用户名: 密码: 验证码:
深部条带煤柱长期稳定性基础实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着时间的推移,开始处于稳定状态的条带煤柱在将来可能会失稳坍塌,这些煤柱成为老矿区发展其它工业潜在的灾害源;同时,部分矿井为了延长矿井寿命,不得不考虑开采以前“三下”开采时留设的煤柱。深部煤柱的时效性更为明显,研究深部条带煤柱的长期稳定性对减轻煤柱失稳造成的灾害具有积极的作用,可为煤柱资源的回收提供科学基础。本文采用室内试验、数值模拟、现场实测和理论分析等方法,针对随时间变化的深部条带煤柱长期稳定性进行了较为系统的基础实验研究。论文获得如下主要成果。
     (1)煤柱稳定性能的长期性表现在煤柱强度的蠕变性和煤柱及采场覆岩结构运动稳定的长期性两个方面。分析了地质条件、采矿条件、条带煤柱自身条件、时间、水等因素对煤柱长期稳定性能的影响,基于矿山压力理论提出了小采宽和大采宽的条带开采采场空间结构模型;煤柱理论长期强度应考虑尺度效应、横向约束效应和时间效应。
     (2)对多种岩性的岩石进行了Ⅰ类和Ⅱ类曲线单轴压缩试验,分析了岩石Ⅱ类曲线的形成机制、获取方法和产生条件,以此为基础,分析了深井煤柱独特变形特征的产生机制;进行了煤岩单轴压缩强度尺度效应的实验研究,得到了由室内单轴压缩强度与现场煤体强度的关系。
     (3)对煤岩试件进行了蠕变特性试验研究,分析了其蠕变破坏特征、蠕变力学参数和蠕变本构模型。通过精密蠕变试验明确了煤岩流变过程中微破坏和脆性突变变形的存在。通过自然状态煤岩试件和饱水试件的对比蠕变试验,分析了浸水对煤岩蠕变特性的影响。通过短时和较长时蠕变试验,研究了时间对煤岩长期强度的影响;提出了岩石长期强度的计算公式σT=σ∞+Aexp(-Bt),并据此确定了试验煤岩的理论长期强度为8.2282MPa。
     (4)结合室内试验成果,采用LS-DYNA和FLAC3D进行了煤柱长期稳定性能的数值试验,分析了岱庄煤矿条带煤柱的长期稳定性能。研究表明,在采矿活动结束的较长时间之后,煤柱状态仍然发生着变化,但稳定煤柱的变化会越来越小,在蠕变15~16个月后煤柱进入长期稳定状态。
     (5)建立了条带煤柱长期稳定性能的监测方法,对岱庄煤矿和唐口煤矿条带煤柱长期稳定性能进行了监测并分析了其演化规律。通过现场试验研究确定了岱庄煤矿条带煤柱分为弹性核区、塑性破坏区和完全破碎区及其范围;分析了观测煤柱不同部位的强度,并结合现场观测和室内试验成果,确定了岱庄煤矿条带煤柱的长期强度为29.5MPa,研究表明该煤柱是长期稳定的。现场试验研究了唐口煤矿条带煤柱各区域的范围、压力峰值位置、煤柱强度及侧向采动影响范围,并分析了其长期稳定性能。
     (6)实测研究还表明深井煤柱的深部横向变形是非连续、阶跃式、突变式的;一些在浅部表现为弹性的岩石,虽然在矿井深部因受到大得多的压力而表现为塑性,但它们的弹性、脆性、冲击性在深部矿井会表现的更加突出。
As time goes on, some strip pillars will be unstable and collapse in the future then they are steay at formerly, those pillars become potential disasters while development of other industrial in old mining areas.At the same time, in order to extend the mine life, some mines have to consider to exploitate the former pillars.Deep pillar timeliness is more obvious, study the long-term stability of deep coal pilla has a positive role r to reduce disasters caused by coal pillar losing stability and can provide a scientific basis to reexploitate coal resources. A more systematic basic research on the long-term stability of deep strip coal pillar affected with time is carried out by the use of laboratory testing, field measurement, numerical simulation and theoretical analysis methods in this paper. The main study achievements were as follows.
     (1) The long-term of strip coal pillar stability manifests at the creep of pillar strength and development & stabilination long-term of pillar & overlay stratum. Some factors are analyzed as strip coal pillar of geological conditions, coal pillar own conditions, time and water influencing on long-term stability. The stope spatial structure models of small and large strip mining width are put forward based on mine pressure theory. The theoretical strength of strip pillar should include the scale effect, lateral constraint effect and time effect.
     (2) Unaxial compressed tests of several typical rocks'classⅠand classⅡcurves are carried out, and the formation mechanism and access method and production conditions of classⅡcurve are analyzed. Dimension-form effect for compressive strength of coal sample is experimental studied and the relation between UCS and coal mass strength in scene.
