用户名: 密码: 验证码:
聚苯胺纳米纤维的合成与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚苯胺(PANI)纳米纤维的合成方法和应用是近年来颇受关注的研究热点。PANI的原料易得、合成方法简单、电导率可调、环境稳定性好,是目前研究最为深入、应用前景广阔的本征型导电高分子之一。PANI纳米纤维兼具有机导体和低维纳米结构的特点,可应用于分子导线、传感器、能量存储和场发射等领域。PANI纳米纤维的出现在一定程度上克服了PANI较差的加工性,极大地促进了PANI的广泛应用。本论文提出了一种适合规模化制备PANI纳米纤维的新方法,即在PANI的化学氧化聚合过程中引入超声波,方便地实现PANI纳米纤维的合成和结构调控。论文比较了超声波辐射聚合和界面聚合两种PANI纳米纤维的制备方法,探讨了PANI纳米纤维的形成机理,研究了PANI纳米纤维在导电透明薄膜和电磁干扰(EMI)屏蔽涂料方面的应用。论文取得以下创新性研究成果。
     1.在常规PANI的化学氧化聚合过程中,以超声波辐射代替机械搅拌,实现了无模板制备PANI纳米纤维,合成过程具有方便、简单和产率高(59%)等特点。论文通过反应物的二次滴加过程证实了超声波能够有效的抑制PANI纳米纤维的生长和团聚。研究还发现,超声波聚合速率加快,但产物分子量和电导率降低。反应体系中,较低的过硫酸铵(APS)/苯胺摩尔比(≤1.0)有利于制备高品质、直径约50nm的PANI纳米纤维;较高APS/苯胺摩尔比(2.5)则会得到PANI无规颗粒和直径约100nm PANI纳米纤维的混合物。
     2.通过改变APS和苯胺溶液的混和方式进一步证实超声波对初始PANI纳米纤维的生长和团聚的抑制作用。在普通直接混合聚合中,只能在较低苯胺浓度(≤0.05 M)下得到PANI纳米纤维;随着聚合体系中苯胺浓度的提高(如0.10 M),产物转变为直径约100nm的纤维团聚体和无规颗粒的混合物;超声波辐射可以抵消苯胺浓度提高对PANI纳米纤维形成带来的负面效果,在较高苯胺浓度下也可以得到PANI纳米纤维。反滴加方式下,随着反应的进行,磁力搅拌体系中产物逐渐从起始的初始PANI纳米纤维演变成为层片状PANI和PANI纳米纤维团聚体的混合物,而在超声波辐射体系中,产物始终是PANI纳米纤维。
     3.在超声波作用下,以双氧水为氧化剂合成的PANI纳米纤维更长(约300~1000nm)、更规整。在机械搅拌作用下,反应体系的诱导期较长,反应过程近似为一种直接混合聚合,反应初期,产物是PANI纳米纤维;随反应进行,产物转变为无规颗粒和直径较大、表面粗糙的PANI纤维的团聚体。在超声波辐射条件下,反应诱导期显著缩短,表明反应速率的提高,所得PANI纳米纤维形貌更加均匀、长径比更高,但产率有所降低。
     4.界面聚合中互不相容的两相界面的存在并不能完全抑制和阻止初始PANI纳米纤维的二次生长,体系中单体浓度才是决定PANI形貌的重要因素。此外,搅拌速率也对产物形貌有一定影响。
     5.化学氧化聚合中,在机械搅拌或静置条件下,若能在PANI纳米纤维生成后切断其与单体及氧化剂的接触(如界面聚合、低浓度下的直接混合聚合等),就可以直接获得PANI纳米纤维。反之,这些PANI纳米纤维的存在会进一步催化与其接触的苯胺分子的聚合,致使PANI纳米纤维的进一步长大,并最终转变为PANI无规颗粒(如常规的PANI合成过程)。在超声辐射作用下,即使在已有PANI纳米纤维和更多苯胺单体的共存下,体系中主要发生的还是PANI纳米纤维的生成,即超声波可以抑制PANI纳米纤维的二次生长和团聚。
     6.超声波作用下得到的PANI纳米纤维和常规PANI无规颗粒具有相同的化学结构和结晶程度,PANI分子链在PANI纳米纤维内部呈无规分布状。氧化剂的改变不会影响PANI纳米纤维的FTIR和XRD特征、分散性以及电导率,在以H2O2为氧化剂所得的PANI纳米纤维中只有头-尾结构的PANI分子,这与以APS为氧化剂合成的PANI纳米纤维有所不同。PANI纳米纤维具有良好的分散性,可以方便的分散在水、乙醇、甲基异丁基甲酮(MIBK)等溶剂中。
     7.采用超声波辐射聚合方法,在硫酸体系中合成了硫酸掺杂的PANI纳米纤维。以此PANI纳米纤维为填料,仅采用机械搅拌和超声波振荡处理,分别制备了PANI纳米纤维在聚甲基丙烯酸甲酯(PMMA)和聚丙烯酸树脂(PA)的MIBK溶液中的分散液,并分别以此分散液制备了导电透明PMMA/PANI纳米纤维复合薄膜和PA/PANI纳米纤维EMI屏蔽涂层。该薄膜和涂层制备过程具有方法简单、能耗低等特点,有利于工业化制备,是很有前景的PANI加工途径,并有助于它的广泛应用。
Both the discovery of new approaches for synthesizing polyaniline (PANI) nanofibers and the demonstration of potential applications of the nano-materials have been the research focuses in recent years. PANI is one of the most intensively investigated intrinsically conducting polymers because of its low cost, easy synthesis, tunable conductivity, environmental stability and many promising applications. PANI nanofibers exhibit the advantages of both the organic conductors and low-dimensional nano-structures, demonstrating potential applications in the fields of molecular conducting wires, actuators, energy storage and field emitting and so on. Furthermore, PANI nanofibers solved, to some extent, the problem of intractability of PANI, facilitating the wider applications of PANI. In this dissertation, a novel template free method with good scalability was put forward to prepare PANI nanofibers, i.e. by exerting ultrasonic irradiation in the chemical oxidative polymerization of aniline, PANI nanofibers with controlled structures were successfully prepared. The ultrasonic irradiation method was compared with the interfacial polymerization for preparation of PANI nanofibers, and the formation mechanism of PANI nanofibers was discussed. The applications of PANI nanofibers in the fields of transparent conductive films and electromagnetic interference (EMI) shielding were explored. All results and conclusions obtained are listed below.
     1. By simply replacing the mechanical stirring in the traditional PANI synthesis procedure with ultrasonic irradiation, PANI nanofibers were facilely prepared without use of any template, and a relatively higher yield of 59% was demonstrated. The effect of ultrasonic irradiation on preventing the growth and agglomeration of PANI nanofibers was confirmed by the secondary addition of the reagents. It was found that the polymerization rate of the ultrasonic irradiated system increased, but the molecular weight and conductivity of the polymer decreased. In the case of lower ammonium peroxydisulfate (APS)/aniline molar ratios (e.g.≤1.0), PANI nanofibers in diameters of 50nm with high quality were achieved, while in the case of higher APS/aniline molar ratios (e.g. 2.5), mixtures of PANI nanofibers in diameters of 100nm and micro-sized irregular PANI particles were obtained.
     2. By changing the mixing manner of the solutions of APS and aniline, the effect of ultrasonic irradiation on preventing the growth and agglomeration of PANI nanofibers was confirmed further. With the conventional rapid mixing polymerization, PANI nanofibers can only be achieved at lower aniline concentrations (≤0.05 M), and aggregates of PANI nanofibers with diameters of 100nm mixed with irregular shaped PANI particles were formed at relatively higher aniline concentrations (e.g. 0.10M). However, with exertion of ultrasonic irradiation, the negative effect of higher aniline concentration on formation of PANI nanofibers was neutralized, and PANI nanofibers were also prepared easily at higher aniline concentration (e.g. 0.10M). With the solution of aniline added dropwise into that of APS, i.e. in the reverse addition manner, the primarily formed PANI nanofibers changed into mixtures of PANI nanofibers and laminas with continue of the polymerization under mechanical stirring, while under ultrasonic irradiation, PANI nanofibers were resulted for all the time.
     3. PANI nanofibers with higher lengths (ca. 300-1000nm) and purity were synthesized employing H2O2 instead of APS as the oxidant by the ultrasonic irradiation method. In the case of mechanical stirring, the induction period of the reaction was so long that the polymerization can be considered as a rapid mixing polymerization. Though PANI nanofibers were initially formed at early stages of polymerization, mixtures of irregular PANI particles and aggregates of PANI nanofibers with rough surfaces were resulted with progressing of the polymerization. In the case of ultrasonic irradiation, the induction period reduced greatly, indicating the increasing of the polymerization rate. The product exhibit more uniform morphology, higher aspect ratio, but slightly decreased polymer yield.
     4. The presence of an interface formed between two immiscible liquids was not able to depress and prevent completely the secondary growth of the primary PANI nanofibers in an interfacial polymerization, and the aniline concentration is the key factor that determines the morphology of PANI. Besides, the stirring speed had some effect on the morphology of the polymers.
     5. With mechanical stirring or no stirring during chemical oxidative polymerization, if the contact between aniline and the formed PANI nanofibers can be avoided (e.g., in the case of the interfacial polymerization, rapid mixing polymerization with lower aniline concentration, etc.), PANI nanofibers can be achieved in the final product. Whereas, the PANI nanofibers would catalyze further the polymerization of the aniline around them, leading to the growth of PANI nanofibers, and final product of irregular micro-sized PANI particles were obtained (e.g. the conventional prepared PANI). In the case of ultrasonic irradiation, although the PANI nanofibers co-existed with excess aniline molecules, what happened mainly were the transformation from PANI molecules to PANI nanofibers, but not the growth of PANI nanofibers, i.e., the ultrasonic irradiation prevented effectively the growth of PANI nanofibers, resulting in completely PANI nanofibers in the final product.
     6. The sonochemically prepared PANI nanofibers exhibited the same chemical and crystal structures as the traditionally prepared PANI irregular particles, with all the PANI molecules distributed randomly inside the PANI nanofibers. Variation of the oxidants had no influence on the Fourier transformed infrared (FTIR) spectra, X-ray diffraction (XRD) patterns, dispersibility and conductivity of the PANI nanofibers. While only head-to-tail structured PANI molecules were observed inside the PANI nanofibers prepared with H2O2 as oxidant, which is different from the product prepared with APS as oxidant. PANI nanofibers demonstrated good dispersibility and can be dispersed easily in a variety of solvents, such as water, ethanol, methyl isobutyl ketone (MIBK) and so on.
     7. Sulfuric acid doped PANI nanofibers were sonochemically prepared in a reaction medium of sulfuric acid. By dispersing the sulfuric acid doped PANI nanofibers in either the solution of poly (methyl methacrylate) (PMMA) or polyacrylate (PA) in MIBK with just mechanical stirring and ultrasonicating processing, transparent conductive PMMA/PANI nanofibers composite films or PA/PANI nanofibers electromagnetic interference (EMI) shielding coatings were prepared. Preparation of the PANI nanofibers based films or coatings is one of the most promising processing techniques owing to its easiness and low energy consuming characteristics, which is beneficial for practical application of PANI.
引文
[1]黄德欢.纳米技术与应用[M].上海:中国纺织大学出版社, 2001: 2-5.
    [2]刘吉平,孙洪强.碳纳米材料[M].北京:科学出版社, 2004: 1-16.
    [3] Wang ZL. Nanomaterials for nanoscience and nanotechnology [M]. // Wang ZL. Characterization of nanophase materials. New York: Wiley-VCH Verlag GmbH, 2000: 6-9.
