用户名: 密码: 验证码:
ZrSiO_4@TiO_2光催化复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛是一种应用广泛的光催化材料。具有较高光催化活性的二氧化钛是锐钛矿型二氧化钛或者锐钛矿型与金红石型二氧化钛的混晶,纯金红石型的二氧化钛一般因颗粒粗大而导致光催化活性很低,并且锐钛矿型向金红石型转变的相变温度很低。因此,提高锐钛矿型二氧化钛的高温稳定性和耐高温化学侵蚀性能是将其用于光催化陶瓷的关键。本文采用水热法合成锐钛矿型TiO_2纳米粉体和多孔ZrSiO_4超细粉体,通过植酸改性自组装将二者复合,制备了ZrSiO_4 @TiO_2光催化复合材料,进而制备了光催化陶瓷。利用XRD、SEM、TEM、DSC、DLS、XPS和BET等手段对产物进行分析,并用在紫外光下降解甲基橙水溶液的方法测试材料的光催化活性。作者还对相关机理进行了探讨。
     作者首先将钛酸丁酯(TBOT)在二乙醇胺(DEA)的络合作用下转化为TiO_2溶胶,研究了水热处理温度和保温时间对TiO_2结晶、TiO_2粒径分布、分散性等的影响。在TiO_2溶胶中添加硅酸乙酯(TEOS)再经水热处理形成了TiO_2和无定形SiO_2在纳米尺度上均匀的混合粉体。TiO_2因SiO_2的空间位阻作用抑制了颗粒长大和相变,TiO_2/SiO_2摩尔比为1的复合材料经1200℃处理2h后仍能保持锐钛矿型二氧化钛。经过高温处理的TiO_2-SiO_2复合粉体的光催化活性远高于相同条件热处理的商品锐钛矿型TiO_2 (P25)。
     以氧氯化锆和硅酸乙酯为原料,氟化钠为矿化剂制备了多孔ZrSiO_4超细粉体。发现ZrSiO_4结晶度随NaF添加量和水热温度、保温时间增加而提高,但在保温一定时间后,结晶度的提高速度变慢。pH值对ZrSiO_4形貌影响较大。硅酸锆比表面积高,孔径呈双峰分布,形貌类似纳米级纤维构建的扁平的“鸟巢状”超细颗粒,形成机理可能是晶粒的第Ⅱ类聚集生长而非Ostwald熟化。
     多孔ZrSiO_4的热稳定性较好。750℃处理0.5h后,晶型、显微结构和比表面积无明显变化;900℃处理0.5h后,晶型仍未改变,但纳米级锆英石纤维显著长大,导致比表面积大幅下降。多孔硅酸锆在约850℃发生放热反应,并伴随可能是水热合成时进入其晶格的氟逸出造成的少许失重。
     植酸改性多孔ZrSiO_4粉体可与TiO_2纳米粉体通过自组装形成ZrSiO_4 @TiO_2复合材料,pH值影响颗粒表面电荷,为均匀包覆的关键。TiO_2不但均匀包裹ZrSiO_4的表面而且进入其狭缝中。TiO_2与ZrSiO_4结合力强,并具有良好的高温稳定性。复合粉体涂覆于釉面砖表面上经900℃的较高温度热处理10min制备牢固附着的光催化釉面砖。ZrSiO_4@TiO_2复合粉体和光催化陶瓷均具有较好的光催化性能。
     实验证明了廉价的硅溶胶可取代硅酸乙酯作硅源合成多孔硅酸锆,磷酸可代替昂贵的植酸为改性剂自组装ZrSiO_4 @TiO_2光催化复合材料,以上二者均能大幅降低成本,故有利于推广应用。
Titanium dioxide is a widely used photocatalyst.The crystal phase of titanium dioxide with high photocatalytic activity is anatase titanium dioxide or the mixed crystals of anatase and rutile titanium dioxides. The photocatalytic activity of pure rutile titanium dioxide is very low, and the anatase to rutile phase transition temperature is also very low. Therefore, the key for anatase titanium dioxide to apply in photocatalytic ceramics is to improve its high temperature stability and the ability to withstand high temperature chemical attack. In this paper, anatase TiO_2 nanoparticles and porous ZrSiO_4 powder were synthesized using hydrothermal method. ZrSiO_4 @ TiO_2 photocatalytic material was prepared by self-assembling these two kinds of powders which were modified by phytic acid. The photocatalytic ceramics were prepared by the photocatalytic materials. XRD, SEM, TEM, DSC, DLS, XPS and BET were used to analyze phase composition, microstructure, partical size and relevant mechanism. The photocatalytic activities of the test materials were characterized by the method to measure degradation ratios of methyl orange solution in the UV. The relevant mechanisms have been discussed.
     TiO_2 sol was prepared using tetrabutyl orthotitanate (TBOT) as starting material and diethanolamine (DEA) as chelating reagent. The effects of processing temperature and soaking time on the crystallization, particle size distribution and dispersibility of TiO_2 were investigated. Titania-silica composites were formed after adding tetraethoxysilane (TEOS) into TiO_2 sol by hydrothermal processing. The composites were uniform mixed oxides of anatase TiO_2 and amorphous SiO_2 on a nanometer scale. Titania-silica composites with 1:1 molar ratio were maintained as anatase after treatment at 1200℃for 2h because silica inhibited the transition of anatase to rutile and abnormal grain growth of titania nanocrystals. The photocatalytic activity of the composites after treatment at different temperatures was much higher than that of TiO_2 (P25) treated at the same conditions.
