用户名: 密码: 验证码:
脉冲放电电凝并结合碱液吸收烟气多种污染物协同脱除研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤电厂排放的粉尘颗粒、SO2、NO、Hg、PAHs和二恶英等有害物质已经成为我国大气环境污染的重要来源之一。脉冲放电电凝并技术对细微颗粒有较好的荷电凝并效果,而且可以将烟气中的NO、SO2、Hg0转化成易被溶液吸收的成分,同时还可以对粉尘中的PAHs和二恶英等有害物质进行降解。和传统的碱液吸收技术相结合,可协同脱除燃煤电厂烟气中粉尘、NOX、SO2、Hg0、PAHs和二恶英等污染物,使除尘、脱硫、脱硝、脱汞、降解有机污染物的一体化成为可能,从而降低燃煤电厂烟气净化的成本。本文围绕燃煤烟气多种污染物及其控制方法的新兴研究,对脉冲放电电凝并结合碱液吸收烟气多种污染物协同脱除技术开展了实验和机理研究。
     本文建立了燃煤锅炉烟道排放颗粒物等速采样系统,采用冲击式尘粒分级仪对440t/h循环流化床燃煤锅炉静电除尘器前后烟道烟尘进行采样实验,进行粒径分布、比电阻测量,研究煤种、锅炉负荷、Ca/S和含氧量等运行参数对颗粒物排放特性的影响;同时还研究了不同粒径和燃烧工况下飞灰颗粒的微观孔隙结构。
     本文搭建了脉冲荷电凝并结合直流收尘实验系统,主要研究脉冲峰值电压、脉冲频率、停留时间、初始粉尘浓度等因素对脉冲电晕放电颗粒荷电以及凝并收尘的影响。实验结果表明:脉冲电晕放电能够实现颗粒非对称双极性荷电,>0.2μm颗粒基本被荷上负电荷,电场荷电是其主要荷电机理;<0.2μm颗粒基本被荷上正电荷,扩散荷电是其主要荷电机理。脉冲电晕荷电颗粒在直流电场中的凝并除尘效率曲线呈现“V”字型,其除尘效率曲线在粒径0.2μm左右有一个最低值。
     建立小型脉冲电晕放电降解飞灰PAHs和二恶英实验台进行实验研究,同时进行了其降解理论分析。结果表明:正脉冲电晕放电过程中产生的高能电子能够有效地轰击粉尘颗粒表面,甚至穿透颗粒,从而改变了粉尘颗粒原有的孔隙结构,能有效地降解垃圾焚烧炉排放粉尘中的PAHs和二恶英等有害有机污染物。
     目前燃煤电厂广泛应用的湿法烟气脱硫装置,利用石灰/石灰石溶液洗涤烟气,只能对SO2进行有效控制,但是不能脱除烟气中的NO和Hg0。基于以上的研究基础,如果能够采用脉冲电晕放电将烟气中的NO,SO2, Hg0氧化成为高价态易溶于水的状态,就可以采用碱液吸收实现一塔多脱。本文采用脉冲电晕放电结合碱液吸收对烟气中SO2、NO和Hg0进行协同脱除实验,并且针对脉冲电晕放电脱硫脱硝脱汞化学动力学过程进行了研究。实验结果表明:脉冲放电电凝并结合碱液吸收能够很好地协同脱除烟气多种污染物,在实验优化工况下,对PM1、SO2、NO和Hg0的协同脱除效率可以分别达到90%、97%、50%和50%以上
     本文推导了直流电场中的荷电场强和收尘场强计算公式,在电场荷电前提下建立了半经验公式对脉冲电晕放电颗粒荷电进行计算。根据理论分析编写程序计算了双极性荷电颗粒的电凝并系数和电凝并效率,结果显示在实验工况不考虑凝并区收尘的情况下,颗粒越小,其电凝并效率越高;对于超细颗粒,其颗粒数量浓度有了一定的下降,电凝并效率可以达到20-30%左右。利用Fluent软件模拟了不同粒径段荷电颗粒在直流收尘电场中的运动轨迹,结果表明颗粒在外加直流电场力作用下向收尘极板基本作直线偏移运动,颗粒粒径越大,其驱进速度越大,偏移越明显。直观地确定不同粒径颗粒的除尘效率,并且跟实验结果进行了对比分析,两者吻合较好。
Particulate matter(PM), SOx, NOx, Hg, PAHs and dioxins emitted from coal-fired power plants are becoming one of the most important sources of air pollution in China. Pulsed corona discharge electrostatic agglomeration is an effective method to remove fine particles, which has good particle charging and agglomeration effects. It has also good oxidation effect of SO2, NO and Hg0 to solvable components; meanwhile, the decomposition of PAHs and dioxins in fly ashes can be also achieved. When combined with conventional lye absorption technology, it is possible to simultaneous remove fine particles, SO2, NOx, Hg0, PAHs and dioxins, which reduces the cost of flue gas cleaning. This thesis focuses on the research of flue gas multi-pollutants control, and detailed experimental and theoretical investigations were carried out on flue gas multi-pollutants control enhanced by pulsed corona discharge electrostatics agglomeration combined with lye absorption.
     An isokinetical particle sampling system was built and experimental study on the characteristics of particulate matter emitted from a 440t/h circulating fluidized bed(CFB) coal-fired boiler. Cascade impactor was employed to sample the particles at both electrostatic precipitator(ESP) inlet and outlet. The particle size distribution and dust resitivity were measured and the influences of coal composition, boiler load, Ca/S and oxygen concentration on the characteristics of PM emissions during coal combustion were investigated. Also the experimental study on porous structure of variously sized fly ash particles was made under different combustion conditions.