    [4]熊善新.采用模板法制备有序排列的聚苯胺复合微管和微丝的研究[D].成都:四川大学, 2004.
    [5] Rocco MC, William RS, Alivisiatos P. Nanotechnology research directions: IWGN workshop report [R]. National Science and technology Council, September 1999.
    [6]刘吉平,郝向阳.纳米科学与技术[M].北京:科学出版社, 2002: 10-16.
    [7] Bhattacharya SK. Metal-filled polymers: properties and application [M]. New York: Marcel Dekker, 1986: 66-130.
    [8] Delmonte J. Metal/polymer composites [M]. New York: Van Nostrand Reinhold, 1990: 163-234.
    [9] Selvaraj M, Guruviah S. Optimisation of metallic pigments in coatings by an electrochemical technique and an investigation of manganese powder as pigment for metal rich primers [J]. Progress in Organic Coatings, 1996, 28(4): 271-277.
    [10] MacDiarmid AG. Synthetic metals: a novel role for organic polymers [J]. Synthetic Metals, 2001, 125(1): 11-22.
    [11] Heeger AJ. Semiconducting and metallic polymers: the fourth generation of polymeric materials [J]. Synthetic Metals, 2001, 125(1): 23-42.
    [12]王杨勇,强军锋,井新利,等.导电高分子聚苯胺及其应用[J].化工新型材料, 2003, 31(3): 1-6.
    [13]朱道本,王佛松.有机固体[M].上海:上海科学技术出版社, 1999: 89-91.
    [14] Shirakawa H, Louis EJ, MacDiarmid AG, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of poly(acetylene), (CH)x [J]. Journal of the Chemical Society. Chemical Communications, 1977, 578-589.
    [15] Jing XL, Wang YY. Intrinsically conducting polymers for metallic corrosion protection [M]. // Mohammad F. Specialty polymers: materials and applications. India: I.K. International Pvt. Ltd., 2006: 147-206.
    [16] Harlin A, Nousiainen P. Electrically and optically conductive synthetic polymer fiber [J]. Chemical Fibers International, 2003, 53(1) 42-45.
    [17] Wang YY, Jing XL. Intrinsically conducting polymers for electromagnetic interference shielding [J]. Polymers for Advanced Technologies, 2005, 16(4): 344-351.
    [18] MacDiarmid AG.“Synthetic metals”: a novel role for organic polymers (Nobel lecture) [J]. Angewandte Chemie-International Edition, 2001, 40(14): 2581-2590.
    [19] Heeger AJ. Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture) [J]. Angewandte Chemie-International Edition, 2001, 40(14) 2591-2611.
    [20] Shirakawa H. The discovery of polyacetylene film: the dawning of an era of conducting polymers (Nobel lecture) [J]. Angewandte Chemie-International Edition, 2001, 40(14): 2575-2580.
    [21]吴丹,朱超,强骥鹏,等.聚苯胺的掺杂及其应用[J].工程塑料应用, 2006, 34(9): 70-73.
    [22] Letheby H. On the production of a blue substance by the electrolysis of sulphate of aniline [J]. Journal of Chemical Society London, 1862, 15: 161-163.
    [23] MacDiarmid AG, Chiang JC, Halpern M, et al.“Polyaniline”: interconversion of metallic and insulating forms [J]. Molecular Crystals and Liquid Crystals, 1985, 121(1-4): 173-180.
    [24] Geniès EM, Boyle A, Lapkowski M, et al. Polyaniline: a historical survey [J]. Synthetic Metals, 1990, 36(2) 139-182.
    [25] Huang WS, Humphrey BD, MacDiarmid AG. Polyaniline, a novel conducting polymer [J]. Journalof Chemical Society, Faraday Transactions I, Physical Chemistry in Condensed Phases, 1986, 82(8): 2385-2400.
    [26] Hagiwara T, Yamaura M, Iwata K. Structural analysis of deprotonated polyaniline by solid state 13C-NMR [J]. Synthetic Metals, 1988, 26(2): 195-201.
    [27] Wan MX. Absorption spectra of thin film of polyaniline [J]. Journal of Polymer Science, Part A: Polymer Chemistry, 1992, 30(4): 543-549.
    [28] Stafstrom S. Defect states in polyaniline [J]. Synthetic Metals, 1986, 18(1-3): 387-392.
    [29] Epstein AJ, Ginder JM, Zuo F, et al. Insulator-to-metal transition in polyaniline [J]. Synthetic Metals, 1987, 18(1-3): 303-309.
    [30] MacDiarmid AG, Chiang JC, Richter AF, et al. Polyaniline: a new concept in conducting polymers [J]. Synthetic Metals, 1987, 18(1-3): 285-290.
    [31] Wang JG. Anion exchange nature of emeraldine base (EB) polyaniline (PAn) and a revisit of the EB formula [J]. Synthetic Metals, 2002, 132(1): 49-52.
    [32] Wang JG. Polyaniline coatings: anionic membrane nature and bipolar structures for anticorrosion [J]. Synthetic Metals, 2002, 132(1): 53-56.
    [33] Aprano G, Leclerc M, Zotti G. Stabilization and characterization of pernigraniline salt. The“acid-doped”form of fully oxidized polyanilines [J]. Macromolecules, 1992, 25(8): 2145-2150.
    [34] Chandrakanthi N, Careem MA. Preparation and characterization of fully oxidized form of polyaniline [J]. Polymer Bulletin, 2000, 45(2): 113-120.
    [35] Diaz AF, Logan JA. Electroactive polyaniline films [J]. Journal of Electroanalytical Chemistry, 1980, 111: 111-114.
    [36] Sun Z, Geng Y, Li J, et al. Chemical polymerization of aniline with hydrogen peroxide as oxidant [J]. Synthetic Metals, 1997, 84(1-3): 99-100.
    [37] Kuzmany H, Sariciftci NS. In situ spectro-electrochemical studies of polyaniline [J]. Synthetic Metals, 1987, 18(1-3): 353-358.
    [38] Ding Y, Padias AB, Jr. Hall HK. Chemical trapping experiments support a cation-radical mechanism for the oxidative polymerization of aniline [J]. Journal of Polymer Science, Part A: Polymer Chemistry, 1999, 37(14): 2569-2579.
    [39] Millard M. Synthesis of organic polymer films in plasmas [M]. // Hollahan JR, Bell AT. Techniques and applications of plasma chemistry. New York: Wiley, 1974: 102-152.
    [40] Paterno LG, Manolache S, Denes F. Synthesis of polyaniline-type thin layer structures under low-pressure RF-plasma conditions [J]. Synthetic Metals, 2002, 130(1): 85-97.
    [41] Cruz GJ, Morales J, Castillo-Ortega MM, et al. Synthesis of polyaniline films by plasma polymerization [J]. Synthetic Metals, 1997, 88(3): 213-218.
    [42] Liao C, Gu M. Electroless deposition of polyaniline film via autocatalytic polymerization of aniline [J]. Thin Solid Films, 2002, 408(1-2): 37-42.
    [43] Chen Y, Kang ET, Neoh KG. Electroless polymerization of aniline on platinum and palladium surfaces [J]. Applied Surface Science, 2002, 185(3-4): 267-276.
    [44] Gong J, Cui XJ, Xie ZW, et al. The solid-state synthesis of polyaniline/H4SiW12O40 materials [J]. Synthetic Metals, 2002, 129(2): 187-192.
    [45] Huang JX, Moore JA, Acquaye JH, et al. Mechanochemical route to the polymer polyaniline [J]. Macromolecules, 2005, 38(2): 317-321.
    [46] Wan MX. The influence of polymerization method and temperature on the absorption spectra and morphology of polyaniline [J]. Synthetic Metals, 1989, 31(1): 51-59.
    [47] Stafstrom S. Polaron lattice in highly conducting polyaniline: theoretical and optical studies [J]. Physical Review Letters, 1987, 59: 1464-1467.
    [48] Wolf JF, Forbes CE, Gould S, et al. Proton-dependent electrochemical behavior of oligomeric polyaniline compounds [J]. Journal of the Electrochemical Society, 1989, 136(10): 2887-2891.
    [49] Wei Y, Hsueh KF, Jang GW. A study of leucoemeraldine and the effect of redox reactions on the molecular weight of chemically prepared polyaniline [J]. Macromolecules, 1994, 27(2): 518-525.
    [50] Wang YY, Jing XL. Effect of solution concentration on the UV-vis spectroscopy measured oxidation state of polyaniline base [J]. Polymer Testing, 2005, 24(2): 153-156.
    [51]马永梅,管建国,谢洪泉.烷基苯磺酸掺杂聚苯胺的特征及可溶性[J].华中师范大学学报(自然科学版), 1996, 30(4): 447-451.
    [52] Wan MX, Zhou WX, Li YF, et al. Protonic doping in free-standing film of polyaniline [J]. Solid State Communications, 1992, 81(4): 313-316.
    [53] Cao Y, Treacy GM, Smith P, et al. Solution-cast films of polyaniline: optical-quality transparent electrodes. Applied Physics Letters [J]. 1992, 60(22): 2711-2713
    [54] Zheng WY, Levon K, Taka T, et al. Doping induced layered structure in N-alkylated polyanilines [J]. Polymer Journal, 1996, 28(5): 412-418.
    [55] Neoh KG, Pun MY, Kang ET, et al. Polyaniline treated with organic acids: doping characteristics and stability [J]. Synthetic Metals, 1995, 73(3): 209-215.
    [56] Wan MX, Yang J. Mechanism of proton doping in polyaniline [J]. Journal of Applied Polymer Science, 1995, 55(3): 399-405.
    [57] Wang YD, Rubner MF.Investigation of the conductivity stability of acid-doped polyanilines [J]. Synthetic Metals, 1992, 47(3): 255-266.
    [58] Jing XB, Tang JS, Wang Y, et al. Molecular chain structure of doped polyaniline [J]. Science in China B, 1990, 33: 787-794.
    [59] Monkman AP, Adams P. Optical and electronic properties of stretch-oriented solution-cast polyaniline [J]. Synthetic Metals, 1991, 40(1): 87-96.
    [60] Chiang JC, MacDiarmid AG.“Polyaniline”: protonic acid doping of the emeraldine form to the metallic regime [J]. Synthetic Metals, 1986, 13(1-3): 193-205.
    [61] Lee K, Cho S, Sung HP, et al. Metallic transport in polyaniline [J]. Nature, 2006, 441(7089): 65-68.
    [62] Wan M, Li M, Li J, et al. Structure and electrical properties of the oriented polyaniline films [J]. Journal of Applied Polymer Science, 1994, 53(2): 131-139.
    [63] Cao Y, Smith P, MacDiarmid AG. Couter-ion induced processability of conducting polyaniline [J]. Synthetic Metals, 1993, 57(1): 3514-3519.
    [64] Kobayashi T, Yoneyama H, Tamura H. Electrochemical reactions concerned with electochromism of polyaniline film-coated electrodes [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 177(1-2): 281-291.
    [65] Marcel C, Tarascon JM. An all-plastic WO3·H2O/polyaniline electrochromic device [J]. Solid State Ionics, 2001, 143(1): 89-101.
    [66] Somani P, Mandale AB, Radhakrishnan S. Study and development of conducting polymer-based electrochromic display devices [J]. Acta Materialia, 2000, 48(11): 2859-2871.
    [67] Lahav M, Durkan C, Gabai R, et al. Redox activation of a polyaniline-coated cantilever: an electro-driven microdevice [J]. Angewandte Chemie-International Edition, 2001, 40(21): 4095-4097.
    [68] Technical University of Denmark Web site (www. dtu. dk) [OL].