     (3) Creep tests are carried out and coal creep failure characteristics and mechanical parameters and constitutive model are analyzed. The existence of the micro-failure and brittle mutation deformation is proved in the creep process of coal through exact creep experiment. The influence on coal creep characteristics of water immersion is studied through contrast creep tests between natural and saturated water coal samples. The concepts of absolute long-term strength and relative long-term strength are cleared and the influence on coal long-term strength is studied through short-term and relative long-term creep tests. The formula of rock long-term strength is put forward asσT=σ∞+A exp(-Bt), then the theoretical long-term strength of coal tested is ascertained as 8.2282MPa.
     (4) Strip pillar long-term stability of Daizhaung Coal Mine performance is analyzed though numerical experiment using LS-DYNA and FLAC3D combination of laboratory test results and comparing the results of field measurement. The results show that pillar state is still undergoing changes after a long time of the end of mining activities, but these changes will become increasingly smaller. After 15-16months of mining, the coal pillar chang into long-time stable state.
     (5) The long-term monitoring of coal pillar stability is established, pillar long-term stability performances are monitored in Daizhaung Coal Mine and Tangkou Coal Mine and those evolution laws are analyzed. Based on actual observation, the strip pillar in Daizhaung Coal Mine is divided into elastic core zone, plastic failure zone and completely failure zone and the scope of each zone is determined. The strengths of different parts of the coal pillar are determined through on-site observations. The long-term strength of pillar in Daizhaung Coal Mine is determined as 29.5MPa combination of field observations and laboratory test results and pillar long-term stability performance is analyzed. Based on actual observation, scope of each zone and position of peak pressure and strength from Tangkou Coal Mine strip pillar and lateral incidence of mining are studyed and pillar long-term stability performance is analyzed.
     (6) Actual observation also shows that the transverse deformation in deep pillar of deep mine is non-continuous, step-type, mutant type. Rocks'flexibility, brittle and impact resistance also will be demonstrated even more prominent though the rocks perform plasticity since bearing more pressure in deep mine that perform elasticity and brittle in shallow mine.
引文
1.谢和平,段发兵,周宏伟,等.条带煤柱稳定性理论与分析方法研究进展[J].中国矿业,1998,7(5):37-41
    2.格雷R E,普鲁恩RW.报废矿上方的地表下沉[A],第一届国际采矿会议论文集[C].北京:煤炭工业出版社,1982
    3. Van Der Merwe J N. South African coal pillar database [J]. Journal of The South African Institute of Mining and Metallurgy,2006,106(2):115-128
    4.徐金海,缪协兴,张晓春.煤柱稳定性的时间相关性分析[J].煤炭学报,2005,30(4):433-437
    5.郭广礼,邓喀中,谭志祥,等.深部老采空区残余沉降预计方法及应用[J].辽宁工程技术大学学报,2002,21(1):1-3
    6.Peng S S.煤矿地层控制[M].高博彦,韩持,译.北京:煤炭工业出版社,1984
    7. 乔志春,夏军武,郭广礼.老采空区上方大型工业建筑抗变形措施研究[J].中国矿业大学学报,1999,28(6):593-596
    8.郭广礼,缪协兴,张振南等.老采空区破裂岩体变形性质研究[J].科学技术与工程,2002,2(5):44-47
    9. Krauland Norbert, Soder, Per-Erik. DETERMINING PILLAR STRENGTH FROM PILLAR FAILURE OBSERVATION [J].Engineering and Mining Journal,1987,188(8): 34-40
    10. Paul H Lu. STABILITY EVALUATION OF RETREATING LONG WALL CHAIN PILLARS WITH REGRESSIVE INTEGRITY FACTORS [A]. Proceedings-Congress of the International Society for Rock Mechanics[C].1983,37-40
    11. A Kushwaha, G Banerjee. Exploitation of developed coal mine pillars by shortwall mining—a case examples [J]. International Journal of Rock Mechanics & Mining Sciences,2005,42:127-136
    12. C D Martina, W G Maybee. The strength of hard-rock pillars [J]. International Journal of Rock Mechanics & Mining Sciences,2000,37:1239-1246
    13. D Bunting, Chamber Pillars in Deep Anthracite Mines [M]. Trans. AIME,1911,236-268
    14. E N Zern, Coal Miners Pocketbook[M].McGraw Hill 12th ed,1928,641-645
    15. F L Gaddy. A Study of the Ultimate Strength of Coal as Related to the Absolute Size of Cubical Specimens Tested [J]. Virginia Polytechnic Bulletin,1956,112:1~27