     The experimental set up of pulsed corona discharge electrostatic agglomeration was built and the influences of pulse peak voltage, pulse frequency, residence time and initial particle concentration on the particle charging, agglomeration and collection were discussed. The results indicate that particles were biopolarly charged during the pulsed corona discharge. Diffusion charging is the dominant charging mechanism for particles with diameter<0.2μm, which are positively charged; while field charging is the dominant charging mechanism for particles with diameter>0.2μm, which are negatively charged. The particle collection efficiency curve under pulsed corona discharge electrostatic agglomeration is of "V" shape, which has the lowest collection efficiency of particles with diameter near 0.2μm.
     Experimental and theoretical study on decomposition of PAHs and dioxins in fly ashes by pulsed corona discharge was also made. The results indicate high energy electrons produced in positive pulsed corona discharge could collide with particles and change the pore structure, which results in PAHs and dioxins decomposition.
     Wet flue gas desulfurization(WFGD) is widely used in coal-fired power plants. WFGD utilizes lime/limestone solution as absorbent, which removes SO2 effectively, however, NO and Hg0 in flue gas are insoluble to be removed. Based on the research above, pulsed corona discharge was able to oxidize NO, SO2 and Hg0 in flue gas to solvable components, then flue gas multi-pollutants removal can be achieved with WFGD. So pulsed corona discharge combined with lye absorption was proposed to experimentally investigate the simultaneous removal of NO, SO2 and Hg0 in flue gas; meanwhile the chemical reaction dynamics of multi-pollutants during pulsed corona discharge were discussed. The results show good simultaneous removal efficiencies up to 90%,95%,50% and 50% can be achieved for PM1, SO2, NO and Hg0, respectively.
     The charging and collection electric field intensity in DC were put forward and particle electric charging calculation under pulsed corona discharge was made by a semi-experiential formula. Program was used to calculate the electrostatic agglomeration coefficient and efficiency of bipolar-charged particles. The results indicate that without the consideration of particle collection in agglomeration area, the electrostatic efficiency increases with descreasing particle size. For ultra-fine particles, the number concentration was decreased by 20~30% through electrostatic agglomeration. Fluent software was employed to simulate particle track in DC electric field. The particles were forced to move toward linearly to collection plates by electric field force and particles with larger diameter move faster. The collection efficiency of different particle size was obtained and compared with our experimental results, which agree well with each other.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报2008;42(3):345-359.
    [2]《中国能源发展报告》编委会.2001中国能源发展报告[M].北京:中国计量出版社2001.
    [3]胡予红,孙欣, 张文波. 煤炭对环境的影响研究[J].中国能源2004,26(1):32-35.
    [4]国家煤炭安全监察.中国煤炭工业年鉴[M].北京:煤炭工业出版社2002.
    [5]国家统计局.中国统计年鉴2007[M].北京:中国统计出版社2008.
    [6]D. G. Streets, J. M. Hao, Y. Wu, et al. Anthropogenic mercury emissions in China [J]. Atmospheric Environment 2005,39:7789-7806.
    [7]杨复沫,马永亮,贺克斌.细微大气颗粒物PM2.5及其研究概况[J].世界环境2000,13(4):32-34.
    [8]W. S. Seames. An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion [J]. Fuel Processing Technology 2003,81:109-125.
    [9]林治卿,袭著革,杨丹凤.PM 2.5的污染特征及其生物效应研究进展[J].解放军预防医学杂志2005,4:150-152.
    [10]郝吉明,王书肖,陆永琪.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社2001.
    [11]郭静,阮宜纶.大气污染控制工程[M].北京:化学工业出版社2001.
    [12]彭皓.湿法石灰石烟气脱硫系统运行及其吸收剂优化的研究[D].浙江大学硕士毕业论文.2004.
    [13]周国.燃煤电站锅炉中的低NOx燃烧技术[J].节能技术2005,23(1):44-46.
    [14]Chemical and Engineering News,20-21,2003.
    [15]郑楚光.洁净煤技术[M].武汉:华中理工大学出版社1996.
    [16]USEPA. National ambient air quality standards for particulate matter [J]. Fed. Regist., July 18,1997,38702-38752.
    [17]R. Wilson, J. Spengler. Concentrations and Health effects [M]. Harvard University Press, Cambridge MA USA:205-216.
    [18]童志权.工业废气净化与利用[M].北京:化学工业出版社2001.
    [19]S.小奥格尔斯比,G.B.尼科尔斯,谭天祐等.电除尘器[M].北京:水利电力出版社1983.
    [20]岑可法,倪明江,严建华等.气固分离理论及技术[M].杭州:浙江大学出版社1999.
    [21]向晓东.现代除尘理论与技术[M].北京:冶金工业出版社2002.
    [22]吴忠标.大气污染控制技术[M].北京:化学工业出版社2002.
    [23]Chmielewski A. G, Iller E, et al. Industrial demonstration plant for electron beam flue gas treatment [J]. Radiat. Phys. Chem. 1995,46(4-6):1063-1066.
    [24]Osada Y, Hirota K, et al. Pilot-scale test on electron beam treatment of municipal solid waste flue gas with spraying slaked-lime slurry[J]. Radiat. Phys. Chem.1995,45 (6):1021-1027.
    [25]Chmielewski A. G, Licki J, et al. Operational experience of the industrial plant for electron beam flue gas treatment [J]. Radiation Physics and Chemistry 2004,71:439-442.