    [69] Kang ET, Ting YP, Neoh KG, et al. Electroless recovery of precious metals from acid solutions by N-containing electroactive polymers [J]. Synthetic Metals, 1995, 69(1-3): 477-478.
    [70] Namazi H, Kabiri R, Entezami A. Determination of extremely low percolation threshold electroactivity of the blend polyvinyl chloride/polyaniline doped with camphorsulfonic acid by cyclic voltammetry method [J]. European Polymer Journal, 2002, 38(4): 771-777.
    [71] Leyva ME, Barra GMO, Gorelova MM, et al. Conducting SBS block copolymer-polyaniline blends prepared by mechanical mixing [J]. Journal of Applied Polymer Science, 2001, 80(4): l626-633.
    [72] Angappane S, Kini RN, Natarajan TS, et al. PAni-PMMA blend/metal Schottky barriers [J]. Thin Solid Films, 2002, 417(1-2): 202-205.
    [73] Gangopadhyay R, De A. Conducting semi-IPN based on polyaniline and crosslinked poly (vinyl alcohol) [J]. Synthetic Metals, 2001, 132(1): 21-28.
    [74] Dhawan SK, Singh N, Venkatachalam S. Shielding effectiveness of conducting polyaniline coated fabrics at 101 GHz [J]. Synthetic Metals, 2002, 125(3): 389-393.
    [75] Ghosh P, Siddhanta SK, Haque SR, et al. Stable polyaniline dispersions prepared in nonaqueous medium: synthesis and characterization [J]. Synthetic Metals, 2001, 123(1): 83-89.
    [76] Okubo M, Fujii S, Minami H. Production of electrically conductive, core/shell polystyrene/polyaniline composite particles by chemical oxidative seeded dispersion polymerization [J]. Colloid and Polymer Science, 2001, 279(2): 139-145.
    [77] Xia HS, Wang Q. Ultrasonic irradiation: a novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites [J]. Chemistry of Materials, 2002, 14(5): 2158-2165.
    [78] Kim BH, Jung JH, Hong SH, et al. Nanocomposite of polyaniline and Na +-montmorillonite clay [J]. Macromolecules, 2002, 35(4): 1419-1423.
    [79] Feng B, Su Y, Song J, et al. Electropolymerization of polyaniline/montmorillonite nanocomposite[J]. Journal of Materials Science Letters, 2001, 20(4): 293-294.
    [80] Jia W, Segal E, Kornemandel D, et al. Polyaniline-DBSA/organophilic clay nanocomposites: synthesis and characterization [J]. Synthetic Metals, 2002, 128(1): 115-120.
    [81] Li ZF, Ruckenstein E. Patterned conductive polyaniline on Si (100) surface via self-assembly and graft polymerization [J]. Macromolecules, 2002, 35(25): 9506-9512.
    [82] Nagarajan R, Roy S, Kumar J, et al. Enzymatic synthesis of molecular complexes of polyaniline with DNA and synthetic oligonucleotides: thermal and morphological characterization [J]. Journal of Macromolecular Science-Pure and Applied Chemistry, 2001, 38(12): 1519-1537.
    [83] Roy S, Fortier JM, Nagarajan R, et al. Biomimetic synthesis of a water soluble conducting molecular complex of polyaniline and lignosulfonate [J]. Biomacromolecules, 2002, 3(5): 937-941.
    [84] Anand J, Palaniappan S, Sathyanarayana DN. Conducting polyaniline blends and composites [J]. Progress in Polymer Science, 1998, 23(6): 993-1018.
    [85] Conway BE. Electrochemical supercapacitors: scientific fundamentals and technological applications [M]. New York: Kluwer Academic/Plenum Publishers, 1999.
    [86] Zipperling Kessler & Co. Web site (www. Zipperling.de) [OL]
    [87] www.panipol.com [OL]
    [88] GeoTech Chemical Co. Web site (www.Catize.com) [OL]
    [89] www.eeonyx.com [OL]
    [90] www.milliken.com [OL]
    [91] Wessling B. Dispersion as the link between basic research and commercial applications of conductive polymers (polyaniline) [J]. Synthetic Metals, 1998, 93(2): 143-154.
    [92] Gospodinova N, Mokreva P, Tsanov T, et al. A new route to polyaniline composites [J]. Polymer, 1997, 38(3): 743-746.
    [93] Kim BJ, Oh SG, Han MG, et al. Preparation of polyaniline nanoparticles in micellar solutions as polymerization medium [J]. Langmuir, 2000, 16(14): 5841-5845.
    [94] Kim BJ, Oh SG, Han MG, et al. Synthesis and characterization of polyaniline nanoparticles in SDS micellar solutions [J]. Synthetic Metals, 2001, 122(2): 297-304.
    [95] Oh SG, Im SS. Electroconductive polymer nanoparticles preparation and characterization of PANI and PEDOT nanoparticles [J]. Current Applied Physics, 2002, 2(4): 273-277.
    [96] Hassan PA, Sawant SN, Bagkar NC, et al. Polyaniline nanoparticles prepared in rodlike micelles [J]. Langmuir, 2004, 20(12): 4874-4880.
    [97] Han MG, Cho SK, Oh SG, et al. Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution [J]. Synthetic Metals, 2002, 126(1): 53-60.
    [98] Kim D, Choi J, Kim JY, et al. Size control of polyaniline nanoparticle by polymer surfactant [J]. Macromolecules, 2002, 35(13): 5314-5316.
    [99] Yan F, Xue G. Synthesis and characterization of electrically conducting polyaniline in water-oil microemulsion [J]. Journal of Material Chemistry, 1999, 9(12): 3035-3039.
    [100]井新利,郑茂盛,蓝立文.反相微乳液法合成导电聚苯胺纳米粒子[J].高分子材料科学与工程, 2000, 16(2): 23-25.
    [101] Mani A, Selvan ST, Phani KLN, et al. Studies on the generation of polyaniline microstructures using microemulsion polymerization [J]. Journal of Materials Science Letters, 1998, 17(5): 385-387.
    [102] Xia HS, Wang Q. Synthesis and characterization of conductive polyaniline nanoparticles through ultrasonic assisted inverse microemulsion polymerization [J]. Journal of Nanoparticle Research, 2001, 3(5-6): 401-411.
    [103] Sulimenko T, Stejskal J, Krivka I, et al. Conductivity of colloidal polyaniline dispersions [J]. European Polymer Journal, 2001, 37(2): 219-226.
    [104] Riede A, Helmstedt M, Riede V, et al. Polyaniline dispersions. 9. Dynamic light scattering study of particle formation using different stabilizers [J]. Langmuir, 1998, 14(23): 6767-6771.
    [105] Blinova NV, Stejskal J, Trchova M, et al. Polyaniline prepared in solutions of phosphoric acid: powders, thin films, and colloidal dispersions [J]. Polymer, 2006, 47(1): 42-48.
    [106] Stejskal J, Kratochvil P, Armes SP, et al. Polyaniline dispersions. 6. Stabilization by colloidal silica particles [J]. Macromolecules, 1996, 29(21): 6814-6819.
    [107] Blinova NV, Sapurina I, Klimovic J, et al. The chemical and colloidal stability of polyaniline dispersions [J]. Polymer Degradation and Stability, 2005, 88(3): 428-434.
    [108] Stejskal J, Sapurina I. On the origin of colloidal particles in the dispersion polymerization of aniline[J]. Journal of Colloid and Interface Science, 2004, 274(2): 489-495.
    [109] Riede A, Helmstedt M, Sapurina I, et al. In situ polymerized polyaniline films: 4. Film formation in dispersion polymerization of aniline [J]. Journal of Colloid and Interface Science, 2002, 248(2): 413-418.
    [110] Somani PR. Synthesis and characterization of polyaniline dispersions [J]. Materials Chemistry and Physics, 2003, 77(1): 81-85.
    [111] Chattopadhyay D, Mandal BM. Methyl cellulose stabilized polyaniline dispersions [J]. Langmuir, 1996, 12(6): 1585-1588.
    [112] Chattopadhyay D, Banerjee S, Chakravorty D, et al. Ethyl(hydroxyethyl)cellulose stabilized polyaniline dispersions and destabilized nanoparticles therefrom [J]. Langmuir, 1998, 14(7): 1544-1547.
    [113] Hwang JY, Cho MS, Choi HJ, et al. Synthesis of polyaniline using stabilizer and its electrorheological properties [J]. Synthetic Metals, 2003, 135-136: 21-22.
    [114] Tang ZY, Liu SQ, Wang ZX, et al. Electrochemical synthesis of polyaniline nanoparticles [J]. Electrochemistry Communications, 2000, 2(1): 32-35.
    [115] Wessling B. Progress in science and technology of polyaniline and poly-ethylenedioxythiophene [J]. Synthetic Metals, 2003, 135-136: 265-267.
    [116] Behera DK, Bag DS, Alam S, et al. Synthesis of polyaniline nanoparticles: an overview [J]. Journal of Polymer Materials, 2004, 21(1): 81-88.
    [117]黄美荣,李新贵,王健.导电聚苯胺纳米粒子的合成及应用[J].石油化工, 2004, 33(3): 284-291.
    [118]李新贵,黄美荣,王健.导电聚苯胺纳米粒子的形成及影响因素[J].塑料工业, 2003, 31(12): 1-15.
    [119] MacDiarmid AG, Jones Jr WE, Norris ID, et al. Electrostatically-generated nanofibers of electronic polymers [J]. Synthetic Metals, 2001, 119(1-3): 27-30.
    [120] Pinto NJ, Johnson Jr AT, MacDiarmid AG, et al. Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor [J]. Applied Physics Letters, 2003, 83(20): 4244-4246.
    [121] Zhou YX, Freitag M, Hone J, et al. Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm [J]. Applied Physics Letters, 2003, 83(18): 3800-3802.
    [122] Kahol PK, Pinto NJ. An EPR investigation of electrospun polyaniline-polyethylene oxide blends [J]. Synthetic Metals, 2004, 140(2-3): 269-272.
    [123] He HX, Li CZ, Tao NJ. Conductance of polymer nanowires fabricated by a combined electrodeposition and mechanical break junction method [J]. Applied Physics Letters, 2001, 78(6): 811-813.
    [124] He C, Tan YW, Li YF. Conducting polyaniline nanofiber networks prepared by the doping induction of camphor sulfonic acid [J]. Journal of Applied Polymer Science, 2003, 87(9): 1537-1540.
    [125] Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning [J]. Nanotechnology, 1996, 7(3): 216-223.
    [126] Spivak AF, Dzenis YA, Reneker DH. A model of study jet in the electrospinning process [J]. Mechanics Research Communications, 2000, 27(1): 37-42.
    [127] Zussman E, Yarin AL, Weihs D. A micro-aerodynamic decelerator based on permeable surfaces of nanofiber mats [J]. Experiments in Fluids, 2002, 33(2): 315-320.
    [128] Zhang XY, Chan-Yu-King R, Jose A, et al. Nanofibers of polyaniline synthesized by interfacial polymerization [J]. Synthetic Metals, 2004, 145(1): 23-29.
    [129] Huang JX, Virji S, Weiller BH, et al. Polyaniline nanofibers: facile synthesis and chemical sensors [J]. Journal of the American Chemical Society, 2003, 125(2): 314-315.
    [130] Virji S, Huang JX, Kaner RB, et al. Polyaniline nanofiber gas sensors: examination of response mechanisms [J]. Nano Letters, 2004, 4(3): 491-496.
    [131] Pillalamarri SK, Blum FD, Tokuhiro AT, et al. Radiolytic synthesis of polyaniline nanofibers: a new templateless pathway [J]. Chemistry of Materials, 2005, 17(2): 227-229.
