lack of Jahn-Teller distortion in highly diluted LaMn_(1-x)Ga_xO_3 (x>0.6). Physical Review B, 2006, 73(9): 094416~094420.
    [161]J Farrell and GA Gehring. Interplay between magnetism and lattice distortions in LaMn_(1-x)Ga_xO_3. New Journal of Physics, 2004, 6(1): 16801~16812.
    [162]TRN Kutty and John Philip. Electrical transport properties and magnetoresistance of LaMn_(1-x)M_xO_(3+δ) substituted with diamagnetic ions (M = Li, Mg, Ti). Journal of Physics, 2000, 12(35): 7747~7758.
    [163]M El-Hagary, YA Shoker, et al. Structural and magnetic properties of polycrystalline La_(0.77)Sr_(0.23)Mn_(1-x)Cu_xO_3 (0≤x≤0.5) manganites. Journal of Alloys and Compound, 468(1~2):47~53.
    [164]KY Wang, WH Song, et al. Structural, magnetic, and transport properties in a Cu-doped La_(0.7)Ca_(0.3)MnO_3 system. Journal of Applied Physics, 2001, 90(12):6263~6267.
    [165]A Maignan, C Martin, et al. Size mismatch: A crucial factor for generating a spin-glass insulatorin manganites. Physical Review B, 1999, 60(22):15214~15219.
    [166]XM Liu, XJ Xu and YH Zhang. Effect of Ti dopant on the carrier density collapse in colossal magnetoresistance material La_(0.7)Ca_(0.3)Mn_(1-y)TiyO_3. Physical Review B, 2000, 62(22):15112~15119.
    [167]黄剑锋.溶胶-凝胶原理与技术.北京:化学工业出版社,2005:3~14.
    [168]何知朱.新型热控材料器件及应用.北京:宇航出版社,1988:3~56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700