    [26]Chang J. S,Masuda S. Mechanism of pulse corona induced plasma chemical process for removal of NOx and S02 from combustion gases [J]. IEEE 1988:1628-1635.
    [27]于庆波,王新华,秦勤.我国烟气脱硫技术的发展及应用现状[J].冶金能源2000,19(6):42-46.
    [28]Mok Y. S, Nam I. Positive pulsed corona discharge process for simultaneous removal of SO2 and NOx from iron-ore sintering flue gas[J]. IEEE Trans. on Plas.Sci.1999,27 (4):1188-1196.
    [29]Mok Y. S, Lee H. W, Hyun Y J. Flue gas treatment using pulsed corona discharge generated by magnetic pulse compression modulator [J]. Journal of Electrostatics 2001,53:195-208.
    [30]石应杰,都基峻,田刚.燃煤电厂干法、半干法烟气脱硫应用前景[J].能源环境保护2006,20(2):22-24.
    [31]王文选,肖志均,夏怀祥.火电厂脱硝技术综述[J].电力建设2006,7:1-5.
    [32]王方群,杜云贵,刘艺.国内燃煤电厂烟气脱硝发展现状及建议[J].中国环保产业2007,1:18-23.
    [33]Ohkubo T, Kanazawa S, et al. NOx removal by a pipe with nozzle-plate electrode corona discharge system[J]. IEEE Trans on Indus. Appli. 1994,30 (4):856-861.
    [34]刘今.发电厂烟气脱硝技术SCR法[J].江苏电机工程1996,15(3):51-55.
    [35]魏林生,周俊虎,王智化.臭氧氧化结合化学吸收同时脱硫脱硝的研究[J].动力工程2006,26(4):563-567.
    [36]McLarnon C. R. Combined SO2, NOx, PM and Hg Removal from Coal Fired Boilers [C]. The Proceeding of the Mega Symposium, Washington DC, 2003.
    [37]韩宾兵,邵德荣.电子束烟气脱硫技术工业示范工程进展[J].环境科学进展1999,7(2):125-135.
    [38]王德容.利用焦炭吸附进行燃煤烟气脱硫硝销技术的研究[J].环境保护科学2002,2:4-6.
    [39]魏玺群,严艳丽.氮氧化物脱除及回收技术[J].低温与特气2000,18(4):24-30.
    [40]C. L. Senior, J. J. Helble, A. F. Sarofim.Predicting the speciation of mercury emissions from coal-fired power plants[C]. Proceedings of the Air Quality Ⅱ:Mercury, Trace Elements, and Particulate Matter conference, McLean, VA, Sept.19-21 (A5-2),2000.
    [41]胡长兴.燃煤电站汞排放及活性炭稳定吸附机理研究[D].浙江大学博士毕业论文.2007.
    [42]K. L. Nebel, D. M. White, W. H. Stevenson, et al. A Summary of Mercury Emissions and Applicable Control Technologies for Municipal Solid Waste Combustors[C]. U. S. EPA, Off ice of Air Quality Planning and Standards, Research Triangle Park, NC. September,1991.
    [43]J. D. Kilgroe, C. B. Sedman, R. K. Srivastava, et al. Control of Mercury Emissions from Coal-Fired Electric Utility Boilers [R]. EPA-600/R-01-109,7-2,7-19,2001.
    [44]Masaharu N. M, Judit B, et al. A study on the decomposition of volatile organic compounds by pulse corona[J]. Journal of Electrostatics 1997,40&41:687-692.
    [45]周远翔,程子霞,严萍等.脉冲放电对含二恶英粉尘处理效率的研究[J].中原工学院学报2003,14(S1):41-45.
    [46]Colorado, P. S. C. o. Intergrated dry NOx/SO2 emissions control system[C]. 2003.
    [47]G. Moberg, J.O. B., S. Wall in, et al. Combined DeNOx/DeSOx and additional NOx reduction by cleaning flue gas condence from ammonia[C]. POWER-GEN International, New Orleans,1999.
    [48]E. Haddad, J. R., G. Gree, et al. Full-scale evaluation of a multi-pollutant reduction technology:SO2, Hg, and NOx Mobotec USA[C]. Inc. in Combined Power Plant Air Pollutant Control Mega Symposium, Washington DC,2003.
    [49]Company, B. W. SOx-NOx-Rox BoxTM flue gas cleanup demonstration project[R].2003.
    [50]C. R. McLarnon, D. S. Combined SO2, NOx, PM, and Hg removal from coal fired boilers [C]. Combined Power Plant Air Pollutant Control Mega Symposium, Washington DC,2003.
    [51]K. Martin, E. G, C. Q. Zhou, et al. Elemental mercury removal using a wet scrubber [C].61th annual meeting of the American power conference, Chicago,1999.
    [52]邰德荣,韩宾兵.电子束烟气脱硫技术工业示范工程进展[J].环境科学进展1999,7(2):125-135.
    [53]张巍.用电催化氧化(ECO)技术控制燃煤电厂多种污染物的排放[J].国际电力2003,7(3):51-53.
    [54]许绿丝,曾汉才,郭嘉.改性活性炭纤维(ACF)低温脱除多种污染物机理的研究现状[J].热力发电2006,12:1-4.
    [55]王智化.燃煤多种污染物一体化协同脱除机理及反应射流直接数值模拟DNS的研究[D].浙江大学博士毕业论文.2005.
    [56]吴祖良.直流电晕自由基簇射烟气中多种污染物脱除的机理研究[D].浙江大学博士毕业论文.2006.
    [57]赵华侨.等离子体化学与工艺[M].中国科技大学出版社1993.