    16. C T Holland, F L Gaddy. Some aspects of permanent support of overburden on coal beds [J]. Proceedings of the West Virginia Coal Mining Institute,1956,43-56
    17. MADDEN B J. A re-assessment of coal pillar design[J]. Journal of The South African Institute of Mining and Metallurgy,1991,91(1):27-37
    18. SALAMON M D G, MUNRO A H. A study of the strength of coal pillars [J]. Journal of The South African Institute of Mining and Metallurgy,1967,56-67
    19. SALAMON, M D G. A method of designing bord and pillar workings [J]. Journal of The South African Institute of Mining and Metallurgy,1967,68-72
    20. SALAMON MDG. Stability, instability and design of pillar workings [J]. International Journal of Rock Mechanics & Mining Sciences,1970,7(6):613-631
    21. SALAMON M D G. Unpublished report to Wankie Colliery,1982
    22. WAGNER H, MADDEN B J. Fifteen years experience with the design of coal pillars in shallow South African collieries:An evaluation of the performance of the design procedure and recent improvements [M]. Design and Performance of Underground Excavations. ISRM/BGS, Cambridge,1984,391-399
    23. SALAMON M D G, WAGNER H. Practical experiences in the design of coal pillars. Safety in Mines Research Proceedings of the 21st International Conference, Sydney, 1985.1021-25
    24. SALAMON M D G, ORAVECZ K I. Rock mechanics in coal mining, Johannesburg: Chamber of Mines of South Africa. P.R.D.,1976,198
    25. Madden B J, Canbulat I, York G. Current South African coal pillar research [J]. Journal of The South African Institute of Mining and Metallurgy,1998,98(1):7-10
    26. VAN BESIEN A C, ROCKAWAY J D. Influence of Overburden on Subsidence Development Over Room and Pillar Coal Mines [M]. In Engineering Geology of Underground Movements. Ed. Bell, F.G. et al. The Geological Society, London.1988
    27. HAO Q W, CHUG Y P, An Engineering Approach to Predict Subsidence Likelihood Over Abandoned Coal Mines in Illinois. In Proc.3rd Subsidence Workshop Due to Underground Mining. Ed. S.S. Peng. West Virginia University, Morgantown, West Virginia, USA.1992
    28. VAN DER MERWE J N. Revised Strength Factor for Coal in the Vaal Basin [J]. Journal of The South African Institute of Mining and Metallurgy,1998
    29. Salamon M D G, Ozbay M U, Madden B J. Life and design of bord-and-pillar workings affected by pillar scaling[J]. Journal of The South African Institute of Mining and Metallurgy,1998,98(3):135-145
    30. Van der Merwe JN. Predicting coal pillar life in South Africa [J]. Journal of The South African Institute of Mining and Metallurgy,2003,103(5):293-301
    31. Van der Merwe J N. New pillar strength formula for South African coal [J]. Journal of The South African Institute of Mining and Metallurgy,2003,103(5):281-292
    32. Biswas K, Peng S S. Study of weathering action on coal pillars and its effects on long-term stability [J]. Mining Engineering (Littleton, Colorado),1999,51(1):71-76
    33. Griffiths D V, Fenton Gordon A, Lemons Carisa B. Probabilistic analysis of underground pillar stability [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002,26(8):775-791
    34. Lu Paul H. TRIAXIAL-LOADING MEASUREMENT FOR MINE-PILLAR STABILITY EVALUATION [A], Proceedings-Symposium on Rock Mechanics[C]. 1986,379-385
    35. Snodgrass James J, Newman David A. IN SITU TECHNIQUE FOR THE ASSESSMENT OF FAILURE IN COAL PILLARS [A], Proceedings-Symposium on Rock Mechanics[C]. 1985,(2):1181-1188
    36. Goharizi K, Terezopoulos N G, Smith S F. Scale model studies to investigate the effects of various stressfields on the stability of pillars between mine roadways [A]. Proc 11 Int Conf Ground Control Min[C].1992,92-98
    37. Iannacchione Anthony, Mark Christopher. Evaluating coal pillar mechanics through field measurements [A]. Proc 11 Int Conf Ground Control Min[C].1992,38-47
    38. Pariseau WG, McCarter MK, McKenzie J. Inter-panel barrier pillar study in a deep Utah coal mine[A].42nd U.S. Rock Mechanics-2nd U.S.-Canada Rock Mechanics Symposium, 2008.
    39. Singh R, Kumar R. Pillar stability during underground mining of the complete thickness of a thick coal seam in a single lift-Indian experiences [A]. Proceedings of the 1st Canada-US Rock Mechanics Symposium-Rock Mechanics Meeting Society's Challenges and Demands.2007, v 2, p 1463-1468.