     Porous zircon ultrafine powders were manufactured using zirconium oxychloride(ZrOCl_2), TEOS as starting materials and NaF as mineralizer. The higher content of NaF and rising temperature of hydrothermal treatment led to higher crystallinity of zircon. The increment of crystallinity of zircon decreased with the longer holding time. The morphology of zircon was greatly affected by the pH values. The porous zircon exhibited high specific surface area with a bimodal pore size distribution. Porous zircon ultrafine powders were nestle-like platelets composing of nanofibers. The synthetic mechanism of zircon porous powders was probably not Ostwald ripening but the typeⅡaggregation growth of the nanocrystals.
     The porous zircon exhibited quite good high temperature stability. The crystal phase, morphology and specific surface area did not change obviously after treatment at 750℃for 0.5h. However, the crystal phase was also maintained with significant nanofiber growth and sharp reducement of specific surface area after treatment at 900℃for 0.5h. There was an obvious exothermic reaction at ca. 850℃with some weight loss because of emission of fluorine in the zircon.
     ZrSiO_4 @TiO_2 composites were self-assembled using phytic acid modified porous zircon and nanotitania powders. The pH value influenced surface charges of the two kinds of particles, which played a key role in the formation of uniform TiO_2 coating on zircon powders. TiO_2 nanoparticles encapsulated ZrSiO_4 ultrafine powders uniformly and penetrated into their slits. The combination of TiO_2 and ZrSiO_4 were strong, therefore, anatase-type titania was stabilized at high temperature. Photocalytic glazed ceramic tiles were obtained by firing tiles with composites coating at moderate high temperature of 900℃for 10min. Both ZrSiO_4 @TiO_2 composites and photocatalytic ceramics showed quite good photocatalytic performance.
     Cheap silica sol can replace TEOS as silica source to synthesize porous zirconium silicate. Phosphoric acid(H_3PO_4) can replace the expensive phytic acid as surface modifier to self-assemble ZrSiO_4 @TiO_2 photocatalytic composite powders. Both of them can reduce the production costs significantly and are favorable to the promotion of their application.
引文
[1] Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 37: 28
    [2] Tryba B., Morawski A. W., Inagaki M., et al. Effect of the carbon coating in Fe–C–TiO_2 photocatalyst on phenol decomposition under UV irradiation via photo-Fenton process[J]. Chemosphere, 2006.8,64(7):1225-1232
    [3] Ge L., Xu M. X., Fang H. B. Photo-catalytic degradation of methyl orange and formaldehyde by Ag/InVO_4–TiO_2 thin films under visible-light irradiation[J]. Journal of Molecular Catalysis A: Chemical, 2006,258(1-2):68-76
    [4] Yamazoe S., Okumura T., Tanaka T. Photo-oxidation of NH3 over various TiO_2[J]. Catalysis Today, 2007, 120(2):220-225
    [5] Jiang F., Zheng Z., Xu Z. Y., et al. Aqueous Cr(Ⅵ) photo-reduction catalyzed by TiO_2 and sulfated TiO_2[J]. Journal of Hazardous Materials, 2006, 134(1-3):94-103
    [6] Choy W. K., Chu W. Photo-oxidation of o-chloroaniline in the presence of TiO_2 and IO_3 : A study of photo-intermediates and successive IO3 dose[J]. Chemical Engineering Journal, 2008, 136(2-3):180-187
    [7] Maira A. J., Yeung K. L., Soria J., et al. Gas-phase photo-oxidation of toluene using nanometer-size TiO_2 catalysts[J]. Applied Catalysis B: Environmental, 2001, 29(4):327-336
    [8] Rahman M. A., Muneer M. Photocatalysed degradation of two selected pesticide derivatives, dichlorvos and phosphamidon, in aqueous suspensions of titanium dioxide[J]. Desalination, 2005, 181(1-3):161-172
    [9] Malato S., Blanco J., Cáceres J., et al. Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO_2 using solar energy[J]. Catalysis Today, 2002, 76, (2-4): 209-220
    [10] Samiolo L., Valigi M., Gazzoli D., et al. Photo-electro catalytic oxidation of aromatic alcohols on visible light-absorbing nitrogen-doped TiO_2 [J]. Electrochimica Acta, In Press, Corrected Proof, Available online 20 September 2009
    [11] Lee J. M., Kim M. S., Hwang B., et al. Photodegradation of acid red 114 dissolved using a photo-Fenton process with TiO_2 [J]. Dyes and Pigments, 2003, 56(1):59-67
    [12] http://en.wikipedia.org/wiki/Titanium_dioxide
    [13] http://en.wikipedia.org/wiki/Rutile
    [14] http://en.wikipedia.org/wiki/Anatase
    [15]笔者根据www.crystallography.net上板钛矿晶体结构数据,利用Materials Studio 4.4软件模拟所得