    [58]吴彦,王荣毅,王宁会.脉冲电压下粒子荷电的实验研究[J].大连理工大学学报1995,35(3):309-311.
    [59]姜雨泽.脉冲放电烟气脱硫、除尘及产物收集相结合的研究[D].大连理工大学学位论文.2000.
    [60]Chang J. S. Next Generation Integrated Electrostatic Gas Cleaning Systems [J]. Journal of Electrostatics 2003,57:273-291.
    [61]吴祖良,高翔等.等离子体气态污染物控制技术的研究进展[J].电站系统工程2004,20(2):1-4.
    [62]姜雨泽,赵金先.窄脉冲放电粒子荷电过程分析[J].山东电力技术 2003,4:8-10.
    [63]徐学基,诸定昌.气体放电物理[M].上海复旦大学出版社1995.
    [64]阎克平,赵君科,夏连胜.静电基础及其应用技术[M].大连理工大学出版社1996.
    [65]赵志斌,刘建民,吴彦等.脉冲放电粒子荷电机理的研究[J].环境科学学报1 999,19(2):113-119.
    [66]李谦,宁成,李胜利等.脉冲电晕非平衡等离子体对烟气中SO2、NO的氧化脱除[J].环境污染与防治1994,16(5):1-4.
    [67]李谦,宁成等.用窄脉冲电晕放电方法干脱除烟气中的SO2[J].环境保护1994,4(3):17-21.
    [68]朱益民.脉冲电晕法脱硫脱硝研究概述[J].环境科学进展1997,5(5):75-80.
    [69]Youngchul Byun, Kyung Bo Ko, Moo Hyun Cho. Oxidation of elemental mercury using dielectric barrier discharge process[J]. Korean Chem. Eng. Res 2007,45 (2):183-189.
    [70]王银生,季学李.脉冲电晕等离子体脱硫脱氮与除尘技术[J].大气污染防治2000,19(1):17-19.
    [71]Masuda S, Hirano M, Akutsu K. Enhancement of electron beam denitrization process by means of electric field [J]. Radiat Phys Chem.1981,17:228-233.
    [72]T. Watanabe, F. Tochikubo, Y. Koizumi. Submicron particle agglomeration by an electrostatic agglomerator [J]. Journal of Electrostatics 1995,34:367-383.
    [73]J. Hautanen, T. Watanabe, T. Tsuchida. Brownian agglomeration of bipolarly charged aerosol particles[J]. J.Aerosol Sci 1995,26: 21-22.
    [74]Y. Koizumi, F. Tochikubo, T. Watanabe, et al. Bipolar-charged submicron particle agglomeration[J]. Journal of Electrostatics 1995,35:55-60.
    [75]Y. Koizumi, M. Kawamura, F. Tochikubo, et al. Estimation of the agglomeration coefficient of bipolar-charged aerosol particles [J]. Journal of Electrostatics 2000,48:93-101.
    [76]Jun-Ho Ji, Jungho Hwang, Gwi-Nam Bae. Particle charging and agglomeration in DC and AC electric fields [J]. Journal of Electrostatics 2004,61:57-68.
    [77]S. Vemury, C. Janzen, S. E. Pratsinis. Coagulation of symmetric and asymmetric bipolar aerosols [J]. J. Aerosol Sci 1997,4:599-611.
    [78]R. R. Crynack, R. J. Truce, W. A. Harrison. Use of Computer Model To Predict ESP Enhancement With The Installation Of An Indigo Bio-Polar Agglomerator [C].9th International Conference on Electrostatic Precipitation, South Africa,2004.
    [79]R. R. Crynack, R. J. Truce, W. A. Harrison. Results of the Indigo Agglomerator Testing at Watson Power Station[C].9th International Conference on Electrostatic Precipitation, South Africa,2004.
    [80]R. Truce, L. Wilkinson. Enhanced Fine Particle and Mercury Emission Control Using the Indigo Agglomerator [C].11th International Conference on Electrostatic Precipitation, China,2008.
    [81]R. Boichot, A. Bernis, E. Gonze. Agglomeration of diesel particles by an electrostatic agglomerator under positive DC voltage:Experimental study [J]. Journal of Electrostatics 2008,66:235-245.
    [82]向晓东,陈旺生,幸福堂.交变电场中电凝并收尘理论与实验研究[J].环境科学学报2000,3:187-191.
    [83]陈旺生,向晓东,幸福堂.交变电场频率对电凝并影响的理论及实验研究 [J].武汉冶金科技大学学报(自然科学版)1999,12:342-344.
    [84]向晓东,陈旺生,幸福堂.烟尘在交变电场中的电凝并收集[J].武汉冶金科技大学学报(自然科学版)1999,9:252-255.
    [85]向晓东,陈旺生,幸福堂.烟尘在交变电场中电凝并收集的实验研究[J].建筑热能通风空调2000:9-11.
    [86]向晓东,陈宝智,张国权.荷电粉尘在交变电场中的凝并与收集[J].东北大学学报1999,12:615-618.
    [87]陈旺生,向晓东,幸福堂.交变电场中偶极荷电粒子电凝并的理论研究[J].工业安全与防尘2004,2:3-5.
    [88]王连泽,贺美陆,孟亚力.双极荷电粉尘颗粒凝聚的初步研究[J].环境工程2002,3:31-34.
    [89]B. H. Tan, L. Z. Wang, X. R. Zhang. The effect of an external DC electric field on bipolar charged aerosol agglomeration[J]. Journal of Electrostatics 2007,65:82-86.