    40. Khair A W, Peng S S. CAUSES AND MECHANISMS OF MASSIVE PILLAR FAILURE IN A SOUTHERN WEST VIRGINIA COAL MINE[J]. Mining Engineering (Littleton, Colorado),1985,37(4):323-328
    41. Mokgokong P S, Peng S S. Investigation of pillar failure in the Emaswati Coal Mine, Swaziland [J]. Mining Science & Technology,1991,12(2):113-125
    42. G Murali Mohan, P R Sheorey, A Kushwaha. Numerical estimation of pillar strength in coal mines [J]. International Journal of Rock Mechanics & Mining Sciences,2001,38: 1185-1192
    43. J P Loui, P R Sheorey. Estimation of non-effective width for different panel shapes in room and pillar extraction [J]. International Journal of Rock Mechanics & Mining Sciences,2002,39:95-99
    44. P B Choudhury, A K Raina, M Ramulu, e tl. Crown pillar stability assessment in an underground copper mine using acoustic emission [J]. International Journal of Rock Mechanics & Mining Sciences,2004,41:399-400
    45. P K KAISER, C A TANG. Numerical Simulation of Damage Accumulation and Seismic Energy Release During Brittle Rock Failure-Part Ⅱ:Rib Pillar Collapse [J]. International Journal of Rock Mechanics & Mining Sciences,1998,35 (2):123-134
    46. L A Nazarov, L A Nazarova, A M Freidin, e tl. ESTIMATING THE LONG-TERM PILLAR SAFETY FOR ROOM-AND-PILLAR ORE MINING [J]. Journal of Mining Science,2006,42 (6):530-539
    47. Kushwaha, A.; Sinha, A.; Bhattacharjee, R.; Sheorey, P.R.. Estimation of pillar strength in the presence of non-coal bands in coal seams [A].42nd U.S. Rock Mechanics-2nd U.S.-Canada Rock Mechanics Symposium.2008.
    48. S K Palei, S K Das. Logistic regression model for prediction of roof fall risks in bord and pillar workings in coal mines:An approach, Safety Sci. (2008), doi:10.1016/j.ssci. 2008.01.002
    49. T P Medhurst, E T Brown. A study of the mechanical behavior of coal for pillar design [J]. International Journal of Rock Mechanics & Mining Sciences,1998,35 (8):1087-1105
    50. Panek L A. Scaling mine pillar size and shape with the Psi function [J]. Mining Engineering,1994,46(11):1277-1281
    51. Alber M, Heiland J. Investigation of a limestone pillar failure. Part 1:Geology, laboratory testing and numerical modeling [J]. Rock Mechanics and Rock Engineering, 34(3):167-186
    52. Alber M, Heiland J. Investigation of a limestone pillar failure. Part2:Stress History and Application of Fracture Mechanics Approch [J]. Rock Mechanics and Rock Engineering, 34(3):187-199
    53. Energy Approach to the Stability of Room-and-Pillar Exploitations Based on Post-Failure Behavior of Pillars [A]. Weber Ph. Proceedings-Congress of the International Society for Rock Mechanics[C].1983,97-100