    [16] Gratzel M. Heterogeneous Photochemical Electron Transfer [M]. CRC Press, Baton Rouge, FL, 1998
    [17]高铁,钱朝勇. TiO_2光催化氧化水中有机污染物进展[J].工业水处理,2000,20(4):10-13
    [18]刘维平.高能球磨法制备铁,钨金属微粉的研究[J].材料科学与工艺,1998,6(1): 100-102
    [19]齐宝森,王成国.高能球磨金属铬,铝粉末的特征[J].稀有金属,2000,24(5): 325-329
    [20] Woo S.H., Kim W.W., Kim S.J., et al. Photocatalytic behaviors of transition metal ion doped TiO_2 powder synthesized by mechanical alloying [J]. Materials Science and Engineering: A, 2007, 449-451: 1151-1154
    [21] Park H. S., Kim D. H., Kim S. J., et al. The photocatalytic activity of 2.5 wt% Cu-doped TiO_2 nano powders synthesized by mechanical alloying [J]. Journal of Alloys and Compounds, 2006, 415(1-2): 51-55
    [22]郭景坤,高濂,张青红.四氯化钛水解法制备纳米氧化钛超细粉体[J].无机材料学报,2000, 15(1): 21-25
    [23]孙爱华,郭鹏举,李志祥,等. TiCl_4水解法制备纳米TiO_2粉体[J].过程工程学报,2006(增刊2)
    [24] Di Paola A., Cufalo G., Addamo M., et al. Photocatalytic activity of nanocrystalline TiO_2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317(1-3): 366-376
    [25]孙静,高濂,张青红. TiCl_3、TiCl_4共水解制备金红石相氧化钛粉体[J].无机材料学报,2003, 18(5): 1123-1126
    [26] Lee J. H., Yang Y. S. Effect of hydrolysis conditions on morphology and phase content in the crystalline TiO_2 nanoparticles synthesized from aqueous TiCl4 solution by precipitation [J]. Materials Chemistry and Physics, 2005, 93(1): 237-242
    [27]祖庸.超细TiO_2的合成研究:溶胶—凝胶法[J].西北大学学报:自然科学版,1998,28 (1):51-56
    [28]尹荔松,周岐发.溶胶—凝胶法制备纳米TiO_2的胶凝过程机理研究[J].功能材料,1999,30(4): 407-409
    [29]廖东亮,肖新颜,张会平,等.溶胶-凝胶法制备纳米二氧化钛的工艺研究[J].化学工业与工程,2003,20(5): 256-260
    [30] Mohammadi M.R., Cordero-Cabrera M.C., Fray D.J., et al. Preparation of high surface area titania (TiO_2) films and powders using particulate sol–gel route aided by polymeric fugitive agents[J]. Sensors and Actuators B: Chemical, 2006, 120(1): 86-95.
    [31]陈琦丽,唐超群,等. TiO_2纳米微粒的溶胶—凝胶法制备及XRD分析[J].材料科学与工程,2002,20(2): 224-226
    [32] Zhang M., Wang Z. H., Mo M. S., et al. A simple approach to synthesize KNiF3 hollow spheres by solvothermal method [J]. Materials Chemistry and Physics, 2005 (89): 373–378
    [33] Ma J. H., Du Y. H., Qian Y. T. Low-temperature synthesis of nanocrystalline niobium nitride via a benzene-thermal route [J]. Journal of Alloys and Compounds, 2005 (389): 296–298
    [34] Chen X. Y., Zhang X. F., Wang Z. H.,et al. Biomolecule-assisted hydrothermal synthesis and one-dimensional self-assembly of copper sulfide nanocrystallites [J]. Materials Chemistry and Physics, 2006 (98): 419–421
    [35] Li C., Yang X. G., Yang B. J., et al. Growth of microtubular complexes as precursors to synthesize nanocrystalline ZnS and CdS [J]. Journal of Crystal Growth, 2006 (291): 45–51
    [36] Hu J. Q., Lu Q. Y., Deng B., et al. A hydrothermal reaction to synthesize CuFeS_2 nanorods[J]. Inorganic Chemistry Communications, 1999, (2): 569–571
    [37] Su H. L., Xie Y., Li B., et al. A simple, convenient, mild hydrothermal route to nanocrystalline CuSe and Ag_2Se [J]. Materials Research Bulletin, 2000 (35): 465–469
    [38] Chen X. Y., Zhang Z. J., Zhang X. F., et al. Single-source approach to the synthesis of In_2S_3 and In_2O_3 crystallites and their optical properties[J]. Chemical Physics Letters, 2005 (407): 482–486
    [39] Liu Y., Zhang M., Zhang J. H., et al. A simple method of fabricating large-area -MnO_2 nanowires and nanorods [J]. Journal of Solid State Chemistry, 2006 (179): 1757–1761
    [40] Zhang Y. G., Wang S. T., Li X. B., et al. CuO shuttle-like nanocrystals synthesized by oriented attachment[J]. Journal of Crystal Growth, 2006 (291): 196–201
    [41] Li Z.R., Li X. L., Zhang X. X., et al. Hydrothermal synthesis and characterization of novel flower-like zinc-doped SnO_2 nanocrystals[J]. Journal of Crystal Growth, 2006 (291): 258–261
    [42] Wang S. T., Zhang Y. G., Ma X. C., et al. Hydrothermal route to single crystallineα-MoO3 nanobelts and hierarchical structures[J]. Solid State Communications, 2005 (136):283–287
    [43] Wan J. X., Chen X. Y., Wang Z. H., et al. A soft-template-assisted hydrothermal approach to single-crystal Fe3O_4 nanorods [J]. Journal of Crystal Growth, 2005 (276): 571–576
    [44] Chen X. Y., Wang X., An C. H., et al. Synthesis of Sb_2O_3 nanorods under hydrothermal conditions[J]. Materials Research Bulletin, 2005 (40): 469–474
    [45] Chen Q. W., Qian Y. T., Li X. G., et al. Hydrothermal deposition and characterization of ultrafine ZrO_2 thin films [J]. Nanostructured Material, 1996, 7(4): 467--471.