    [90]王鹏,骆仲泱,徐飞等.复合式静电除尘器脱除电厂排放PM2.5研究[J].环境科学学报2007,27(11):1789-1792.
    [91]王鹏.燃煤电厂可吸入颗粒物排放及控制研究[D].浙江大学博士毕业论文.2008.
    [92]王鹏,骆仲泱,徐飞等.新型复合静电除尘器脱硝性能研究[J].中国电机工程学报2008,28(5):8-11.
    [93]Song Y. H, et al. An industrial experiment of pulse corona process for removal SO2 and NOx from combustion flue gas[J]. J. Adv. Oxid. Technol.1997,2 (2):268.
    [94]S. Masuda, et al. Control of NOx by positive and negative pulsed corona discharge[C]. EEE/IAS Annu. Conf.1986:1173-1182.
    [95]S. Masuda. Pulse corona induced plasma chemical process:a horizon of new plasma chemical technologies[J]. Pure&Appl. Chem. 1988,60(5):727-731.
    [96]A. Mizuno, J. S. Clements, R. H. Davis. Combined treatment of SO2 and high resistivity fly ash using a pulse energized electron reactor [C]. Proc. Ind. Int. Conf. Tokyo, Japan:Electrostatic Precipitation,1984: 879-885.
    [97]S. Masuda, Y. Wu. Removal of NOx by corona discharge induced by sharp rising nanosecond pulse voltage [C]. Proc. Int. Conf. Oxford: Electrostatics,1987:249-254.
    [98]A. Mizuno, J. S. Clements, R. H. Davis. A method for the removal of sulfur dioxide from exhaust gas utilizing pulsed streamer corona for electron energization[J]. IEEE Trans. Ind Appl 1986, IA222 (3):516-521.
    [99]G. Dinelli, L. Civitano, M. Rea. Industrial experiments on pulse simultaneous removal of NOx and SOx from flue gas[J]. IEEE Trans. Ind. Appl.1990,26 (3):535-541.
    [100]Tokunaga O, Suzuki N. Radiation chemical reactions in NOx and SO2 removals from flue gas [J]. Radiat.Phys.Chem.1990,24 (1):145-165.
    [101]Y. H. Lee, W. S. Jung, Y. R. Choi. Application of pulsed corona induced plasma chemical process to an industrial incinerator [J]. Environ. Sci. Technology.2003,37 (11):2563-2567.
    [102]Y. Wu. SO2 removal from industrial flue gases using pulsed corona discharge [J]. Journal of Electrostatics 1998,44:11-16.
    [103]曹玮,骆仲泱,徐飞等.脉冲电晕放电协同烟气脱硫脱硝实验研究[J].环境科学学报2008,28(12):2487-2492.
    [104]曹玮.脉冲放电转化烟气中NO、SO2的研究[D].浙江大学硕士毕业论文.2008.
    [105]吴彦,占部武生.脉冲放电法消除汞蒸汽的实验研究[J].环境科学学报 1996,16(2):221-225.
    [106]X. Liang, S. Jayaram, P. Looy. Pulse corona application for the collection of mercury from flue gas[C]. Conference Record of the 1998 IEEE International Symposium on Electrical Insulation, Arlington, Virginia,USA,June 7-10,1998.
    [107]周远翔,孙昌富,严萍等.快脉冲放电对粉尘中二恶英的转换作用[J].清华大学学报(自然科学版)2002,42(9):1161-1164.
    [108]Yamamoto T, et al. Control of volatile organic compounds by an Ac energized ferroelectrics Pellet reactor and a pulsed corona reactor [J]. IEEE Trans. on Ind. Appl.1992,28 (3):528-533.
    [109]Amirov R. H, et al. Nanosecond corona discharge for decomposition of gas phase formaldehyde[C]. The second international conference on applied electrostatics, Beijing,1993:139-143.
    [110]晏乃强,吴祖成.电晕-催化技术治理甲苯废气的实验研究[J].环境科学1999,20(1):11-14.
    [111]黄立维.高压脉冲电晕法治理有机废气的实验研究[J].环境污染与防治1998,20(1):4-7.
    [112]Mizuno A, et al. A method for the removal of sulfur dioxide from exhaust gas utilizing pulsed streamer corona for electron energization [J]. IEEE Trans. On Ind. Appl.1986,22(3):512-522.
    [113]Chang J. S, Lawless P. A, Yamamoto T. Corona discharge processes [J]. IEEE Transactions on plasma science 1991,19(6):1152-1161.
    [114]Yamamoto T, et al. Triangle-shaped DC corona Discharge device for molecular decomposition [J]. IEEE Trans. on Ind. Appl.1982,25(4): 743-749.
    [115]郭瑞堂.石灰石活性和塔内流场对湿法烟气脱硫效率的影响研究[D].浙江大学博士毕业论文.2008.
    [116]陈湘文.筛板式喷淋塔脱硫脱硝性能实验研究[D].浙江大学硕士毕业论文.2008.
    [117]Ondov J. M, Ragaini R. C, Biermann A. H. Emissions and Particle size Distributions of Minor and Trace Elements at Two Western Coal-fired Power Plants Equipped with Cold-side Electrostatic Precipitators[J]. Env Sci and Tech 1979,13:946-953.
    [118]徐鸿,骆仲泱,王涛等.循环流化床电站排放烟尘特性及痕量重金属分析[J].环境科学学报2004,24(3):515-519.
    [119]陶叶,徐明厚,于敦喜等.煤粉粒径及燃烧工况对PM10排放特性的影响[J].煤炭转化2006,29(1):53-57.