    54. Bekendam R F, Dirks W G.Stability assessment of the Hoorensberg room and pillar mine. Southern Limburg, using separate shape factors for intact and cracked pillars [A]. Proceedings of International Congress International Association of Engineering Geology [C].1990,2627
    55. Kilpatrick B L, Szwedricki T. Model studies of mining pillar stability [J]. Printed Circuit Fabrication,1994,17(9):65
    56. Ormonde R, Szwedzicki T. Monitoring of post-failure pillar behaviour. Laboratory studies, Publ by A.A. Balkema,1993,393
    57. Tsur-Lavie Y, Denekamp S. A. SIZE AND SHAPE EFFECT IN PILLAR DESIGN[J]. Developments in Geotechnical Engineering,1982,32,245-248
    58. Whittaker B N, Unlue T, Reddish D J, Smith S F. Pillar design aspects for stability in deep coal mines [A]. Proceedings Visualization[C].1993,375
    59. Economopoulos J N, Sofianos A I, Koronakis N J. Real time stability control in underground room and pillar mining[A]. Proc 8 Int Congr Rock Mech[C].1995,2,869
    60. Ozbay M U, Spottiswoode S M, Ryder J A. Quantitative analysis of pillar-associated large seismic events in deep mines[A]. Proceedings of the 3rd International Symposium on Rockbursts and Seismicity in Mines [C].1993,107
    61. Vutukuri V S, Seto M, Nag D K. Study of estimating in-situ stress of coal pillar using Kaiser effect of acoustic emission [A]. Proceedings of the 1996 5th International Symposium on Mine Planning and Equipment Selection[C].1996,301
    62.邹友峰,柴华彬.我国条带煤柱稳定性研究现状及存在问题[J].采矿与安全工程学报,2006,23(2):141-146
    63.吴立新,王金庄,郭增长.煤柱设计与监测基础[M].徐州:中国矿业大学出版社,2000
    64.王旭春,黄福昌,张怀新,等.A.H.威尔逊煤柱设计公式探讨及改进[J].煤炭学报,2002,27(6):604-608
    65.崔希民,缪协兴.条带煤柱中的应力分析与沉陷曲线形态研究[J].中国矿业大学学报,2000,29(4):392-394
    66.侯朝炯,马念杰.煤层巷道两帮煤体应力和极限平衡区的探讨[J].煤炭学报,1989,12(4):21-29
    67.刘沐宇,徐长佑.硬石膏的流变特性及其长期强度的确定[J].中国矿业,2000,9(2):53-55
    68.李世平.岩石力学简明教程[M].徐州:中国矿业大学出版社,1986
    69.邓广哲,朱维申.蠕变裂隙扩展与岩石长时强度效应实验研究[J].实验力学,2002,17(2):7-9
    70.胡炳南.条带开采煤柱稳定性分析[J].煤炭学报,1995,20(2):205-210
    71.高玮.倾斜煤柱稳定性的弹塑性分析[J].力学与实践,2001,23(2):23-26
    72.于广明.地层沉陷中的突变现象及其研究进展[J].辽宁工程技术大学学报,2001,20(1):1-5
    73.王来贵,何峰,刘向峰,等.岩石试件非线性蠕变模型及其稳定性分析[J].岩石力学与工程学报,2004,23(10):1640-1642
    74.郭文兵,邓喀中,邹友峰.走向条带煤柱破坏失稳的尖点突变模型[J].岩石力学与工程学报,2004,23(12):1996-2000
    75.郭文兵,邓喀中,邹友峰.条带煤柱的突变破坏失稳理论研究[J].中国矿业大学学报,2005,34(1):77-81
    76.吴立新,王金庄,刘延安,等.建(构)筑物下压煤条带开采理论与实践[M],徐州:中国矿业大学出版社,1995,97-109,134-136
    77.沈光寒,高金英.用有限元法研究条带开采的煤柱及围岩应力分布[J].矿山测量,1981,(1):86-91
    78.白矛,刘天泉.用相似材料模型研究条带法开采的煤柱支撑状态及覆岩和地表移动特征[J].煤炭学报,1987,(3):9-14
    79.张金才.矿井防水煤柱稳定性的理论研究[J].煤田地质与勘探,1987,(2):37-42
    80.侯敬宗.走向条带煤柱稳定性及条采覆岩运动的初步分析[J].辽宁工程技术大学学报,1988,(S1):57-60
    81.高德福.矿井边界煤柱合理尺寸的确定[J].煤矿安全,1987,(8):28-32
    82.高德福.矿井边界防水煤柱合理尺寸的确定[J].煤炭科学技术,1988,(1):23-28
    83.胡友健.保护煤柱设计中的几个问题的探讨[J].西安矿业学院学报,1989,(1):36-42