    [132] Huang JX, Kaner RB. Nanofiber formation in the chemical polymerization of aniline: a mechanistic study [J]. Angewandte Chemie-International Edition, 2004, 43(43): 5817-5821.
    [133] Okamoto H, Okamoto M, Kotaka T. Structure development in polyaniline films during electrochemical polymerization. II: structure and properties of polyaniline films prepared via electrochemical polymerization [J]. Polymer, 1998, 39(18): 4359-4367.
    [134] Smith JA, Josowicz M, Janata J. Polyaniline-gold nanocomposite system [J]. Journal of the Electrochemical Society, 2003, 150(8): E384-E388.
    [135] Li GF, Martinez C, Janata J, et al. Effect of morphology on the response of polyaniline-based conductometric gas sensors: nanofibers vs. thin films [J]. Electrochemical and Solid-State Letters, 2004, 7(10): H44-H47.
    [136] Martin CR, Van Dyke LS, Cai Z, et al. Template synthesis of organic microtubules [J]. Journal of the American Chemical Society, 1990, 112(24): 8976-8977.
    [137] Penner RM, Martin CR. Controlling the morphology of electronically conducting polymers [J]. Journal of the Electrochemical Society, 1986, 133(10): 2206-2207.
    [138] Martin CR. Nanomaterials: a membrane-based synthetic approach [J]. Science, 1994, 266(5193): 1961-1966.
    [139] Martin CR. Template synthesis of electronically conductive polymer nanostructures [J]. Accounts of Chemical Research, 1995, 28(2): 61-68.
    [140] Martin CR. Membrane-based synthesis of nanomaterials [J]. Chemistry of Materials, 1996, 8(8): 1739-1746.
    [141] Wu CG, Bein T. Conducting polyaniline filaments in a mesoporous channel host [J]. Science, 1994, 264(5166): 1757-1759.
    [142] Wang CW, Wang Z, Li MK, et al. Well-aligned polyaniline nano-fibril array membrane and its field emission property [J]. Chemical Physics Letters, 2001, 341(5-6): 431-434.
    [143] Wang Z, Chen MA, Li HL. Preparation and characterization of uniform polyaniline nano-fibrils using the anodic aluminum oxide template [J]. Materials Science and Engineering: A, 2002, 328(1-2): 33-38.
    [144] Yang SM, Chen KH, Yang YF. Synthesis of polyaniline nanotubes in the channels of anodic alumina membrane [J]. Synthetic Metals, 2005, 152(1-3): 65-68.
    [145] Nishizawa M, Menon VP, Martin CR. Metal nanotubule membranes with electrochemically switchable ion-transport selectivity [J]. Science, 1995, 268(5211): 700-702.
    [146] Menon VP, Martin CR. Fabrication and evaluation of nanoelectrode ensembles [J]. Analytical Chemistry, 1995, 67(13): 1920-1928.
    [147] Wu CG, Bein T. Conducting carbon wires in ordered, nanometer-sized channels [J]. Science, 1994, 266(5187): 1013-1015.
    [148] Parthasarathy RV, Phani KLN, Martin CR. Template synthesis of graphitic nanotubules [J]. Advanced Materials, 1995, 7(11): 896-897.
    [149] Cai Z, Martin CR. Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities [J]. Journal of the American Chemical Society, 1989, 111(11): 4138-4139.
    [150] Duchet J, Legras R, Demoustier-Champagne S. Chemical synthesis of polypyrrole: structure-properties relationship [J]. Synthetic Metals, 1998, 98(2): 113-122.
    [151] Wei Z, Zhang Z, Wan M. Formation mechanism of self-assembled polyaniline micro/nanotubes [J]. Langmuir, 2002, 18(3): 917-921.
    [152] Delvaux M, Duchet J, Stavaux PY, et al. Chemical and electrochemical synthesis of polyaniline micro- and nano-tubules [J]. Synthetic Metals, 2000, 113(3): 275-280.
    [153] Zhao YC, Chen M, Xu T, et al. Electrochemical synthesis and electrochemical behavior of highly ordered polyaniline nanofibrils through AAO templates [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258: 363-368.
    [154] Peng CY, Kalkan AK, Fonash SJ, et al. A“grow-in-place”architecture and methodology for electrochemical synthesis of conducting polymer nanoribbons device arrays [J]. Nano Letters, 2005, 5(3): 439-444.
    [155] Cao H, Tie C, Xu Z, et al. Array of nickel nanowires enveloped in polyaniline nanotubules and its magnetic behavior [J]. Applied Physics Letters, 2001, 78(11): 1592-1594.
    [156] Li J, Fang K, Qiu H, et al. Micromorphology and conductive property of the pellets prepared by HCl-doped polyaniline nanofibers [J]. Synthetic Metals, 2004, 145(2-3): 191-194.
    [157] Carswell ADW, Orear EA, Grady BP. Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces: from spheres to wires to flat films [J]. Journal of the American Chemical Society, 2003, 125(48) 14793-14800.
    [158] Zhang XY, Manohar SK. Polyaniline nanofibers: chemical synthesis using surfactants [J].Chemical Communications, 2004, (20): 2360-2361.
    [159] Nickels P, Dittmer WU, Beyer S, et al. Polyaniline nanowire synthesis templated by DNA [J]. Nanotechnology, 2004, 15(11): 1524-1529.
    [160] Ma YF, Zhang JM, Zhang GJ, et al. Polyaniline nanowires on Si surfaces fabricated with DNA templates [J]. Journal of the American Chemical Society, 2004, 126(22): 7097-7101.
    [161] Liu JM, Yang SC. Novel colliod polyaniline fibrils made by template guided chemical polymerization [J]. Journal of the Chemical Society, Chemical Communications, 1991, (21): 1529-1531.
    [162] Choi SJ, Park SM. Electrochemical growth of nanosized conducting polymer wires on gold using molecular templates [J]. Advanced Materials, 2000, 12(20): 1547-1549.
    [163] Hatano T, Takeuchi M, Ikeda A, et al. New morphology-controlled poly(aniline) synthesis using anionic porphyrin aggregate as a template [J]. Chemistry Letters, 2003, 32(4): 314-315.
    [164] Huang LM, Wang ZB, Wang HT, et al. Polyaniline nanowires by electropolymerization from liquid crystalline phases [J]. Journal of Materials Chemistry, 2002, 12(2): 388-391.
    [165] Kan J, Lv R, Zhang S. Effect of ethanol on properties of electrochemically synthesized polyaniline [J]. Synthetic Metals, 2004, 145(1): 37-42.
    [166] Kan JQ, Zhang SL, Jing GL. Effect of ethanol on chemically synthesized polyaniline nanothread [J]. Journal of Applied Polymer Science, 2006, 99(4): 1848-1853.
    [167] Liu J, Wan MX. Synthesis, characterization and electrical properties of microtubules of polypyrrole synthesized by a template-free method [J]. Journal of Materials Chemistry, 2001, 11(2): 404-407.
    [168] Yang YS, Liu J, Wan MX. Self-assembled conducting polypyrrole micro/nanotubes [J]. Nanotechnology, 2002, 13(6): 771-773.
    [169] Qiu HJ, Wan MX, Matthews B, et al. Conducting polyaniline nanotubes by template-free polymerization [J]. Macromolecules, 2001, 34(4): 675-677.
    [170] Long YZ, Chen ZJ, Zheng P, et al. Low-temperature resistivities of nanotubular polyaniline doped with H3PO4 andβ-naphthalene sulfonic acid [J]. Journal of Applied Physics, 2003, 93(5): 2962-2965.
    [171] Wei ZX, Wan MX. Synthesis and characterization of self-doped poly(aniline-co-aminonaphthalene sulfonic acid) nanotubes [J]. Journal of Applied Polymer Science, 2003, 87(8): 1297-1301.
    [172] Zhang ZM, Wei ZX, Wan MX. Nanostructures of polyaniline doped with inorganic acids [J]. Macromolecules, 2002, 35(15): 5937-5942.
    [173] Wan MX, Li JC. Formation mechanism of polyaniline microtubules synthesized by a template-free method [J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2000, 38(13): 2359-2364.
    [174] Long YZ, Chen ZJ, Wang NL, et al. Resistivity study of polyaniline doped with protonic acids [J]. Physica B: Condensed Matter, 2003, 325: 208-213.
    [175] Zhang LJ, Wan MX. Synthesis and characterization of self-assembled polyaniline nanotubes doped with D-10-camphorsulfonic acid [J]. Nanotechnology, 2002, 13(6): 750-755.
    [176] Long YZ, Zhang LJ, Ma YJ, et al. Electrical conductivity of an individual polyaniline nanotube synthesized by a self-assembly method [J]. Macromolecular Rapid Communications, 2003, 24(16): 938-942.
    [177] Long YZ, Luo JL, Xu J, et al. Specific heat and magnetic susceptibility of polyaniline nanotubes: inhomogeneous disorder [J]. Journal of Physics: Condensed Matter, 2004, 16(7): 1123-1130.
    [178] Long YZ, Chen ZJ, Wang NL, et al. Electrical conductivity of a single conducting polyaniline nanotubes [J]. Applied Physics Letters, 2003, 83(9): 1863-1865.
    [179] Huang K, Wan MX. Self-assembled polyaniline nanostructures with photoisomerization function [J]. Chemistry of Materials, 2002, 14(8): 3486-3492.
    [180] Yang YS, Wan MX. Chiral nanotubes of polyaniline synthesized by a template-free method [J]. Journal of Materials Chemistry, 2002, 12(4): 897-901.
    [181] Qiu HJ, Zhai J, Li SH, et al. Oriented growth of self-assembled polyaniline nanowire arrays using a novel method [J]. Advanced Functional Materials, 2003, 13(12): 925-928.
    [182] Pinto NJ, Carrión PL, Ayala AM, et al. Temperature dependence of the resistance of self-assembled polyaniline nanotubes doped with 2-acrylamido-2-methyl-1-propanesulfonic acid [J]. Synthetic Metals, 2005, 148(3): 271-274.
    [183] Hwang JH, Yang SC. Morphological modification of polyaniline using polyelectrolyte template molecules [J]. Synthetic Metals, 1989, 29(1): 271-276.
    [184] Li GC, Pang SP, Peng HR, et al. Templateless and surfactantless route to the synthesis ofpolyaniline nanofibers [J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2005, 43(17): 4012-4015.
    [185] Yang CH, Chih YK, Cheng HE, et al. Nanofibers of self-doped polyaniline [J]. Polymer, 2005, 46(24): 10688-10698.
    [186] Xia H, Narayanan J, Cheng D, et al. Formation of ordered arrays of oriented polyaniline nanoparticle nanorods [J]. Journal of Physical Chemistry B, 2005, 109(26): 12677-12684.
    [187] Sarno DM, Manohar SK, MacDiarmid AG. Controlled interconversion of semiconducting and metallic forms of polyaniline nanofibers [J]. Synthetic Metals, 2005, 148(3): 237-243.
    [188] Konyushenko EN, Stejskal J, Sedenkova I, et al. Polyaniline nanotubes: conditions of formation [J]. Polymer International, 2006, 55(1): 31-39.
    [189] Li GC, Zhang ZK. Synthesis of dendritic polyaniline nanofibers in a surfactant gel [J]. Macromolecules, 2004, 37 (8): 2683-2685.
    [190] Li GC, Peng HR, Wang Y, et al. Synthesis of polyaniline nanobelts [J]. Macromolecular Rapid Communications, 2004, 25(18): 1611-1614.
    [191] Zhang XY, Goux WJ, Manohar SK. Synthesis of polyaniline nanofibers by "nanofiber seeding" [J]. Journal of the American Chemical Society, 2004, 126(14): 4502-4503.