    [120]岑可法,倪明江,骆仲泱.循环流化床锅炉理论设计与运行[M].浙江:中国电力出版社1998.
    [121]于正然,刘光铨,单嫣娜.烟尘烟气测试实用技术[M].北京:中国环境科学出版社1990.
    [122]EPA METHOD 4. DETERMINATION OF MOISTURE CONTENT IN STACK GASES.
    [123]EPA METHOD 5. Particulate Isokinetic Sampling, Testing and Recovery.
    [124]渠亚东.粉尘比电阻测试方法的研究[J].河北建筑科技学院学报2005,22(3):14-16.
    [125]原永涛,雷应奇,吕建义等.DR型高压粉尘比电阻实验台的研制与应用[J].中国环境科学1998,18(4):368-370.
    [126]原永涛,林国鑫,宣伟桥等.火力发电厂电除尘技术[M].北京:化学工业出版社2004.
    [127]Lowell S, Shields J. E, Thomas M. A, et al. Characterization of Porous Solids and Powders:Surface Area, Pore Size and Density[M]. Kluwer Academic Publishers,Dordrecht, Boston,London.
    [128]Yan J. M, Zhang Q. Y, Gao J. C. Adsorption and Agglomeration[M]. Surface and Pore of Solids (The second Edition), Scientific Publishers 1986.
    [129]Chen P, Tang X. Y. The Research on the Adsorption of Nitrogen in Low Temperature and Micro-pore Properties in Coal [J]. Journal of China Coal Society 2001,26 (5):552-556.
    [130]Jean L. F, et al. Correlation Between Microporosity and Fractal Dimension of Bit μminous Coal Based on Computer-Generated Model [J]. Energy&Fuels 1994,8:408-414.
    [131]Liu X. W, Xu M. H, Yu D. X, et al. Research on Formation and Emission of Inhalable Particulate Matters at Different Oxygen Content During Coal Combustion[J]. Proceeding of the CSEE 2006,26(15):46-50.
    [132]Yang R. Q, Wu X, Zhao C. S. Surface Morphology Changes of Petroleum Coke During Combust ion[J]. Coal Conversion 2005,8(4):30-34.
    [133]Chen S. Y, Sun Y. H, Ding Y. J, et al. Adsorption and Catalysis [M]. Zhengzhou, Science and Technology Publisher of Henan Province, 2001.
    [134]杨明珍,松林.工业锅炉除尘设备[M].北京:中国环境科学出版社1991.
    [135]刘后启,林宏.电收尘器[M].北京:中国建筑工业出版社1987.
    [136]吕建燚,李定凯.不同条件下对煤粉燃烧后PM10、PM2.5、PM1排放影响实验研究[J].中国电机工程学报2006,26(20):103-107.
    [137]张卫风,胡满银,刘同欣等.循环流化床锅炉脱硫对尾部电除尘器的影响[J].工业安全与防尘2001,27(4):12-15.
    [138]张桂玲,陈向群.石灰石脱硫对循环流化床锅炉运行的影响[J].区域供热2004(3):27-30.
    [139]吕俊复,张建胜,杨海瑞等.循环流化床锅炉脱硫对飞灰比电阻的影响[J].电站系统工程2000,16(5):259-268.
    [140]Larry S. M. An experimental and modelling study of residual fly ash formation in combustion of a bituminous coal[D]. Massachnestte Institute of Technology:Department of Chemical Engineering, USA,1989.
    [141]W. S. Seames. An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion[J]. Fuel Processing Technology 2003,81 (2):109-125.
    [142]刘小伟,徐明厚,于敦喜等.燃煤过程中氧含量对可吸入颗粒物形成及排放特性影响的研究[J].中国电机工程学报2006,26(15):46-50.
    [143]Graham K. A. Submicron ash formation and interaction with sulfur oxides during pulverized coal combust ion[D]. Massachnestte Institute of Technology:Department of Chemical Engineering,USA,1990.
    [144]徐飞,骆仲泱,王鹏等.不同工况和粒径下飞灰孔隙结构的实验研究[J].动力工程2007,27(4):620-624.
    [145]徐飞,骆仲泱,王鹏等.440t/h循环流化床锅炉颗粒物排放特性的实验研究[J].中国电机工程学报2007,29(27):7-11.
    [146]SOUD H. N. Developments in FGD[M]. London:IEA Coal Research, CCC29,2000.
    [147]TAKESHITA M, SOUD H. FGD performance and experience on coal-fired plants[M]. London:IEA Coal Research,IEACA/58,1993.
    [148]S. Oglesby. Electrostatic Precipitation[M]. N. Y. Marcel Dekker, INC. 1978,52-53.
    [149]J. Cross. Electrostatics:Principles, Problems and Applications[M]. Adam Hilger, Bristol,1987.
    [150]H. Rohmann. Physics [Z].1923,17:253-265.
    [151]M. Pauthenier, M. Moreau-Hanot. Physics Radium[J].1932,73:590-615.
    [152]H. J. White. Industrial Electrostatic Precipitation [M]. Addison-Wesley, Reading Mass,1963.
    [153]P. Arendt, H. Kallman. Physics [Z].1926,35:421-441.
    [154]赵金先,姜雨泽.脉冲电除尘粒子荷电机制[J].金属矿山2003,5:52-53.
    [155]宁智,路勇.柴油机排气微粒脉冲荷电的研究[J].北方交通大学学报2000,1:71-75.
    [156]赵志斌,吕晶.脉冲放电粒子荷电机理的研究[J].东北电力技术1999,3:1-6.