    [46] Chen Q. W., Qian Y. T., Chen Z. Y., et al. Preparation of TiO_2 powders with different morphologies by an oxidation- hydrothermal combination method [J]. Materials Letters, 1995 (22): 77-80
    [47] Zhu Y. J., Qian Y.T., Huang H., et al. Sol-gelγ-radiation synthesis of titania-silver nanocomposites[J]. Materials Letters, 1996 (28): 259-261
    [48] Fan H., Wang Z. H., Liu X. Z., et al. Controlled synthesis of trigonal selenium crystals with different morphologies [J]. Solid State Communications, 2005 (135): 319–322
    [49] Wan J. X., Chen X. Y., Wang Z. H., et al. One-dimensional rice-like Mn-doped Zn_2SiO_4: Preparation, characterization, luminescent properties and its stability [J]. Journal of Crystal Growth, 2005 (280): 239–243
    [50] An C. H., Tang K. B., Shen G. Z., et al. Hydrothermal preparation of luminescent PbWO_4 nanocrystallites [J]. Materials Letters, 2002 (57): 565– 568
    [51]牛新书,许亚杰,张学治,等.微乳液法制备纳米二氧化钛及其光催化活性[J].功能材料,2003,34(5): 548-549
    [52]范金山.微乳液法制备TiO_2纳米粉体及其光催化性能研究[J].人工晶体学报,2006,35(2): 347-350
    [53]王祖鹓,张凤宝,夏宝林. TiO_2超细粒子的微乳法制备、表征及性能研究[J].精细化工,2004,21(04):253-256
    [54] Inaba R., Fukahori T., Hamamoto M., et al.Synthesis of nanosized TiO_2 particles in reverse micelle systems and their photocatalytic activity for degradation of toluene in gas phase [J]. Journal of Molecular Catalysis A: Chemical, 2006, 260 (1-2):247-254
    [55] Turkovic A., Crnjak-Orel Z., Kosec M. Electron microscopy studies of TiO_2 micelles [J]. Solar Energy Materials and Solar Cells, 2000, 62(3):329-334
    [56]周磊,赵文宽,等.液相沉积法制备光催化活性TiO_2薄膜[J].应用化学,2002,19(10): 919-922
    [57]刘成龙,杨大智,赵红. 316L不锈钢表面液相沉积TiO_2薄膜的耐蚀性研究[J].功能材料,2003,34(5): 600-602
    [58]王晓萍,于云. TiO_2薄膜的液相沉积法制备及其性能表征[J].无机材料学报,2000,15(3): 573-576
    [59] Mallak M., Bockmeyer M., L?bmann P. Liquid phase deposition of TiO_2 on glass: Systematic comparison to films prepared by sol–gel processing [J]. Thin Solid Films, 2007, 515(20-21): 8072-8077
    [60] Gutiérrez-Tauste D., Domènech X., Domingo C., et al. Dopamine/TiO_2 hybrid thin films prepared by the liquid phase deposition method [J]. Thin Solid Films, 2008, 516, (12): 3831-3835
    [61]沈杰,章壮健.溶胶—凝胶法制备二氧化钛薄膜的亲水性研究[J].真空科学与技术,2000,20(6): 385-389
    [62]余家国,赵修建. TiO_2纳米薄膜的溶胶—凝胶工艺制备和表征[J].物理化学学报,2000,16(9): 792-797
    [63] Kajitvichyanukul P., Amornchat P. Effects of diethylene glycol on TiO_2 thin film properties prepared by sol–gel process [J]. Science and Technology of Advanced Materials, 2005, 6(3-4): 344-347
    [64] Garzella C., Comini E., Bontempi E., et al. Sol–gel TiO_2 and W/TiO_2 nanostructured thin films for control of drunken driving [J]. Sensors and Actuators B: Chemical,2002,83(1-3):230-237
    [65]陈文梅,赵修建.溶胶凝胶法制备TiO_2多孔纳米薄膜[J].武汉工业大学学报,2000, 22 (1):6-9
    [66]郭清萍. CVD法TiO_2薄膜的制备条件及光学性质的研究[J].太原理工大学学报,1998,29(3): 240-243
    [67]崔丽萍,张建明.用MOCVD法制备TiO_2薄膜[J].太原理工大学学报,2003,34(2): 222-225