    84.赵国堂.煤柱内应力分布规律及其尺寸确定的研究[J].淮南矿业学院学报,1992,12(3-4):66-72
    85.刑安仕.条带开采煤柱稳定性监控初探[J].矿山测量,1992,(4):29-32
    86.熊化云.条带煤柱的受力观测与分析[J].江苏煤炭,1995,(1): 6-9
    87.何满潮,邹友峰.条带煤柱的抗滑稳定性分析[J].水文地质工程地质,1993,(6):1-4
    88.吴立新.重复条采时上层煤柱应力变化及其稳定性的试验研究[J].1994,(2):37-40
    89.吴立新,王金庄.煤柱屈服区宽度计算及其影响因素分析[J].煤炭学报,1995,20(6):625-630
    90.吴立新,王金庄.煤柱宽度的计算公式及其影响因素分析[J].矿山测量,1997,(1): 12-16
    91.姜学云,杜计平.急倾斜厚煤层条带开采的煤柱稳定性实测研究[J].中国矿业大学学报,1995,24(1):29-35
    92.张少春.条带开采煤柱稳定性的数值模拟分析[J].陕西煤炭技术,1995,(3):19-22
    93.徐曾和,徐小荷,唐春安.坚硬顶板下煤柱岩爆的尖点突变理论分析[J].煤炭学报,1995,20(5):485-491
    94.高玮,姜学云.条带开采中条带煤柱塑性区宽度分析[J].山西矿业学院学报,1997,15(2): 142-147
    95.李后保,阎昌金,许家林.条带开采断层煤柱留设的研究[J].江苏煤炭,1997,(4): 12-13
    96.陈金国.不稳定围岩区段煤柱尺寸的确定[J].矿山压力与顶板管理,2000,(4):40-41
    97.高玮.一种分析条带煤柱稳定性的新思路[J].辽宁工程技术大学(自然科学版),2000,19(2): 123-125
    98.高玮.一种分析计算条带煤柱稳定性的新方法[J].矿山压力与顶板管理,2003,(3):88-89
    99.黄庆享,陈杰,杨宗义.浅埋厚煤层分层开采合理隔离煤柱尺寸模拟研究[J].西安科技学院学报,2001,21(3):193-195
    100.贾光胜,康立军.综放开采采准巷道护巷煤柱稳定性研究[J].煤炭学报,2002,27(1):6-10
    101.张开智,郭周克,程秀洋等.坚硬顶板煤柱稳定性实测分析[J].煤炭科学技术,2002,30(4):12-15
    102.彭鉴,胡炳南.东庞矿北风井煤柱稳定性分析及其加固技术[J].煤炭开采,2002,7(3):56-58
    103.许进鹏,张乃宏,童世杰.陷落柱防水煤柱留设的探讨[J].煤炭科技,2002,(3): 7-8
    104.卫建清.房柱式开采煤房与煤柱参数的合理确定[J].矿山压力与顶板管理,2003,(1): 106-108
    105.翟所业,张开智.煤柱中部弹性区的临界宽度[J].矿山压力与顶板管理,2003,(4):14-17
    106.程秀洋,李洪.运用实测技术确定区段煤柱宽度[J].煤,2003,(3):8-10
    107.姚爱军,黄福昌,张宗社.宽厚煤柱煤岩体流变力学特性试验研究[J].中国矿业,2003,12(2): 52-55
    108.李东升,李德海,宋常胜.条带煤柱设计中极限平衡理论的修正应用[J].辽宁工程技术大学学报,2003,22(1):7-9
    109.宋选民,王安.浅埋煤层回采巷道合理煤柱宽度的实测研究[J].太原理工大学学报,2003,34(6):674-678
    110.郭增长,谢和平,王金庄.条带开采保留煤柱宽度和采出宽度与地表变形的关系[J].湘潭矿业学院学报,2003,18(2): 13-17
    111.赵国旭,谢和平,马伟民.宽厚煤柱的稳定性研究[J].辽宁工程技术大学学报,2004,23(1):38-40
    112.贺宪国,倪庆均,林树刚等.良庄煤矿-580水平水仓保护煤柱合理尺寸的确定[J].山东煤炭科技,2004,(5):6-7
    113.柏建彪,侯朝炯,黄汉富.沿空掘巷窄煤柱稳定性数值模拟研究[J].岩石力学与工程学报,2004,23(20):3475-3479
    114.王永秀,齐庆新,陈兵等.煤柱应力分布规律的数值模拟分析[J].煤炭科学技术,3210): 59-62
    115.潘岳,王志强.狭窄煤柱冲击地压的折迭突变模型[J].岩土力学,2004,25(1): 23-30
    116.陈平定,张少春,张杰.保水采煤煤柱稳定性的数值模拟[J].陕西煤炭,2005,(3): 17-20
    117.侯忠杰,张杰.砂土基型浅埋煤层保水煤柱稳定性数值模拟[J].岩石力学与工程学报,2005,24(13):2255-2259
    118.杨伟峰,夏筱红,黄治灿等.条带开采煤柱稳定性的试验模拟与数值分析[J].中国煤炭地质,2005,17(2):29-32
    119.王向东.条带煤柱稳定性分析[J].科技资讯,2005,(22):16
    120.冯锦艳,王金安,韦文兵.煤柱宽度对综放留巷稳定性影响的研究[J].矿山压力与顶板管理,2005,(4):68-71
    121.秦四清,王思敬.煤柱-顶板系统协同作用的脆性失稳与非线性演化机制[J].工程地质学报,2005,13(4):437-446
    122.李洪,耿献文,朱学军.区段煤柱宽度的实测确定[J].矿山压力与顶板管理,2005,(1):31-33
    123.张立志.浅析条带充填开采煤柱宽度和开采宽度的确定[J].科技资讯,2005,(27):39
    124.石平五,长孙学亭,刘洋.浅埋煤层“保水采煤”条带开采“围岩—煤柱群”稳定性分析[J].煤炭工程,2006,(8):68-70
    125.潘启新,李新元,雷柏林.坚硬顶板条件下“岩-煤”系统稳定性分析及冲击地压的预测[J].中国煤炭,2006,32(10):33-36
    126.徐思朋,茅献彪,张东升.煤柱塑性区的弹粘塑性理论分析[J].辽宁工程技术大学学报,2006,25(2):194-496
    127.魏峰远,陈俊杰,邹友峰.留设保护煤柱尺寸的影响因素及变化规律探讨[J].中国矿业,2006,15(12):61-63
    128.魏峰远,陈俊杰,邹友峰.影响保护煤柱尺寸留设的因素及其变化规律[J].煤炭科学技术,2006,34(10):85-87