    [157]魏凤,张军营,王春梅等.煤燃烧超细颗粒物团聚促进技术的研究进展[J].煤炭转化2003,26(3):27-31.
    [158]Koizumi, F. Tochikubo, T. Watanabe, et al. Bipolar-charged submicron particle agglomeration[J]. Journal of Electrostatics 1995,35: 55-60.
    [159]Biasson B, Egli W, J. R.Ferguson, et al. Coagulation of bipolarly charged aerosol in a stack coagulator [J]. Journal of Aerosol Science 1987,18(6):869-872.
    [160]L. Z. Wang, X. R. Zhang, K. Q. Zhu, et al. An analytical expression for the coagulation coefficient of bipolarly charged particles by an external electric field with the effect of Coulomb force[J]. Journal of Aerosol Science 2005,36:1050-1055.
    [161]张向荣,王连泽,朱克勤.外电场对荷电颗粒静电凝聚的影响[J].清华大学学报2005,45(8):1107-1109.
    [162]X. R. Zhang, L. Z. Wang, C. G. Wu, et al. Effect of an external electric field on the charge distribution of electrostatic coagulation[J]. Journal of Aerosol Science 2006,37:1-8.
    [163]G. R. Xie, C. X. Chen. High-voltage electrostatics precipitation [M]. Beijing:Water Conservancy and Electric Power Press Press,1993.
    [164]C. G. Bao. Principle of electrostatic technology[M]. Beijing: Beijing Science and Technology University Press,1993.
    [165]D. X. Xu. Study on the precharging for electrostatic precipitation[J]. Environmental Engineering 1997,15:25-28.
    [166]F. Xu, Z. Y. Luo, B. Wei, et al. Electrostatic Capture of PM2.5 Emitted from Coal-fired Power Plant by Pulsed Corona Discharge Combined with DC Agglomeration[C].11th International Conference on Electrostatic Precipitation, China,2008:242-246.
    [167]王小刚,李海滨,王小波等.不同垃圾焚烧炉排放的PM10中多环芳烃的研究[J].燃料化学学报2006,34(6):721-725.
    [168]张智平,倪余文,杨志军等.垃圾焚烧过程二恶英生成的研究进展[J].化工进展2004,23(11):1161-1168.
    [169]Stanmore B. R. The formation of dioxins in combustion systems [J]. Combustion and Flame 2004,136(3):398-427.
    [170]Kim S. C, Jeon S. H, Jung I. R, et al. Removal efficiencies of PCDD/PCDFs by air control devices in municipal solid waste incinerators[J]. Chemosphere 2001,43 (3):773-776.
    [171]Tsapakis M, Stephanou E. G. Collection of gas and particle semi-volatile organic compounds:use of an oxidant denuder to minimize polycyclic aromatic hydrocarbons degradation during high-volume air sampling [J]. Atmospheric Environment 2003,37(4): 4935-4944.
    [172]严建华,陆胜勇,李晓东等.流化床垃圾焚烧炉飞灰中二恶英的分布[J].工程热物理学报2004,25(1):155-158.
    [173]陈彤,李晓东,严建华等.垃圾焚烧炉飞灰中二恶英的分布特性[J].燃料化学学报2004,32(1):59-64.
    [174]徐旭.燃烧过程中二恶英生成及排放特性的研究[D].浙江大学博士学位 论文.2001.
    [175]王佩华.持久性有机物污染物二恶英环境污染问题的研究[J].绥化学院学报2005,25(3):161-163.
    [176]Nobuo H, Tatsushi M, Hideo Y. Decomposition of volatile organic compounds by a novel electrode system integrating ceramic filter and SPCP method[J]. Journal of Electrostatics 2007,65 (1):43-53.
    [177]He Z. G, Liu J. S, Cai W. M. The important role of the hydroxy ion in phenol removal using pulsed corona discharge [J]. Journal of Electrostatics 2005,63(5):371-386.
    [178]郭玉芳,叶代启,陈克复.挥发性有机化合物(VOCs)的低温等离子体-催化协同净化[J].工业催化2005,13(11):1-5.
    [179]杜长明,严建华,李晓东等.利用滑动弧放电脱除烟气中多环芳烃和碳黑颗粒[J].中国电机工程学报2006,26(1):77-81.
    [180]杜长明.滑动弧放电等离子体降解气相及液相中有机污染物的研究[D].浙江大学博士学位论文.2006.
    [181]Zhou Y. X, Nifuku M, Hajos G, et al. An investigation on pulse discharge effect on the surface chemical transformation of fly ash[C].12th Symposium on Plasma Science for Materials, Tokyo, Japan,1999.
    [182]张仁豫,陈昌渔,王昌长等.高电压实验技术[M].北京:清华大学出版社1982.
    [183]Kuniko Urashima, JenShih Chang. Removal of Volatile Organic Compounds from Air Streams and Industrial Flue Gases by Non-Thermal Plasma Technology [J]. IEEE Transactions on Dielectrics and Electrical Insulation 2000,7 (5):602-613.
    [184]T. Oda, T. Takahashi, H. Nakano, et al. Decomposition of fluorocarbon gaseous contaminants by surface discharge-induced plasma chemical processing [J]. IEEE IA-Trans 1993,29 (4):787-791.
    [185]徐飞,骆仲泱,王鹏等.脉冲放电降解垃圾焚烧飞灰PAHs和二恶英的研究[J].中国电机工程学报2007,32(27):34-39.
    [186]Dinell G. Pulse Power Electrostatic Technologies for the Control of Flue Gas Emissions [J]. Journal of Electrostatics 1990,25 (1):23-40.