    [68] Takahashi Y., Tsuda K., Sugiyama K., et al. Chemical vapour deposition of TiO_2 film using an organometallic process and its photoelectrochemical behaviour[J]. J. Chem. Soc., Faraday Trans, 1981(77): 1051 - 1057
    [69]张利伟,姚宁,鲁占灵,等.锐钛矿TiO_2薄膜的制备及其紫外光电导性能研究[J].半导体光电,2005,26(1):40—43
    [70]张利伟,鲁占灵,杨仕娥,等.直流反应磁控溅射制备锐钛矿型TiO_2薄膜[J].真空与低温,2003,9(4):221—223
    [71]蒋小松,陈俊英,黄楠.磁控溅射制备TiO_2薄膜对医用NiTi合金弹簧圈的表面改性[J].功能材料,2007, 38(8): 1282-1286
    [72] Sung Y. M., Kim H. J. Sputter deposition and surface treatment of TiO_2 films for dye-sensitized solar cells using reactive RF plasma [J]. Thin Solid Films, 2007, 515: 4996–4999
    [73] Zhang W. J., Zhu S. L., Li Y, et al. Photocatalytic Property of TiO_2 Films Deposited by Pulsed DC Magnetron Sputtering[J].材料科学技术学报(英文版),2004, 20(1):31-34
    [74]王韬.低温固化含氟丙烯酸酯阴极电泳涂料的制备及其表面性能[D].广州,华南理工大学,2007
    [75]张国光,吴宗南,李琴,等.电泳沉积法制备羟基磷灰石涂层[J].表面技术,2008,37(6):61-63
    [76]陈锦,郭太良.电泳法制备四针状纳米ZnO场发射阴极[J].液晶与显示,2007,22(4):407-411
    [77] Angerer P., Simunkova H., Schafler E., et al. Structure and texture of electrochemically prepared nickel layers with co-deposited zirconia nanoparticles [J]. Surface and Coatings Technology,2009,203(10-11):1438-1443
    [78] Yum J. H., Kim S. S., Kim D. Y., et al. Electrophoretically deposited TiO_2 photo-electrodes for use in flexible dye-sensitized solar cells [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2005,173(1):1-6
    [79]李佑稷,李效东,李君文,等.溶胶凝胶法制备TiO_2/活性炭复合体的影响因素[J].硅酸盐学报,2005,33(3):340—345
    [80]黄彪,陈学榕,江茂生,等. TiO_2-活性炭复合材料吸附及光催化净化甲醛的研究[J].林产化学与工业,2005,25(3):38—42
    [81]陈孝云,刘守新,陈曦,等. TiO_2/wAC复合光催化剂的酸催化水解合成及表征[J]. Acta Phys.-Chim. Sin.,2006,22(5): 517~522
    [82]黄玉明,刘希东,李天安,等.活性炭吸附下TiO_2光催化降解苯酚的研究[J].西南师范大学学报(自然科学版),1999,24(1):50—53
    [83] Tryba B., Morawski A.W., Inagaki M. A new route for preparation of TiO_2-mounted activated carbon [J]. Applied Catalysis B: Environmental, 2003, 46: 203–208
    [84] Torimoto T., Okawa Y., Takeda N., et al. Effect of activated carbon content inTiO_2-1oaded activated carbon on photodegradetion behaviors of dichloro- methane [J]. Journal of Photochemistry and Photobiology A: Chemistry 1997, 103: 153-157
    [85] Lee D. K., Kim S. C., Cho I. C., et al. Photocatalytic oxidation of microcystin-LR in a fluidized bed reactor having TiO_2-coated activated carbon [J]. Separation and Purification Technology, 2004, 34: 59–66
    [86]赵春,钟顺和.复合半导体光催化材料ZnFe_2O_4-TiO_2/SiO_2结构与光响应性能研究[J].无机材料学报,2006,21(4): 965-971
    [87]袁志好,张立德.掺锌的TiO_2纳米粉的结构相变及发光性质[J].高等学校化学学报,1999, 20(7): 1007-1011
    [88] Zhou F., Liang K. M., Wang G. L., et al. Crystallization behavior of Li+-doped SiO_2–TiO_2 films prepared by sol–gel dip coating [J]. Journal of Crystal Growth, 2004, 264: 297–301
    [89] Zhou J., Chen M., Qiao X. G., et al. Facile Preparation Method of SiO_2/PS/TiO_2 Multilayer Core-Shell Hybrid Microspheres [J]. Langmuir, 2006, 22: 10175-10179