    [192] Li WG, Wang HL. Oligomer-assisted synthesis of chiral polyaniline nanofibers [J]. Journal of the American Chemical Society, 2004, 126(8): 2278-2279.
    [193] Feng XM, Yang G, Xu Q, et al. Self-assembly of polyaniline/Au composites: from nanotubes to nanofibers [J]. Macromolecular Rapid Communications, 2006, 27(1): 31-36.
    [194] King RCY, Roussel F. Morphological and electrical characteristics of polyaniline nanofibers [J]. Synthetic Metals, 2005, 153(1-3): 337-340.
    [195] Zhang X, Kolla HS, Wang X, et al. Fibrillar growth in polyaniline [J]. Advanced Functional Materials, 2006, 16(9): 1145-1152.
    [196] Chan HSO, Ho PKH, Tan KL, et al. Chemical preparation and characterization of conductive polyaniline laminate thin films [J]. Synthetic Metals, 1990, 35(3): 333-344.
    [197] Michaelson JC, McEvoy AJ. Interfacial polymerization of aniline [J]. Journal of the Chemical Society, Chemical communications, 1994, (1): 79-80.
    [198] Gao H, Jiang T, Han B, et al. Aqueous/ionic liquid interfacial polymerization for preparing polyaniline nanoparticles [J]. Polymer, 2004, 45(9): 3017-3019.
    [199] Huang JX, Kaner RB. A general chemical route to polyaniline nanofibers [J]. Journal of the American Chemical Society, 2004, 126(3): 851-855.
    [200] Araújo PLB, Araújo ES, Santos RFS, et al. Synthesis and morphological characterization of PMMA/polyaniline nanofiber composites [J]. Microelectronics Journal, 2005, 36(11): 1055-1057.
    [201] Sawall DD, Villahermosa RM, Lipeles RA, et al. Interfacial polymerization of polyaniline nanofibers grafted to Au surfaces [J]. Chemistry of Materials, 2004, 16(9): 1606-1608.
    [202] Hopkins AR, Sawall DD, Villahermosa RM, et al. Interfacial synthesis of electrically conducting polyaniline nanofiber composites [J]. Thin Solid Films, 2004, 469-470: 304-308.
    [203] Pillalamarri SK, Blum FD, Tokuhiro AT, et al. One-pot synthesis of polyaniline-metal nanocomposites [J]. Chemistry of Materials, 2005, 17(24): 5941-5944.
    [204] Werake LK, Story JG, Bertino MF, et al. Photolithographic synthesis of polyaniline nanofibers [J]. Nanotechnology, 2005, 16(12): 2833-2837.
    [205] Wang Y, Liu ZM, Han BX, et al. Facile synthesis of polyaniline nanofibers using chloroaurate acid as the oxidant [J]. Langmuir, 2005, 21(3): 833-836.
    [206] Chiou NR, Epstein AJ. Polyaniline nanofibers prepared by dilute polymerization [J]. Advanced Materials, 2005, 73(13): 1679-1683.
    [207] Chiou NR, Epstein AJ. A simple approach to control the growth of polyaniline nanofibers [J]. Synthetic Metals, 2005, 153(1-3): 69-72.
    [208] Li D, Kaner RB. Shape and aggregation control of nanoparticles: not shaken, not stirred [J]. Journal of the American Chemical Society, 2006, 128(3): 968-975.
    [209] Smith JA, Josowicz M, Janata J. Polyaniline-gold nanocomposite system [J]. Journal of the Electrochemical Society, 2003, 150(8): E384-E388.
    [210] Langer JJ, Czajkowski I. Polyaniline microrods [J]. Advanced Materials for Optics and Electronics, 1997, 7(3): 149-156.
    [211] Langer JJ. Polyaniline micro- and nanostructure [J]. Advanced Materials for Optics and Electronics, 1999, 9(1): 1-7.
    [212] Langer JJ, Framski G, Golczak S, et al. Fullerene-doped polyaniline [J]. Synthetic Metals, 2001, 119(1-3): 359-360.
    [213] Langer JJ, Framski G, Joachimiak R. Polyaniline nano-wires and nano-networks [J]. Synthetic Metals, 2001, 121(1-3): 1281-1282.
    [214] Langer JJ, Framski G, Golczak S. Polyaniline micro- and nanofibrils [J]. Synthetic Metals, 2001, 121(1-3): 1319-1320.
    [215] Liang L, Liu J, Windisch CF, et al. Direct assembly of large arrays of oriented conducting polymer nanowires [J]. Angewandte Chemie-International Edition, 2002, 41(19): 3665-3668.
    [216] Liu J, Lin Y, Liang L, et al. Templateless assembly of molecularly aligned conductive polymer nanowires: a new approach for oriented nanostructures [J]. Chemistry-A European Journal, 2003, 9(3): 604-611.
    [217] Hirata M, Sun L. Characteristics of an organic semiconductor polyaniline film as a sensor for NH3 gas [J]. Sensors and Actuators, A: Physical, 1994, 40(2): 159-163.
    [218] Hong KH, Oh KW, Kang TJ. Polyaniline-nylon 6 composite fabric for ammonia gas sensor [J]. Journal of Applied Polymer Science, 2004, 92(1): 37-42.
    [219] Dhawan SK, Kumar D, Ram MK, et al. Application of conducting polyaniline as sensor material for ammonia [J]. Sensors and Actuators, B: Chemical, 1997, 40(2-3): 99-103.
    [220] Koul S, Chandra R, Dhawan SK. Conducting polyaniline composite: a reusable sensor material for aqueous ammonia [J]. Sensors and Actuators, B: Chemical, 2001, 75(3): 151-159.
    [221] Takeda S. New type of CO2 sensor built up with plasma polymerized polyaniline thin film [J]. Thin Solid Films, 1999, 343-344: 313-316.
    [222] Sharma S, Nirkhe C, Pethkar S, et al. Chloroform vapour sensor based on copper/polyaniline nanocomposite [J]. Sensors and Actuators, B: Chemical, 2002, 85(1-2): 131-136.
    [223] Athawale AA, Kulkarni MV. Polyaniline and its substituted derivatives as sensor for aliphatic alcohols [J]. Sensors and Actuators, B: Chemical, 2000, 67(1): 173-177.
    [224] Selampinar F, Toppare L, Akbulut U, et al. Conducting composite of polypyrrole II. As a gas sensor [J]. Synthetic Metals, 1995, 68(2): 109-116.
    [225] De Souza JEG, Neto BB, Dos Santos FL, et al. Polypyrrole based aroma sensor [J]. Synthetic Metals, 1999, 102(1-3): 1296-1298.
    [226] Collins GE, Buckley LJ. Conductive polymer-coated fabrics for chemical sensing [J]. Synthetic Metals, 1996, 78(2): 93-101.
    [227] De Melo CP, Dos Santos CG, Silva AMS, et al. Ultrathin conducting polymer films as sensors of volatile compounds [J]. Molecular Crystals and Liquid Crystals Science and Technology Section A: Molecular Crystals and Liquid Crystals, 2002, 374: 543-548.
    [228] Huang JX, Virji S, Weiller BH, et al. Nanostructured polyaniline sensors [J]. Chemistry-A European Journal, 2004, 10(6): 1314-1319.
    [229] Huang JX, Kaner RB. Flash welding of conducting polymer nanofibers [J]. Nature Materials, 2004, 3(11): 783-786.
    [230] Li D, Xia YN. Nanomaterials: welding and patterning in a flash [J]. Nature Materials, 2004, 3(11): 753-754.
    [231] Tseng RJ, Huang JX, Ouyang J, et al. Polyaniline nanofiber/gold nanoparticle nonvolatile memory [J]. Nano Letters, 2005, 5(6): 1077-1080.
    [232] Manoharan SS, Rao ML. Sonochemical synthesis of nanomaterials [M]. // Nalwa HS. Encyclopedia of nanoscience and nanotechnology. Stevenson Ranch, Calif.: American Scientific Publishers, 2004, 10: 67-82.
    [233] Suslick KS. The chemistry of ultrasound [M]. Encyclopedia Britannica Yearbook of Science and the Future 1994. Britannica: Chicago, 1994: 138-155.
    [234] Leighton TG. The acoustic bubble [M]. London: Academic Press, 1994: 531-551.
    [235] Ando T, Kimura T. Perspectives in sonochemistry [J]. Japanese Journal of Applied Physics, 2003, 42(5B): 2897-2900.
    [236] Suslick KS. The chemical effects of ultrasound [J]. Scientific American, 1989, 260(2): 80-86.
    [237] Richards WT, Loomis AL. The chemical effects of high frequency sound waves I. A preliminary survey [J]. Journal of the American Chemical Society, 1927, 49(12): 3086-3100.
    [238] Einhorn C, Einhorn J, Luche JL. Sonochemistry-the use of ultrasonic waves in synthetic organic chemistry [J]. Synthesis, 1989, (11): 787-813.
    [239] Henglein A. Sonochemistry: historical developments and modern aspects [J]. Ultrasonics, 1987,25(1): 6-16.
    [240] Suslick KS. Applications of ultrasound to materials chemistry [J]. MRS Bulletin, 1995, 20(4): 29-34.
    [241] Suslick KS. Sonochemistry [M]. // Kirk-Othmer Encyclopedia of Chemical Technology (4th Ed.). New York: John Wiley & Sons, 1998, 26: 516-541.
    [242] Flint EB, Suslick KS. The temperature of cavitation [J]. Science, 1991, 253(5026): 1397-1399.
    [243] Suslick KS, Cline Jr. RE, Hammerton DA. The sonochemical hot spot [J]. Journal of the American Chemical Society, 1986, 108(18): 5641-5642.
    [244] Suslick KS, Didenko Y, Fang MM, et al. Acoustic cavitation and its chemical consequences [J]. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 1999, 357(1751): 335-353.
    [245] Peters D. Ulrtrasound in materials chemistry [J]. Journal of Materials Chemistry, 1996, 6(10): 1605-1618.
    [246] Gedanken A. Sonochemistry and its application to nanochemistry [J]. Current Science, 2003, 85(12): 1720-1722.
    [247] Suslick KS, Price GJ. Applications of ultrasound to materials chemistry [J]. Annual Review of Materials Science, 1999, 29: 295-326.
    [248] Suslick KS, Choe SB, Cichowlas AA, et al. Sonochemical synthesis of amorphous iron [J]. Nature, 1991, 353(6343): 414-416.
    [249] Hyeon T, Fang M, Suslick KS. Nanostructured molybdenum carbide: sonochemical synthesis and catalytic properties [J]. Journal of the American Chemical Society, 1996, 118(23): 5492-5493.
    [250] Mdleleni MM, Hyeon T, Suslick KS. Sonochemical synthesis of nanostructured molybdenum sulfide [J]. Journal of the American Chemical Society, 1998, 120(24): 6189-6190.
    [251] Suslick KS, Fang M, Hyeon T. Sonochemical synthesis of iron colloids [J]. Journal of the American Chemical Society, 1996, 118(47): 11960-11961.
    [252] Price GJ. Applications of high intensity ultrasound in polymer chemistry [J]. Chemistry and Industry (London), 1993, (3): 75-78.
    [253] Degirmenci M, Catalgil-Giz H, Yagci Y. Synthesis of block copolymers by combined ultrasonic irradiation and reverse atom transfer radical polymerization processes [J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2004, 42(3): 534-540.
    [254] Liu H, Hu XB, Wang JY, et al. Structure, conductivity, and thermopower of crystalline polyaniline synthesized by the ultrasonic irradiation polymerization method [J]. Macromolecules, 2002, 35(25): 9414-9419.