    [187]Tokunaga 0, Suzuki N. Radiation Chemical Reaction in NO, and SOx Removal from Flue Gas[J]. Radiat Phys Chem 1984,24:145-165.
    [188]Busi F, Angelantonion D, Mulazzani Q. A Kinetic Model for Radiation Treatment of Combust Ion Gas[J]. Science of the total environment 1987,64:231-238.
    [189]Chang J. S. The Role of H20 on the Formation of NH4N03 Aerosol Particles and DeNOx under the Corona Discharge Treatment of Combustion Flue Gas[J]. Aerosol Sci 1989,20:1087-1090.
    [190]Dahiya R. P, Mishra S. K, Veefkind A. Plasma Chemical Investigations for NOx and SO2 Removal from Flue Gases [J]. IEEE Trans.Plasma Sci 1993,21:346-348.
    [191]Lowke J. J. The Theoretical Analysis of Removal of Oxides of Sulphur and Nitrogen in Pulsed Operation of Electrostatic Precitators[J].IEEE Trans. Plasma Sci,1995,23:661-671.
    [192]Mok Y. S, Nam S. Modeling of Pulsed Corona Discharge Process for the Removal of Nitric Oxide and Sulfur Dioxide [J]. Chem. Eng 2002,85(1):87-97.
    [193]吴祖良,孙培德,李济吾等.电晕放电同时脱硫脱硝机理研究[J].电站系统工程2007,23(3):1-4.
    [194]李定,陈银华,马锦秀等.等离子体物理学[M].北京:高等教育出版社2006.
    [195]Masuda S, Hirano M, Akutsu K. Enhancement of Electron Beam Denitrification Process by Means of Electric Field [J]. Radiat. Phys. Chem 1981,17:223-228.
    [196]Dong B. Y, Zhang D. C. A review of pulsed discharge for SO2 and NOx removal from flue gas[J]. Techniques and Equipment for Environmental Pollution Control 2006,7:17-20.
    [197]Clements J. S, Mizuno A, Finney W. C, et al. Combined Removal of SO2, NOx and Fly Ash from Simulated Flue Gas Using Pulsed Streamer Corona [J]. Transactions on industry applications 1989,25 (1):62-68.
    [198]施学贵,庞亚军,徐旭常.掺加粉煤灰提高含钙脱硫剂的烟气脱硫率的实验研究[J].工程热物理学报 1992,13(4):443-447.
    [199]Wang W. C, Zhao Z. B, Liu F, et al. Study of NO/NO, removal from flue gas contained fly ash and water vapor by pulsed corona discharge [J]. Journal of Electrostatics 2005,63:155-164.
    [200]王乾,段钰锋,吴成军.燃煤电场脱硫系统的脱汞特性研究[J].锅炉技术2008,29(1):69-78.
    [201]F. Xu, Z. Y. Luo, W. Cao, et al. Simultaneous oxidation of NO, SO2 and HgO from flue gas by pulsed corona discharge [J]. Journal of Environmental Sciences 2009,21 (3):328-332.
    [202]E. C. Potter. Electrostatic precipitation technology:a different viewpoint [J]. J.APCA 1978,28:40-46.
    [203]S.K. Friedlander. Principles of gas solid separation in dry systems [J]. Chem. Eng. Progr. Symp. Ser 1957,55.
    [204]J. C. Williams, R. Jackson. The motion of solid particles in an electrostatic precipitator[J]. Proc.Symp. Interaction Fluid Particles, Inst.Chem. Engrs 282-288.
    [205]P. L. Feldman, K. S. Kumar, G. D. Cooperman. Turbulent diffusion in electrostatic precipitators [J]. A. I. Ch. E. Symp. Series 1977,165: 120-130.
    [206]G. L. Leonard, M. Mitchner, S. A. Self. Experimental study of turbulent diffusion on precipitator efficiency[J]. J. Aerosol Sciences 1982,13:271-284.
    [207]P. Cooperman. A new theory of precipitator efficiency[J]. Atoms Environ 1971,5:541-551.
    [208]张国权.静电除尘器收集效率的研究[J].有色金属1984,36(2):1-5.
    [209]向晓东.电凝聚除尘理论与应用技术研究[D].东北大学博士学位论文.2002.
    [210]Kanazawa S, et al. Submicron particle agglomeration and precipitation by using a bipolar charging method[J]. Journal of Electrostatics 1993,29 (3):193-209.
    [211]Kilde J, Bhatia V. K, Lind L, et al. An experimental investigation for agglomeration of aerosols in alternating electric field[J]. Aerosol Science and Technology 1995,23(7):603-610.
    [212]Kari E, et al. Kinematic coagulation of charged droplets in an alternating electric field[J]. Aerosol Science and Technology 1995,23(7):422-430.
    [213]向晓东,涂扎,陈冬林.板式电除尘器极间电场分析[J].地质勘探安全1995,1:34-37.
    [214]Williams M. M. R, Loyalka S. K. Aerosol Science Theory and Practice[M]. New York,Pergamon Press,1991,154-215.
    [215]黄钊.线管式静电除尘器性能模拟[D].中南大学硕士学位论文.2007.
    [216]党小庆,李伟,杨雪莲等. 电除尘器电场特性实验研究与数值分析[J].环境工程2006,24(3):47-50.
    [217]Hackam R, Akiyama H. Air pollution control by electrical discharges [J]. IEEE Trans. Dielect. Elect. Insulation 2000,7: 654-683.
    [218]Masuda S, Nakao H. Control of NO by positive and negative pulsed corona discharges [J]. IEEE Trans. Ind. Appl.1990,26:374-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700