    [90]Zhang K., Zhang X. H., Chen H. T., et al. Hollow Titania Spheres with Movable Silica Spheres Inside [J]. Langmuir, 2004, 20: 11312-11314
    [91] Ryu D. H., Kim S. C., KOO S. M. Deposition of Titania Nanoparticles on Spherical Silica [J]. Journal of Sol-Gel Science and Technology, 2003, 26: 489–493
    [92] Sun D. H., Huang Y., Han B. X., et al. Ti-Si Mixed Oxides Prepared by Polymer in Situ Sol-Gel Chemistry with the Aid of CO_2 [J]. Langmuir, 2006, 22:4793-4798
    [93] Hattori A., Shimoda K., Tada H., et al. Photoreactivity of sol-gel TiO_2 films formed on soda-lime glass substrates: Effect of SiO_2 underlayer containing fluorine [J]. Langmuir, 1999, 15: 5422-5425
    [94]陈前林,吴建青,王龙现. SiO_2的加入方法对高温稳定型纳米TiO_2光催化活性的影响[J].中国陶瓷,2006,42 (6):12—13
    [95]刘瑶. ZrO_2掺杂TiO_2纳米光催化薄膜的制备及其性能研究[D].广州,华南理工大学,2005
    [96] Lee D. W., Ihm S. K., Lee K. H. Mesostructure Control Using a Titania-Coated Silica Nanosphere Framework with Extremely High Thermal Stability [J]. Chem. Mater., 2005, 17: 4461-4467
    [97] Xiong G., Wang X., Lu L. D., et al. Preparation and Characterization of Al2O3–TiO_2 Composite Oxide Nanocrystals [J]. Journal of Solid State Chemistry, 1998, 141: 70-77
    [98]王文焱,谢敬佩,王爱华,等. CO_2激光诱发锆英石耐火材料结构转变的研究[J].2007,36(增刊2):380-382
    [99]钱扬保,张伟刚.大气等离子喷涂ZrSiO_4涂层的物相转变行为[J].硅酸盐学报,2008,36(8):1103-1108
    [100]张萍,王焕英,刘占荣,等.硅锆复合包覆BiVO_4晶体的表征及其机理研究[J].人工晶体学报,2008,37(5):1141-1144
    [101]施鹰,黄校先,严东升.锆英石陶瓷的晶界特性对其高温力学性能的影响[J].无机材料学报,1996,11(1):97-100
    [102] Ueno S., Ohji T., Lin H. T. Corrosion and recession behavior of zircon in water vapor environment at high temperature [J]. Corrosion Science, 2007, 49: 1162–1171
    [103]杜春生,葛志平,杨正方,等.溶胶-凝胶法合成高纯锆英石粉[J].硅酸盐学报,1999,27(3):346-350
    [104]杜春生.锆英石的合成[J].硅酸盐通报,1998, (6):43-47
    [105]江伟辉,周艳华,魏恒勇,等.非水解溶胶-凝胶法低温合成硅酸锆[J].中国陶瓷,2008,44(7):20-22
    [106]曾爱香,熊惟浩,王采芳.溶胶-凝胶法制备空心微珠表面钡铁氧体包覆层的研究[J].材料保护,2004,37(9):19-20
    [107]黄新,孙亚丽,彭书杰,等.用溶胶-凝胶法形成氧化铝硬质涂层的研究[J]. 2008,11:7-9
    [108]刘冰,王德平,黄文旵,等.溶胶-凝胶法制备核壳SiO_2/Fe_3O_4复合纳米粒子的研究[J].无机材料学报,2008,23(1):33-38
    [109]李利君,皮丕辉,文秀芳,等.溶胶-凝胶法制备纳米SiO_2包覆的铝颜料[J].华南理工大学学报(自然科学版),2007,35(11):72-76
    [110]孙秀果,张建民,彭政.包覆沉淀法制备氧化硅改性的纳米二氧化钛及其性质[J]. 2007,38(11):1898-1900
    [111]沈湘黔,李东红,景茂祥,等. Coating of Fe, Ni on -alumina microspheres by heterogeneous precipitation [J]. J. Cent. South Univ. Technol.,2006.13(1):22-26
    [112]魏明坤,肖辉,刘利. Al_2O_3包覆石墨颗粒的制备及表征[J].硅酸盐学报,2004,32(8):916-919
    [113]曹冉,李红霞.非均匀成核法石墨表面改性的研究[J].耐火材料,2006,40(3):161-164
    [114]张巨先,候耀永,高陇桥,等.非均匀成核法涂覆改性纳米SiC粉体表面研究[J].硅酸盐学报,1998,26(6):762-767
    [115]颜东亮. ATO包覆型导电填料的制备及在防静电陶瓷中的应用[D].广州,华南理工大学,2008
    [116]任敏,殷恒波,王爱丽,等.纳米金红石型TiO_2沉积制备云母钛纳米复合材料及其光学性质[J].中国有色金属学报,2007,17(6):945-950
    [117] Jia Y. X., Han W., Xiong G. X., et al. Layer-by-layer assembly of TiO_2 colloids onto diatomite to build hierarchical porous materials [J]. Journal of Colloid and Interface Science, 2008,323: 326–331