    [255] Osawa S, Ito M, Tanaka K, et al. Electrochemical polymerization of thiophene under ultrasonic field [J]. Synthetic Metals, 1987, 18(1-3): 145-150.
    [256] Xia HS, Wang Q. Preparation of conductive polyaniline/nanosilica particle composites through ultrasonic irradiation [J]. Journal of Applied Polymer Science, 2003, 87(11): 1811-1817.
    [257] Wang JZ, Hu Y, Tang Y, et al. Preparation of nanocomposite of polyaniline and gamma-zirconium phosphate (γ-ZrP) by power ultrasonic irradiation [J]. Materials Research Bulletin, 2003, 38(8): 1301-1308.
    [258] Trzcinski S, Staszewska DU. Kinetics of ultrasonic degradation and polymerisation degree distribution of sonochemically degraded chitosans [J]. Carbohydrate Polymers, 2004, 56(4): 489-498.
    [259] Kim H, Jae WL. Effect ofultrasonic wave on the degradation of polypropylene melt and morphology of its blend with polystyrene [J]. Polymer, 2002, 43(8): 2585-2589.
    [260] Gronroos A, Pirkonen P, Ruppert O. Ultrasonic depolymerization of aqueous carboxymethylcellulose [J]. Ultrasonics Sonochemistry, 2004, 11(1): 9-12.
    [261] Price GJ, West PJ, Smith PF. Control of polymer structure using power ultrasound [J]. Ultrasonics Sonochemistry, 1994, 1(1): 51-57.
    [262] Kanwal F, Liggat JJ, Pethrick RA. Ultrasonic degradation of polystyrene solutions [J]. Polymer Degradation and Stability, 2000, 68(3): 445-449.
    [263] Price GJ, Keen F, Clifton AA. Sonochemically-assisted modification of polyethylene surfaces [J]. Macromolecules, 1996, 29(17): 5664-5670.
    [264] MacDiarmid AG, Chiang JC, Halpern M, et al.“Polyaniline”: interconversion of metallic and insulating forms [J]. Molecular Crystals and Liquid Crystals, 1985, 121(1-4): 173-180.
    [265] Diaz AF, Logan JA. Electroactive polyaniline films [J]. Journal of Electroanalytical Chemistry,1980, 111: 111-114.
    [266] Paterno LG, Manolache S, Denes F. Synthesis of polyaniline-type thin layer structures under low-pressure RF-plasma conditions [J]. Synthetic Metals, 2002, 130(1): 85-97.
    [267] Cruz GJ, Morales J, Castillo-Ortega MM, et al. Synthesis of polyaniline films by plasma polymerization [J]. Synthetic Metals, 1997, 88(3): 213-218.
    [268] Gong J, Cui XJ, Xie ZW, et al. The solid-state synthesis of polyaniline/H4SiW12O40 materials [J]. Synthetic Metals, 2002, 129(2): 187-192.
    [269] Jussila M, Karna T, Koskinen J, et al. Method and apparatus for preparing polyaniline: United States, US 6509502B1 [P]. 2003-01-21.
    [270] Jing XL, Wang YY, Wu D, et al. Polyaniline nanofibers prepared with ultrasonic irradiation [J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2006, 44(2): 1014-1019.
    [271] Jing XL, Wang YY, Wu D, et al. Sonochemical synthesis of polyaniline nanofibers [J]. Ultrasonics Sonochemistry, 2007, 14(1): 75-80.
    [272] Chao D, Chen J, Lu X, et al. SEM study of the morphology of high molecular weight polyaniline [J]. Synthetic Metals, 2005, 150(1): 47-51.
    [273]吴丹.超声辐射制备聚苯胺纳米纤维的研究[D].西安:西安交通大学, 2007.
    [274] Atobe M, Chowdhury AN, Fuchigami T, et al. Preparation of conducting polyaniline colloids under ultrasonication [J]. Ultrasonics Sonochemistry, 2003, 10(2): 77-80.
    [275] Sivakumar M, Gedanken A. A sonochemical method for the synthesis of polyaniline and Au-polyaniline composites using H2O2 for enhancing rate and yield [J]. Synthetic Metals, 2005, 148(3): 301-306.
    [276] Johnson BJ, Park SM. Electrochemistry of conductive polymer [J]. Journal of the Electrochemical Society, 1996, 143(4): 1269-1276.
    [277] Johnson BJ, Park SM. Electrochemistry of conductive polymers [J]. Journal of the Electrochemical Society, 1996, 143(4): 1277-1282.
    [278] Dhawan SK, Kumar D, Ram MK, et al. Application of conducting polyaniline as sensor material for ammonia [J]. Sensors and Actuators B, 1997, 40(2-3): 99-103.
    [279] Sapurina I, Riede A, Stejskal J. In-situ polymerized polyaniline films 3. Film formation [J]. Synthetic Metals, 2001, 123 (3): 530-507.
    [280] Wessling B. Conductive polymer/solvent systems: solutions or dispersions? [C]. Proceedings of 3rd BPS (Bayreuth Polymer & Materials Research Symposion), Bayreuth (Germany) April 1997.
    [281] Wessling B. Dispersion as the link between basic research and commercial applications of conductive polymers (polyaniline) [J]. Synthetic Metals, 1998, 93(2): 143-154.
    [282] Alva KS, Kumar J, Marx KA, et al. Enzymatic synthesis and characterization of a novel water-soluble polyaniline: poly(2,5-diaminobenzenesulfonate) [J]. Macromolecules, 1997, 30(14): 4024-4029.
    [283] Liu W, Kumar J, Tripathy S, et al. Enzymatically synthesized conducting polyaniline [J]. Journal of the American Chemical Society, 1999, 121(1): 71-78.
    [284] Wudl F, Angus RO, Lu Jr. FL, et al. Poly-p-phenyleneamineimine: synthesis and comparison to polyaniline [J]. Journal of the American Chemical Society, 1987, 109(12): 3677-3684.
    [285] Malinauskas A, Holze R. Cyclic UV-Vis spectrovoltammetry of polyaniline [J]. Synthetic Metals, 1998, 97(1): 31-36.
    [286] Monkman AP, Adams P. Optical and electronic properties of stretch-oriented solution-cast polyaniline [J]. Synthetic Metals, 1991, 40(1): 87-96.
    [287] Du JM, Zhang JL, Han BX, et al. Polyaniline microtubes synthesized via supercritical CO2 and aqueous interfacial polymerization [J]. Synthetic Metals, 2005, 155(3): 523-526.
    [288] Sun ZC, Geng YH, Li J, et al. Catalytic oxidization polymerization of aniline in an H2O2-Fe2+ system [J]. Journal of Applied Polymer Science, 1999, 72(8): 1077-1084.
    [289] Jin Z, Su Y, Duan Y. A novel method for polyaniline synthesis with the immobilized horseradish peroxidase enzyme [J]. Synthetic Metals, 2001, 122(2): 237-242.
    [290] Pron A, Genoud F, Menardo C, et al. Effect of the oxidation conditions on the chemical polymerization of polyaniline [J]. Synthetic Metals, 1988, 24(3): 193-201.
    [291] Sun ZC, Geng YH, Li J, et al. Chemical polymerization of aniline with hydrogen peroxide as oxidant [J]. Synthetic Metals, 1997, 84(1-3): 99-100.
    [292] Hu X, Zhang YY, Tang K, et al. Hemoglobin-biocatalysts synthesis of a conducting molecular complex of polyaniline and sulfonated polystyrene [J]. Synthetic Metals, 2005, 150(1): 1-7.
    [293] Akkara JA, Senecal KJ, Kaplan DL. Synthesis and characterization of polymers produced by horseradish peroxidase in dioxane [J]. Journal of Polymer Science, Part A: Polymer Chemistry, 1991, 29(11): 1561-1574.
    [294] Samuelson LA, Anagnostopoulos A, Alva KS, et al. Biologically derived conducting and water soluble polyaniline [J]. Macromolecules, 1998, 31(13): 4376-4378.
    [295] Caramyshev AV, Evtushenko EG, Ivanov VF, et al. Synthesis of conducting polyelectrolyte complexes of polyaniline and poly(2-acrylamido-3-methyl-1-propanesulfonic acid) catalyzed by pH-stable palm tree peroxidase [J]. Biomacromolecules, 2005, 6(3): 1360-1366.
    [296] Sakharov IY, Vorobiev AC, Leon JJC. Synthesis of polyelectrolyte complexes of polyaniline and sulfonated polystyrene by palm tree peroxidase [J]. Enzyme and Microbial Technology, 2003, 33(5): 661-667.
    [297] Manohar SK, Macdiarmid AG, Epstein AJ. Polyaniline. Pernigraniline, an isolable intermediate in the conventional chemical synthesis of emeraldine [J]. Synthetic Metals, 1991, 41(1-2): 711-714.
    [298]井新利.聚苯胺及其衍生物的合成、结构与性能[D].西安:西安交通大学, 2002.
    [299] Sivakumar M, Gedanken A. A sonochemical method for the synthesis of polyaniline and Au-polyaniline composites using H2O2 for enhancing rate and yield [J]. Synthetic Metals, 2005, 148(3): 301-306.
    [300] Wakeford CA, Blackburn R, Lickiss PD. Effect of ionic strength on the acoustic generation of nitrite, nitrate and hydrogen peroxide [J]. Ultrasonics Sonochemistry, 1999, 6(3): 141-148.
    [301] Fischer CH, Hart EJ, Henglein A. Hydrogen/deuterium isotope exchange in the hydrogen deuteride-water system under the influence of ultrasound [J]. Journal of Physical Chemistry, 1986, 90(14): 3059-3060.
    [302] Huang JX, Kaner RB. The intrinsic nanofibrillar morphology of polyaniline [J]. Chemical Communications, 2006, (4): 367-376.
    [303] Chaudhari HK, Kelkar DS. X-ray diffraction study of doped polyaniline [J]. Journal of Applied Polymer Science, 1996, 62(1): 15-18.
    [304]刘新明,崔元臣.界面聚合及其应用进展[J].化学研究, 2006, 17(1): 101-104.
    [305] Wittbecker EL, Morgan PW. Interfacial polycondensation. I [J]. Journal of Polymer Science, 1959, 40(137): 289-297.
    [306] Morgan PW, Kwolek SL. Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces [J]. Journal of Polymer Science, 1959, 40(137): 299-327.
    [307]崔绍波,卢忠远,刘德春,等.界面聚合技术在材料制备中的应用[J].材料导报, 2006, 20(7): 91-94.
    [308] Freger V. Kinetics of film formation by interfacial polycondensation [J]. Langmuir, 2005, 21(5): 1884-1894.
    [309] Song Y, Sun P, Henry LL, et al. Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process [J]. Journal of Membrane Science, 2005, 251(1-2): 67-79.
    [310] Sun Q, Deng Y. In situ synthesis of temperature-sensitive hollow microspheres via interfacial polymerization [J]. Journal of the American Chemical Society, 2005, 127(23): 8274-8275.
    [311] Cho JS, Kwon A, Cho CG. Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system [J]. Colloid and Polymer Science, 2002, 280(3): 260-266.
    [312] Gao HX, Jiang T, Han BX, et al. Aqueous/ionic liquid interfacial polymerization for preparing polyaniline nanoparticles [J]. Polymer, 2004, 45(9): 3017-3019.
    [313] Yan W, Wei ZX, Hsu CS, et al. Synthesis of microspheres of poly (pyrrolyl methine) by interfacial polymerization [J]. Synthetic Metals [J]. 2003, 135-136: 213-214.
    [314] Bocchi V, Gardini GP. Chemical synthesis of conducting polypyrrole and some composites [J]. Journal of Chemical Society, Chemical Communications, 1986, (2): 148.