    129.129.王连国,缪协兴,王学知等.条带开采煤柱破坏宽度计算分析[J].岩土工程学报,2006,28(6):767-769
    130.陈绍杰,郭惟嘉,杨永杰等.基于室内试验的条带煤柱稳定性研究[J].岩土力学,2008,29(10):2678-2682
    131.张勇,潘岳.弹性地基条件下狭窄煤柱岩爆的突变理论分析[J].岩土力学,2007,28(7):1469-1476
    132.王志磊.大倾角沿底掘进综放面区段煤柱合理参数研究[J].中州煤炭,2007,(6):11-13
    133.韩承强,张开智,徐小兵,等.区段小煤柱破坏规律及合理尺寸研究[J].采矿与安全工程学报,2007,24(3):370-373
    134.杨健彬,徐乃忠.双巷掘进两巷围岩变形及煤柱留设尺寸研究[J].煤炭技术,2007,26(11):123-125
    135.贺广零,黎都春,翟志文等.采空区煤柱-顶板系统失稳的力学分析[J].煤炭学报,2007,32(9):897-901
    136.柴华彬.条带开采中含弱面的煤柱尺寸设计[J].辽宁工程技术大学学报,2007,26(1):8-10
    137.王贵虎,洪武,唐述敏.复杂条件下沿空掘巷煤柱宽度的选择[J].煤矿安全,2007,(6):36-37
    138.董文敏.高瓦斯矿大采高工作面区段煤柱尺寸合理确定[J].煤炭科学技术,2005,35(12):67-70
    139.王连国,缪协兴.煤柱失稳的突变学特征研究[J].中国矿业大学学报,2007,36(1):7-11
    140.刘海兵,罗利卜.支撑煤柱合理尺寸的数值模拟[J].陕西煤炭,2007,(4):28-29
    141.陈绍杰.煤岩强度与变形特征实验研究及其在条带煤柱设计中的应用[D].青岛:山东科技大学,2005
    142.李薇.巷式煤层开采煤柱附加应力分布特征[J].河北煤炭,2007,(3):3-5
    143.刘彩平,王金安,侯志鹰.房柱式开采煤柱系统失效的模糊理论研究[J].矿业研究与开发,2008,28(1):8-10
    144.刘衍高.深部开采区导水断层防水煤柱合理留设探析[J].煤矿开采,2008,13(1):21-23
    145.郭惟嘉,陈绍杰,李法柱.厚松散层薄基岩条带法开采采留尺度研究[J].煤炭学报,2006,31(6):747-751
    146.李夕兵,李地元,郭雷等.动力扰动下深部高应力矿柱力学响应研究[J].岩石力学与工程学报,2007,26(5):922-930
    147.杜善周,丛利.榆家梁煤矿合理工作面长度及煤柱宽度研究[J].陕西煤炭,2007,(6):13-15
    148.郭文兵,邓喀中,邹友峰.条带开采的非线性理论研究及应用[M].北京:中国矿业大学出版社,2005:93-95
    149.吴立新,王金庄,孟顺利.煤岩流变模型与地表二次沉陷研究[J].地质力学学报.1997, 3(3):29-34
    150.李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究[J].岩石力学与工程学报,1995,14(3):39-47.
    151.孙钧.岩土材料流变及工程应用[M].北京:中国建筑工业出版社,1999.
    ]52.陈沅江,潘长良,曹平,王文星.软岩流变的一种新力学模型[J].岩土力学,2003,24(2):209-214.
    153.张向东,李永靖,张树光,霍宝荣.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004,23(10):1635-1639
    154.彭苏萍,王希良,刘咸卫,赵森林.“三软”煤层巷道围岩流变特性实验研究[J].煤炭学报,2001,26(2):149-152.
    155.范庆忠,高延法.软岩蠕变特性及非线性模型研究[J].岩石力学与工程学报,2007,26(2):391-396.
    156.陈绍杰,郭惟嘉,杨永杰.煤岩蠕变模型与破坏特征试验研究[J].岩土力学,2009,30(9):2595-2598
    157.曹树刚.煤岩的蠕变损伤、瓦斯渗流和煤与瓦斯突出关系的研究[D].重庆:重庆大学,2000
    158.吴立新,王金庄.煤岩流变特性及其微观影响特征初探[J].岩石力学与工程学报,1996,15(4):328-331
    159.夏熙伦,徐平,丁秀丽.岩石流变特性及高边坡稳定性流变分析[J].岩石力学与工程学报,1996,15(4):312-322
    160.徐宏法.软岩强度和弹模的时间效应研究[J].岩石力学与工程学报,1997,16(3):246-251
    161.王泳嘉,王来贵.岩体浸水后的流变试验失稳理论及应用[J].中国矿业,1994,3(1):36-40
    162.朱合华,叶斌.饱和状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报,2002,21(12): 1791-1796
    163.王旭东,付小敏.蚀变岩的蠕变特性研究[J].工程地质学报,2008,16(1): 27-31
    164.袁义,赵国彦,李夕兵,等.混合花岗岩蠕变特性研究[J].采矿技术,2008,8(1):28-30
    165.张传成,刘建军,薛强.基于改进模型下巷道围岩蠕变规律研究[J].武汉工业学院学报,2006,25(3):72-75
    166.刘雄.岩石流变学概论[M].北京:地质出版社,1994.
    167.孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    168.李铀,朱维申,白世伟,等.风干与饱水状态下花岗岩单轴流变特性试验研究[J].岩石力学与工程学报,2003,22(10):1673-1677
    169.刘光廷,胡昱,陈凤歧,等.软岩多轴流变特性及其对拱坝的影响[J].岩石力学与工程学报,2004,23(8):1237-1241
    170.李先炜.岩块力学性质[M].北京.煤炭工业出版社.1990
    171.刘宝琛,张家生等.岩石抗压强度的尺寸效应[J].岩石力学与工程学报.1998,17(6):611-614.