    [118]刘守新,刘鸿.光催化及光电催化基础与应用[M].化学工业出版社,北京,2006
    [119]武正簧. TiO_2薄膜在光催化下处理含铬废水[J].太原理工大学学报, 1999, 30(3): 289-290
    [120]鲁秀国,梁淑轩. TiO_2复合吸附剂处理六价铬废水[J].吉首大学学报:自然科学版,2002,23(2): 15-18
    [121]周雪锋,刘畅,何明,等.改性TiO_2可见光催化分解水制氢研究进展[J].石油化工,2004,33(12): 1191-1197
    [122]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].化学工业出版社,北京,2002
    [123]王瑞斌,戴松元.纳米TiO_2对染料敏化钠米薄膜太阳电池的影响[J].中国科学院研究生院学报,2001,18(1): 28-30
    [124]林志东,刘黎明.敏化TiO_2纳米晶多孔膜电极的制备与表征[J].材料科学与工艺,2003,11(1): 64-67
    [125]蓝鼎,罗欣莲,万发荣,等. TiO_2薄膜的制备方法及其对染料敏化太阳电池性能的影响[J].感光科学与光化学,2003,21(4): 262-272
    [126] Toto Ltd. Multi-functional material with photocalytic functions and method of manufacturing same [P]. USA, No. 5853866, Dec 29, 1998
    [127] Toto Ltd. Method and apparatus for producing a photocatalytic material [P]. USA , No. 6368668, Apr 9, 2002
    [128]张霞,赵岩,张彩碚,等.低温水热合成异形TiO_2纳米晶及其表征[J].物理化学学报,2007,23(6):856-860
    [129] Jia X. T., He W., Luo S. Q., et al. Mesoporous anatase with multi-morphologiessynthesized by sol–gel method [J]. Materials Letters, 2006, 60:1839–1842
    [130]黄冬根,廖世军,周文斌,等.锐钛矿型F-TiO_2溶胶制备及光催化降解4-氯苯酚的性能[J].功能材料,2008,39:1166-1169
    [131] Yu J. G., Su Y. R., Cheng B., et al. Effects of pH on the microstructures and photocatalytic activity of mesoporous nanocrystalline titania powders prepared via hydrothermal method [J]. Journal of Molecular Catalysis A: Chemical, 2006, 258: 104–112
    [132] Yu J. G., Wang G. H., Cheng B., et al. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO_2 powders [J]. Applied Catalysis B: Environmental, 2007, 69: 171–180
    [133] Kumar S. R., Suresh C., Vasudevan A. K., et al. Phase transformation in sol–gel titania containing silica [J]. Mater Lett, 1999, 38(3):161-166.
    [134] Hwang S. T., Hahn Y. B., Nahm K. S., et al. Preparation and characterization of poly(MSMA-co-MMA)-TiO_2/SiO_2 nanocomposites using the colloidal TiO_2/SiO_2 particles via blending method[J]. Colloid Surface A, 2005, 259(1-3):63-69.
    [135] Hu Y. J., Li C. Z., Gu F., et al. Facile flame synthesis and photoluminescent properties of core/shell TiO_2/SiO_2 nanoparticles [J]. J Alloy Compd, 2007, 432 (1-2):L5-L9.
    [136] Zhou F., Liang K. M., Wang G. L., et al. Crystallization behavior of Li+-doped SiO_2–TiO_2 films prepared by sol–gel dip coating [J]. J Cryst Growth, 2004, 264 (1-3):297-301.
    [137]刘德飞,郑育英,黄慧民.水热法制备核壳型纳米TiO_2/Al2O3粉体的研究[J].材料工程,2008,10:342-345
    [138]许璞,高善民,于忠玺,等. Fe3+掺杂的纳米TiO_2的水热法制备及光催化性能研究[J].材料工程,2008,10:328-331
    [139]施尔畏,陈之战,元如林,等.水热结晶学[M].科学出版社,2004,北京
    [140] Eppler R. A. Mechanism of Formation of Zircon Stains [J]. Journal of the American Ceramic Society, 1970,53(8): 457 - 462
    [141]张文丽,沈毅,陈嘉庚,等.锆英石多孔陶瓷烧结助剂的研究[J].材料导报,1998,12(2):37-38
    [142]陆彩飞,王秀峰,苗鸿雁,等.纳米硅酸锆的水热合成[J].硅酸盐学报,2000, 28(1): 87–90.