    [315] Shimidzu T, Ohtani A, Lyoda T, et al. A functionlized polypyrrole film prepared by chemical polymerization at a vapour-liquid interface [J]. Journal of Chemical Society, Chemical Communications, 1986, (18): 1414-1415.
    [316] Lei JT, Liang WB, Brumlik CJ, et al. New interfacial polymerization method for forming metal/conductive polymer Schottky barriers [J]. Synthetic Metals, 1992, 47(3): 351-359.
    [317] Chan HSO, Ho PKH, Tan KL, et al. Chemical preparation and characterization of conductive polyaniline laminate thin films [J]. Synthetic Metals, 1990, 35(3): 333-344.
    [318] Michaelson JC, McEvoy AJ. Interfacial polymerization of aniline [J]. Journal of the Chemical Society, Chemical communications, 1994, (1): 79-80.
    [319] Li W, Zhang QH, Chen DJ, et al. Study on nanofibers of polyaniline via interfacial polymerization [J]. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2006, 43(11): 1815-1824.
    [320] Zhang DH, Wang YY. Synthesis and applications of one-dimensional nano-structured polyaniline: an overview [J]. Materials Science and Engineering B, 2006, 134(1): 9-19.
    [321] Li GC, Wang ZB, Xie GW, et al. Synthesis of interconnected polyaniline nanofibers in catanionic micelles [J]. Journal of Dispersion Science and Technology, 2006, 27(7): 991-995.
    [322] Anilkumar P, Jayakannan M. New renewable resource amphiphilic molecular design for size-controlled and highly ordered polyaniline nanofibers [J]. Langmuir, 2006, 22(13): 5952-5957.
    [323] Chen JY, Chao DM, Lu XF, et al. Novel interfacial polymerization for radially oriented polyaniline nanofibers [J]. Materials Letters, 2007, 61(6): 1419-1423.
    [324] He YJ. One-dimensional polyaniline nanostructures synthesized by interfacial polymerization in a solids-stabilized emulsion [J]. Applied Surface Science, 2006, 252(6): 2115-2118.
    [325] He YJ. Interfacial synthesis and characterization of polyaniline nanofibers [J]. Materials Science and Engineering B, 2005, 122(1): 76-79.
    [326] Lee SH, Lee DH, Lee K, et al. High-performance polyaniline prepared via polymerization in a self-stabilized dispersion [J]. Advanced Functional Materials, 2005, 15(9): 1495-1500.
    [327] Lee K, Cho S, Sung HP, et al. Metallic transport in polyaniline [J]. Nature, 2006, 441(7089): 65-68.
    [328] Zhang ZM, Wei ZX, Zhang LJ, et al. Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids [J]. Acta Materialia, 2005, 53(5): 1373-1379.
    [329] Huang J, Wan MX. In situ doping polymerization of polyaniline microtubules in the presence ofβ-naphthalenesulfonic acid [J]. Journal of Polymer Science, Part A: Polymer Chemistry, 1999, 37(3): 151-157.
    [330] Bunker BC, Rieke PC, Tarasevich BJ, et al. Ceramic thin-film formation on functionalized interfaces through biomimetic processing [J]. Science, 1994, 264(5155): 48-55.
    [331] Davey RJ, Garside J. From molecules to crystallizers [M]. England: Oxford University Press, 2000.
    [332] Smith WF. Principles of materials science and engineering (3rd ed) [M]. American: McGraw-Hill, Inc., 1996.
    [333] Manohar SK, Macdiarmid AG, Epstein AJ. Polyaniline: pernigranile, an isolable intermediate in the conventional chemical synthesis of emeraldine [J]. Synthetic Metals, 1991, 41(1-2): 711-714.
    [334] Mattoso LHC, Oliveira ONJr., Faria RM, et al. Synthesis of polyaniline/polytoluidine block copolymer via the pernigraniline oxidation state [J]. Polymer International, 1994, 35(1): 89-93.
    [335] MacDiarmid AG, Chiang JC, Richter AF, et al. Conducting polymers [M]. The Netherlands: Kluwer, 1987: 105.
    [336] Werake LK, Story JG, Bertino MF, et al. Photolithographic synthesis of polyaniline nanofibers [J]. Nanotechnology, 2005, 16(12): 2833-2837.
    [337] Mazeikiene R, Malinauskas A. Deposition of polyaniline on glass and platinum by autocatalytic oxidation of aniline with dichromate [J]. Synthetic Metals, 2000, 108(1): 9-14.
    [338] Johnson BJ, Park SM. Electrochemistry of conductive polymer [J]. Journal of the Electrochemical Society, 1996, 143(4): 1269-1276.
    [339] Johnson BJ, Park SM. Electrochemistry of conductive polymer [J]. Journal of the Electrochemical Society, 1996, 143(4):1277-1282.
    [340] Jin S, Tiefel TH, Wolfe R, et al. Optically transparent, electrically conductive composite medium [J]. Science, 1992, 255(5043): 446-448.
    [341] Gordon RG. Criteria for choosing transparent conductors [J]. MRS Bulletin, 2000, 25(8): 52-57.
    [342]黄大庆,王智永,刘俊能,等.聚合物基透明导电材料研究进展[J].功能材料, 2001, 32(3): 231-242.
    [343]赵谢群.透明导电氧化物薄膜研究现状与产业化进展[J].电子元件与材料, 2000, 19(1): 40-41.
    [344] Zhang DH, Yang TL, Ma J, et al. Preparation of transparent conducing AnO: Al films on polymer substrates by r.f. magnetron sputtering [J]. Applied Surface Science, 2000, 158(1-2): 43-48.
    [345] Ott AW, Chang RPH. Atomic layer-controlled growth of transparent conducting ZnO on plastic substrates [J]. Materials Chemistry and Physics, 1999, 58(2): 132-138.
    [346] Wan MX, Yang J. Growth mechanism of transparent and conducting composite films of polyaniline [J]. Journal of Applied Polymer Science, 1993, 49(9): 1639-1645.
    [347] Wan MX, Li M, Li JC, et al. Transparent and conducting coatings of polyaniline composites [J]. Thin Solid Films, 1995, 259(2): 188-193.
    [348] Zhang H, Li CJ. Chemical synthesis of transparent and conducting polyaniline-poly(ethylene terephthalate) composite films [J]. Synthetic Metals, 1991, 44(2): 143-146.
    [349] Im SS, Byun SW. Preparation and properties of transparent and conducting nylon 6-based composite films [J]. Journal of Applied Polymer Science, 1994, 51(7): 1221-1229.
    [350] Byun SW, Im SS. Degradation kinetics of electrical conductivity in transparent polyaniline-nylon 6 composite films [J]. Synthetic Metals, 1995, 69(1-3) 219-220.
    [351] Ning ZY, Cheng SH, Ge SB, et al. Preparation and characterization of ZnO: Al films by pulsed laser deposition [J]. Thin Solid Films, 1997, 307(1-2): 50-53.
    [352] Kim SS, Choi SY, Park CG, et al. Transparent conductive ITO thin films through the sol-gel process using metal salts [J]. Thin Solid Films, 1999, 347(1-2): 155-160.
    [353] Wang YC, Anderson C. Formation of thin transparent conductive composite films from aqueous colloidal dispersions [J]. Macromolecules, 1999, 32(19) 6172-6179.
    [354] Aegerter MA, Al-Dahoudi N, Solieman A, et al. Transparent conducting coatings made by chemical nanotechnology processes [J]. Molecular Crystals and Liquid Crystals, 2004, 417(2004) 105-114.
    [355] Ohta H, Kambayashi T, Hirano M, et al. Application of a transparent conductive substrate with an atomically flat and stepped surface to lateral growth of an organic molecule: vanadyl phthalocyanine [J]. Advanced Materials, 2003, 15(15): 1258-1262.
    [356] Seo WS, Jo HH, Lee K, et al. Preparation and optical properties of highly crystalline, colloidal, and size-controlled indium oxide nanoparticles [J]. Advanced Materials, 2003, 15(10): 795-797.
    [357] Taylor MP, Readey DW, Teplin CW, et al. Combinatorial growth and analysis of the transparent conducting oxide ZnO/In (IZO) [J]. Macromolecular Rapid Communications, 2004, 25(1): 344-347.
    [358] Kulkarni VG. Transparent conductive coatings. Handbook of Conducting Polymers [M]. New York: Marcel Dekker, 1998, 2: 1059.
    [359] Cao Y, Treacy GM, Smith P, et al. Optical-quality transparent conductive polyaniline films [J]. Synthetic Metals, 1993, 57(1): 3526-3531.
    [360] Apperloo JJ, Van Haare JAEH, Janssen RAJ. Transparent highly-oxidized conjugated polymer films from solution [J]. Synthetic Metals, 1999, 101(1-3): 417-420.
    [361] Jang J, Oh JH. Fabrication of a highly transparent conductive thin film from polypyrrole/poly(methyl methacrylate) core/shell nanospheres [J]. Advanced Functional Materials, 2005, 15(3): 494-502.
    [362] Shibuta D. Method for disentangling hollow carbon microfibers, electrically conductive transparent carbon microfibers aggregation film and coating for forming such film: United States, US 5853877 [P]. 1998-12-29.
    [363] Huijs FM, Vercauteren FF, Hadziioannou G. Resistance of transparent latex films based on acrylic latexes encapsulated with a polypyrrole shell [J]. Synthetic Metals, 2001, 125(3): 395-400.
    [364] Kim YB, Kim WS, Yu JA, et al. UV cured transparent films including non-aqueous conductive microgels [J]. Polymers for Advanced Technologies, 2002, 13(7): 522-526.
    [365] McLachlan DS, Blaszkiewicz M, Newnham RE. Electrical resistivity of composites [J]. Journal of the American Ceramic Society, 1990, 73(8): 2187-2203.
    [366] Lux F. Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials [J]. Journal of Materials Science, 1993, 28(2): 285-301.
    [367] Jing X, Zhao W, Lan L. Effect of particle size on electric conducting percolation threshold in polymer/conducting particle composites [J]. Journal of Materials Science Letters, 2000, 19(5): 377-379.
    [368] Banerjee P, Mandal BM. Conducting polyaniline nanoparticle blends with extremely low percolation thresholds [J]. Macromolecules, 1995, 28(11): 3940-3943.
    [369] Karasek L, Meissner B, Asai S, et al. Percolation concept: polymer-filler gel formation, electrical conductivity and dynamic electrical properties of carbon-black-filled rubbers [J]. Polymer Journal, 1996, 28(2): 121-126.
    [370] Li D, Kaner RB. Processable stabilizer-free polyaniline nanofiber aqueous colloids [J]. Chemical Communications, 2005, (26): 3286-3288.
    [371] Anand J, Palaniappan S, Sathyanarayana DN. Conducting polyaniline blends and composites [J].Progress in Polymer Science, 1998, 23(6): 993-1018.
    [372] Gospodinova N, Mokreva P, Terlemezyan L. Influence of hydrolysis on the chemical polymerization of aniline [J]. Polymer, 1994, 35(14): 3102-3106.
    [373] Wang YY, Jing XL. Preparation of an epoxy/polyaniline composite coating and its passivation effect on cold rolled steel [J]. Polymer Journal, 2004, 36(5): 374-379.
    [374] Sun Z, Geng Y, Li J, et al. Chemical polymerization of aniline with hydrogen peroxide as oxidant [J]. Synthetic Metals, 1997, 84(1-3): 99-100.
    [375] Kuzmany H, Sariciftci NS. In situ spectro-electrochemical studies of polyaniline [J]. Synthetic Metals, 1986, 18: 353-358.