    172.国际岩石力学学会实验室和现场试验标准化委员会.岩石力学试验建议方法[M].北京:煤炭工业出版社.1982
    173.中华人民共和国地质矿产部.岩石物理力学性质试验规程[M].北京:地质出版社.1988
    174.中华人民共和国水利部.水利水电工程岩石试验规程[M].北京:中国水利水电出版社.2001.
    175. Hudson J A, Brown E T, Fairhurst C. Optimizing the control of rock failure in servo-controlled laboratory tests [J]. Rock Mechanics,1971,3:217-224
    176. Terada M, Yanagitani T, Ehara S. AE rate controlled compression test of rocks [A]. In: Proc. The 3rd Conf. on Acoustic Emission Microseismic Activity in Geologic Structures and Materials[C].Clausthal:Trans. Tech.,1984.159-171
    177. Okubo S, Terada M, Ehara S. A study on the time dependent microfracturing and strength of Oshima granite [J]. Tectonophsics,1982,84:343-362
    178. Okubo S, Nishimatsu Y Uniaxial compression testing using a linear combination of stress and strain as the control variable[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanical Abstracts,1985,22(5):323-330
    179. Peng-Zhi Pan, Xia-Ting Feng, J. A. Hudson. Numerical simulations of Class I and Class Ⅱ uniaxial compression curves using an elasto-plastic cellular automaton and a linear combination of stress and strain as the control method [J]. International Journal of Rock Mechanics and Mining Sciences,2006, (43):1109-1117
    180.王明洋,严东晋,周早生,等.岩石单轴试验全程应力-应变曲线讨论[J].岩石力学 与工程学报,1998,17(1):101-106.
    181.李锡夔,Cescotto S.梯度塑性的有限元分析及应变局部化模拟[J].力学学报,1996,28(5):575-584.
    182.潘一山,徐秉业,王明洋.岩石塑性应变梯度与Ⅱ类岩石变形行为研究[J].岩土工程学报,1999,21(4):471-474.
    183.钱觉时,吴科如.混凝土Ⅰ,Ⅱ类断裂及其数值分析[J].重庆建筑工程学院学报,1993,15(4):79-88.
    184.陈绍杰,郭惟嘉,杨永杰,等.煤层冲击倾向性试验研究[J].矿业安全与环保,2007,34(2): 10-14
    185.尤明庆.岩石试样的强度及变形破坏过程[M].北京:地质出版社.2000
    186. C E Fairhurst, J A Hudson. International society for rock mechanics commission on testing methods [J]. International Journal of Rock Mechanics and Mining Sciences,1999(36):279-289
    187.杨永杰,陈绍杰.同种岩石强度离散性的实验技术研究[J].实验技术与管理.2005(1):34-37
    188.陈甦,彭建忠等.水泥土强度的试件形状和尺寸效应试验研究[J].岩土工程学报,2002,24(5):580-583
    189.张家铭,汪稔,蒋国盛.声波速度与注浆固结体单轴抗压强度关系的试验研究[J].煤田地质与勘探,2003,31(5): 33—36
    190.陈宗基,康文法,黄杰藩.岩石的封闭应力、蠕变和扩容及本构方程[J].岩石力学工程学报,1991,10(4):299—312
    191.王玲娟,沙爱民.沥青稳定碎石基层混合料高温性能评价[J].北京科技大学学报,2004,26(增刊): 176—179
    192.蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002
    193.范庆忠.岩石蠕变及其扰动效应试验研究[D].青岛:山东科技大学,2006
    194.周维垣.高等岩石力学[M].北京:水利电力出版社,1990
    195.孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999
    196.范秋雁,朱维申.软岩最优支护计算方法[J].岩土工程学报,1997,19(2):77—83
    197.崔希海,付志亮.岩石流变特性及长期强度的试验研究[J].岩石力学与工程学报,2006,25(5):1021-1024
    198.陈绍杰,郭惟嘉,李法柱等.条带煤柱长期监测方法[P].中国专利:200810159 263.1,2009-9-13
    199. Gao W. Elastic-plastic mechanics analysis on stability of coal pillar [J]. Advanced Materials Researchv,2008, PART 2,1123-1128.
    200.刘贵,张华兴,徐乃忠.深部厚煤层条带开采煤柱的稳定性[J].煤炭学报,2008,33(10):1086-1091.
    201.刘贵,韩邦华,刑峰等.条带开采煤柱塑性区宽度的数值模拟与计算[J].煤炭科学技术,2009,37(3):4-5.
    202.谢宗宝,范志忠.条带煤柱稳定性及支护设计研究[J].煤炭科学技术研究,2008,36(7):19-22.
    203.张华兴,徐乃忠,胡炳南等.2003年度中国煤炭工业协会科学技术奖获奖项目汇编[A].矿区采动减沉技术[C].2004,178-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700