    [143] Del Nero G., Cappelletti G., Ardizzone S.,et al. Yellow Pr-zircon pigments The role of praseodymium and of the mineralizer [J]. Journal of the European Ceramic Society,2004 (24):3603–3611
    [144]张文丽,金建国,张庆军,等.反应烧结锆英石质多孔陶瓷烧结机理初探[J].河北理工学院学报,2000,22(4):64-71
    [145] Carrez P., Forterre C., Braga D., et al. Phase separation in metamict zircon under electron irradiation [J]. Nuclear Instruments and Methods in Physics Research B,211 (2003): 549–555
    [146]黄孝瑛.金属材料研究丛书之电子衍射分析方法[M],金属材料研究编辑部,1976
    [147] Valero R., Durand B., Guth J. L., et al. Hydrothermal synthesis of porous zircon in basic fluorinated medium [J]. Microporous and Mesoporous Materials, 1999 (29): 311–318
    [148]陆彩飞,王秀峰,苗鸿雁,等.水热合成纳米硅酸锆工艺因素分析[J].中国粉体技术,1999,5(5):21-23
    [149]王玲玲,方小龙,唐芳琼,等.单分散二氧化硅超细颗粒的制备[J].过程工程学报,2001,1(2):167-172
    [150] Hirano M., Morikawa H., Inagaki M. Direct Synthesis of New Zircon-Type ZrGeO_4 and Zr(Ge,Si)O_4 Solid Solutions[J]. J. Am. Ceram. Soc., 2002, 85 (8): 1915–1920
    [151] [美]S J格雷格,K S W辛.吸附、比表面与孔隙率[M],1989,化学工业出版社,北京
    [152] Liu S. W., Yu J. G. Cooperative self-construction and enhanced optical absorption of nanoplates-assembled hierarchical Bi2WO6 flowers [J]. Journal of Solid State Chemistry, 2008, 181: 1048–1055
    [153]余家国,赵修建,赵青南,等. TiO_2光催化薄膜的XPS研究[J],材料研究学报,2004,14(2):203-209
    [154] GB/T19500-2004. X射线光电子能谱分析方法通则[S].国家质量监督检验检疫总局, 2004
    [155]周清.电子能谱学[M],南开大学出版社,天津, 1995
    [156]赵光好,张丽,周新木.前驱体固相法制备纳米ZrO_2(4Y)粉体[J].有色金属, 2009,61(2): 29-32
    [157]赖林,戴金辉,楚会娟. SiO_2微球的制备及其自组装行为研究[J].材料导报, 2010, 24(6): 91-93
    [158]王丽,王铎,朱桂茹,高从堦.单分散球形介孔SiO_2的合成与表征[J].功能材料,2010,41(5):822-826
    [159] www.nist.gov
    [160] http://en.wikipedia.org/wiki/Zircon
    [161] Zhang Y., Wu J. Q., Rao P. G., et al. Low temperature synthesis of high purity leucite[J]. Materials Letters,2006,60(23):2819-2823
    [162]张翼.白榴石的合成、机理和应用的研究[D].广州,华南理工大学,2007
    [163] Valero R., Durand B., Guth J. L. Mechanism of Hydrothermal Synthesis of Zircon in a Fluoride Medium [J]. Journal of Sol-Gel Science and Technology, 1998, 13: 119–124
    [164] Yu C. C., Yu M., Li C. X., et al. Spindle-like Lanthanide Orthovanadate Nanoparticles: Facile Synthesis by Ultrasonic Irradiation, Characterization, and Luminescent Properties [J]. Cryst. Growth Des., 2009, 9 (2):783-791
    [165] Ren L., Huang X. T., Sun F. L., et al. Preparation and characterization of doped TiO_2 nanodandelion [J]. Materials Letters,2007 (61): 427–431
    [166] Yu J. G., Tang H. Solvothermal synthesis of novel flower-like manganese sulfide particles [J]. Journal of Physics and Chemistry of Solids, 2008, 69: 1342–1345
    [167] Yu J., Qi L. Template-free fabrication of hierarchically flowerlike tungsten trioxide assemblies with enchanced visible-light-driven photocatalytic activity [J]. Journal of Hazardous Materials, 2008, 169(1-3):221-227
    [168] Zhang X. W., Lei L. C. Effect of preparation methods on the structure and catalytic performance of TiO_2/AC photocatalysts [J]. J Hazard Mater, 2008,153(1-2): 827-833
    [169] Mahe M., Heintz J. M., Rodel J., et al. Cracking of titania nanocrystalline coatings[J]. J Eur Ceram Soc, 2008, 28(10): 2003–2010
    [170] Falamaki C., Afarani M. S., Aghaie A. In Situ Crystallization of Highly Oriented Silicalite Films on Porous Zircon Supports [J]. J. Am. Ceram. Soc., 2006, 89 (2): 408–414
    [171] Ren M., Yin H. B., Wang A. L., et al. Mica coated by direct deposition of rutile TiO_2 nanoparticles and the optical properties [J]. Mater Chem Phys, 2007, 103(2-3): 230–234
    [172] Yang L. Z., Liu H. Y., Hu N. F. Assembly of electroactive layer-by-layer films of myoglobin and small-molecular phytic acid [J]. Electrochemistry Communications, 2007, 9: 1057–1061
    [173] Paddon C. A., Marken F. Hemoglobin adsorption into TiO_2 phytate multi-layer films: particle size and conductivity effects [J]. Electrochemistry Communications, 2004, 6: 1249–1253
    [174] McKenzie K. J., Marken F., Gao X., et al. Quartz crystal microbalance monitoring of density changes in mesoporous TiO_2 phytate films during redox and ion exchangeprocesses[J]. Electrochemistry Communications, 2003, 5: 286–291
    [175]陈前林,吴建青,王龙现,T iO_2光催化抗菌陶瓷的制备[J],功能材料,2009,40(7):1166-1168
    [176]陈前林,吴建青,王龙现,陶瓷釉用TiO_2光催化剂的制备研究[J],微细加工技术,2008(6):28-30
    [177] Zeng Z C , Peng C, Hong Y, Lu Y, Wu J Q,Fabrication of a Photocatalytic Ceramic by Doping Si-, P-, and Zr-Modified TiO_2 Nanopowders in Glaze[J],J. Am. Ceram. Soc., 2010,93 (10):2948–2951

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700