    [376] Du JM, Zhang JL, Han BX, et al. Polyaniline microtubes synthesized via supercritical CO2 and aqueous interfacial polymerization [J]. Synthetic Metals, 2005, 155(3): 523-526.
    [377] Wang YY, Jing XL. Preparation and characterization of PVC/PANI conductive composite with extremely low percolation threshold [J]. Polymers for Advanced Technologies, 2004, 15(8): 481-484.
    [378] Nicho ME, Rivera L, Hu H. Polyaniline composite coatings with thermally stable electrical properties [J]. Advanced Materials for Optics and Electronics, 1999, 9(2): 47-53.
    [379] Cadenas JL, Hu H. Chemically stable conducting polyaniline composite coatings [J]. Solar Energy Materials and Solar Cells, 1998, 55(1-2): 105-112.
    [380] Selim MS, Dawy M, Sawaby A. Preparation and characterization of conducting PMMA-PANI films [J]. Polymer-Plastics Technology and Engineering, 1999, 38(4): 713-728.
    [381] Cao Y, Smith P, Heeger AJ. Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers [J]. Synthetic Metals, 1992, 48(1): 91-97.
    [382] Yang CY, Cao Y, Smith P, et al. Morphology of conductive, solution-processed blends of polyaniline and poly(methyl methacrylate) [J]. Synthetic Metals, 1993, 53(3): 293-301.
    [383] Yang CY, Reghu M, Heeger AJ, et al. Thermal stability of polyaniline networks in conducting polymer blends [J]. Synthetic Metals, 1996, 79(1): 27-32.
    [384] Violette JLN, White DRJ, Violette MF. Electromagnetic compatibility handbook [M]. New York: Van Nostrand Reinhold Company, 1987: 1-2.
    [385] Jang JO, Park JW. Coating materials for shielding electromagnetic waves: United States, US 6355707 [P]. 2002-03-12.
    [386] Van Eck W. Electromagnetic radiation from video display units: an eavesdropping risk? [J]. Computers and Security, 1985, 4(4): 269-286.
    [387]赖祖武,王淦昌,谢羲.电磁干扰防护与电磁兼容[M].北京:原子能出版社, 1993.
    [388]王永庆,刘光斌,何俊发,等.吸收-屏蔽复合材料对军用电子仪器设备进行屏蔽的研究[J].兵器材料科学与工程, 2002, 25(6): 23-25.
    [389] Kim HM, Kim K, Lee CY, et al. Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst [J]. Applied Physics Letters, 2004, 84(4): 589-591.
    [390] Kim MS, Lee BO, Woo WJ, et al. Influence of aspect ratio and skin effect on EMI shielding of coating materials fabricated with carbon nanofiber/PVDF [J]. Journal of Materials Science, 2002, 37(9): 1839-1843.
    [391] Leaversuch R.“Electrically active”compounds surge in performance [J]. Plastics Technology, 2002, 48(6): 48-55.
    [392] Yoshino K, Tabata M, Kaneto K, et al. Application and characteristics of conducting polymer as radiation shielding material [J]. Japanese Journal of Applied Physics, Part 2: Letters, 1985, 24(9): 693-695.
    [393] Laakso J. Synthesis and analysis of some sulphur and nitrogen containing conducting polymers including conducting polymer blends of poly (3-octylthiophene) [J]. Acta Polytechnica Scandinavica, Chemical Technology and Metallurgy Series, 1988, (184): 48.
    [394] Taka T. EMI shielding measurements on poly(3-octyl thiophene) blends [J]. Synthetic Metals, 1991, 41(3): 1177-1180.
    [395] Kulkarni VG, Mathew WR, Campbell JC, et al. Processible intrinsically conductive polymer blends. Annual Technical Conference - ANTEC, Conference Proceedings [C]. 1991, 37: 663-664.
    [396] Mooney PJ. Status of conductive polymers [J]. JOM Journal of the Minerals Metals and Materials Society, 1994, 46(3): 44-45.
    [397] Wiznerowicz F. Conductive polymers instead of carbon black? [J].Wire, 1994, 44(1): 102.
    [398] MacDiarmid AG, Epstein AJ. Conducting polymers: past, present and future [C]. Materials Research Society Symposium Proceedings, Electrical, Optical, and Magnetic Properties of Organic Solid State Materials, 1994, 328: 133-144.
    [399] Trivedi DC, Dhawan SK. Shielding of electromagnetic interference using polyaniline [J]. Synthetic Metals, 1993, 59(2): 267-272.
    [400] Kuhn HH, Child AD, Kimbrell WC. Toward real applications of conductive polymers [J]. Synthetic Metals, 1995, 71(1-3): 2139-2142.
    [401] Angelopoulos M. Conducting polymers in microelectronics [J].IBM Journal of Research and Development, 2001, 45(1): 57-75.
    [402] M?kel? T, Pienimaa S, Taka T, et al. Thin polyaniline films in EMI shielding [J]. Synthetic Metals, 1997, 85(1-3): 1335-1336.
    [403] Courric S, Tran VH. Electromagnetic properties of poly(p-phenylene-vinylene) derivatives [J]. Polymer, 1998, 39(12): 2399-2408.
    [404] Cottevieille D, Le Mehaute A, Challioui C, et al. Industrial applications of polyaniline [J]. Synthetic Metals, 1999, 101(1): 703-704.
    [405] Pomposo JA, Rodriguez J, Grande H. Polypyrrole-based conducting hot melt adhesives for EMI shielding applications [J]. Synthetic Metals, 1999, 104(2): 107-111.
    [406] Wojkiewicz JL, Fauveaux S, Miane JL. Dielectric behavior and shielding properties of polyaniline composites [C]. IEEE International Conference on Conduction and Breakdown in Solid Dielectrics, 2001, 46-49.
    [407] Desai K, Sung C. Electrospinning nanofibers of PANI/PMMA blends [J]. Materials Research Society Symposium-Proceedings, 2002, 736: 121-126.
    [408] Paligova M, Vilcakova J, Saha P, et al. Electromagnetic shielding of epoxy resin composites containing carbon fibers coated with polyaniline base [C].Annual Technical Conference-ANTEC, Conference Proceedings, 2003, 2: 2074-2078.
    [409] Koul S, Chandra R. Newer compatible conducting polymeric composites for elimination of electromagnetic radiations [C]. Annual Technical Conference-ANTEC, Conference Proceedings, 2004, 3: 3039-3044.
    [410] Barra GMO, Leyva ME, Soares BG, et al. Solution-cast blends of polyaniline-DBSA with EVA copolymers [J]. Synthetic Metals, 2002, 130(3): 239-245.
    [411] Hong YK, Lee CY, Jeong CK, et al. Electromagnetic interference shielding characteristics of fabric complexes coated with conductive polypyrrole and thermally evaporated Ag [J]. Current Applied Physics, 2001, 1: 439-442.
    [412] Kim MS, Kim HK, Byun SW, et al. PET fabric/polypyrrole composite with high electrical conductivity for EMI shielding [J]. Synthetic Metals, 2002, 126(2-3): 233-239.
    [413] Cao J, Chung DDL. Coke powders as an admixture in cement for electromagnetic interference shielding [J]. Carbon, 2003, 41(12): 2433-2436.
    [414] Kuhn HH. Adsorption at the liquid/solid interface: conductive textiles based on polypyrrole [J]. Textile Chemist and Colorist, 1997, 29(12): 17-21.
    [415] Pouget JP, Józefowicz ME, Epstein AJ, et al. X-ray structure of polyaniline [J]. Macromolecules, 1991, 24(3): 779-789.
    [416] Epstein AJ, Roe MG, Ginder JM, et al. Electromagnetic radiation absorbers and modulators comprising polyaniline: United States, US 5563182 [P]. 1996-10-08.
    [417] Epstein AJ, Yue J. Polyaniline compositions, processes for their preparation and uses thereof: United States, US 5137991 [P]. 1992-08-11.
    [418] Epstein AJ, Yue J. Sulfonated polyaniline salt compositions, processes for their preparation and uses thereof: United States, US 5164465 [P]. 1992-11-17.
    [419] M?kel? T, Sten J, Hujanen A, et al. High frequency polyaniline shields [J]. Synthetic Metals, 1999, 101(1-3): 707.
    [420] Lee CY, Song HG, Jang KS, et al. Electromagnetic interference shielding efficiency of polyaniline mixtures and mutilayer films [J]. Synthetic Metals, 1999, 102(1-3): 1346-1349.
    [421] Chandrasekhar P, Naishadham K. Broadband microwave absorption and shielding properties of a poly (aniline) [J]. Synthetic Metals, 1999, 105(2): 115-120.
    [422] Lee CK, Kim HM, Park JW, et al. AC electrical properties of conjugated polymers and theoretical high-frequency behavior of multilayer films [J]. Synthetic Metals, 2001, 117(1-3): 109-113.
    [423] Epstein AJ, MacDiarmid AG. Polyanilines: from solitons to polymer metal, from chemical curiosityto technology [J]. Synthetic Metals, 1995, 69(1-3): 179-182.
    [424]宋月贤,王红理,郑元锁,等.高导电聚苯胺薄膜的制备及其电磁屏蔽性能的研究[J].高分子学报, 2002, (1): 92-95.
    [425] Jing XL, Wang YY, Zhang BY. Electrical conductivity and electromagnetic interference shielding of polyaniline/polyacrylate composite coatings [J]. Journal of Applied Polymer Science, 2005, 98(5): 2149-2156.
    [426]中华人民共和国国家标准GB 12190-90,《高性能屏蔽室屏蔽效能的测量方法》.国家技术监督局1990-02-01批准.
    [427] American Military Standard, MIL-STD-285. Attenuation measurements for enclosures, electromagnetic shielding for electronic purposes; method of.
    [428] Ghosh P, Siddhanta SK, Haque SR, et al. Stable polyaniline dispersions prepared in nonaqueous medium: synthesis and characterization [J]. Synthetic Metals, 2001, 123(1): 83-89.
    [429] Gangopadhyay R, De A. Conducting semi-IPN based on polyaniline and crosslinked poly(vinyl alcohol) [J]. Synthetic Metals, 2002, 132(1): 21-28.
    [430] Stejskal J, Spirkova M, Riede A, et al. Polyaniline dispersions 8. The control of particle morphology [J]. Polymer, 1999, 40(10): 2487-2492.
    [431] Riede A, Stejskal J, Helmstedt M. In-situ prepared composite polyaniline films [J]. Synthetic Metals, 2001, 121(1-3): 1365-1366.
    [432] Joo J, Song HG, Jeong CK et al. Study of electrical and magnetic properties of LiPF6 doped polyaniline [J]. Synthetic Metals, 1999, 98(3): 215-220.
    [433] (日)雀部博之(编),曹镛,叶成,朱道本(译),导电高分子材料[M].北京:科学出版社, 1989.
    [434]王杨勇,张柏宇,王景平.本征型导电高分子电磁干扰屏蔽材料研究进展[J].兵器材料科学与工程, 2004, 27(3): 54-60.
    [435] Joo J, Epstein AJ. Electromagnetic radiation shielding by intrinsically conducting polymers [J]. Applied Physics Letters, 1994, 65(18): 2278-2280.
    [436] Joo J, Lee CY. High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers [J]. Journal of Applied Physics, 2000, 88(1): 513-518.
    [437] Lee CY, Lee DE, Joo J, et al. Conductivity and EMI shielding efficiency of polypyrrole and metal compounds coated on (non)woven fabrics [J]. Synthetic Metals, 2001, 119(1-3): 429-430.
    [438] Kathirgamanathan P. Novel cable shielding materials based on the impregnation of microporous membranes with inherently conducting polymers [J]. Advanced Materials, 1993, 5(4): 281-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700