用户名: 密码: 验证码:
水解污泥性状及水解反应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据对国内一些中小型水解装置运行状况的追踪调查、实际运行情况的测试,发现由于设计工作过于依赖经验,使一些装置在运行中处理能力与设计能力相差较大。尤其是布水装置的设计,由于缺乏定量实验的指导(无论是定性的或半定量的),甚至连定性结果的区域边界也不十分清晰和一致,因而导致所设计的装置运行存在不稳定性,问题可以归纳成下面几方面:
     1、布水口的动力消耗与布水均匀性(布水面积)之间的关系;
     2、布水所需动力与活性污泥运动状况之间的关系;
     3、布水所需动力与控制水解工艺的生物物理与生物化学过程之间的关系。
     本研究希望从流体力学的角度分析这些问题并提出解决方案。
     本研究实验目的:采用流体动力学方法研究水解池运行状态,厌(兼)氧活性污泥的物理运动过程,以及物理运动状态与生物化学性能之间的关系,以便能采用较简单的方法预测水力负荷对系统污泥存留状态以及工作状态的影响,为上流式水解装置的水力设计提供定量的依据。
     研究方法:
     1、采用流体力学动力学方法研究连续流状态下,对应于不同的水力负荷(以HRT表示),活性污泥膨胀特点。
     2、研究特定水力学条件下,生化反应指标与水力负荷之间的关系。
     主要内容:
     1、污泥在不同上升流速下的膨胀实验(研究上升流速、布水管口流速及布水管离反应器底距离对污泥膨胀的影响);
     2、水解池重新启动时所需的动力条件;
     3、淀粉水解的静态和动态实验(研究淀粉吸附水解过程及水解作用与水力负荷间关系)。
     主要结论:
     1、随着流速的增加,相应条件下卷吸流量增加,并且卷吸流量
    
    是相应高度柱体积的4一7.7倍。
     2、卷吸范围随孔口与底板的即离增加而增加。在研究的条件下,
    与射流的速度没有显著的关系。
     3、卷吸流量与孔口距底的趾离相关,距离越大,卷吸的流量越
    大,但是在距离达到10倍管径以上时,由于径向速度迅速降低,卷
    吸的实际作用己不具有意义。
     4、布水管口径lmm情况下.此时雷诺数在4000一7600左右,呈
    湍动状态。具有较好的出口流速和冲刷能力。距底面在40mm以上时
     (}七Dn>40),自由射流的搅拌件用表现得比较充分,因此在实际生
    产装置中,恰当地确定孔口与底习距离更重要。
     5、管出口流体力学的主要参数是雷诺数,分散污泥的基本条件
    是管出口的雷诺数处于湍流状态,雷诺数大于5000后污泥流动状态
    更稳定。
     6、管出口距底面的高度同样影啊污泥分散状况。在污泥沉降48
    小时以上时,实验条件下,距底高度在4一6cm(40一60倍管径),
    即能满足分散污泥的需要。此时特延标志的流体力学参数是轴向最大
    速度(或中心最大速度),到达底面时该速度在0.45一0.65创sec之间。
     7、静态实验中,淀粉浓度随盯间变化过程表示为吸附速度过程,
    拟合的一级反应方程系数为k=一。.0049,相关系数二0.971。
     8、根据淀粉静态及动态实验数据,作者提出新的负荷参数—
    淀粉量/污泥层体积。
According to the inquisition and the test of some local medium-sized or pilot-scale hydrolytic equipment's work condition, some equipments' actual ability differ from the designed ability obviously, because of designing being depended on the experience. For the water distributing device particularly, lacking of quantitative experiment leading( either the qualitative or the semi-quantitative), even the critic condition of qualitative result isn't quite clear and consistent by the authors, as a result, the designed device work unsteady, the problem can induce several aspects as follows:
    1.The relationship between power consuming of distributing device and the distributing effection.
    2.The relationship between the power for the distributing device and the behaviour of sludge.
    3.The relationship between the power for the distributing device and the biochemical process of hydrolysis.
    This research analyzes these relationships from the aspects of the fluid mechanics and put forward the elementary solution.
    Research purpose: hydrolytic device operation condition, physics processes of anaerobic sludge and the relationship between sludge physics movement and biochemical function is researched by the hydrodynamics method, in order to estimate the influence of the hydraulic loading to sludge staying and operating condition, and to carry out the quantitative results
    
    
    for the design of up-flowing hydrolytic device. Research method:
    1.In continues flowing condition, the sludge inflation characteristics is researched corresponding to the different hydraulic loading by dynamics methods.
    2.In particular hydraulic condition, the relationship between the biochemical parameter and the hydraulic loading is researched. The experiments:
    1.Sludge inflation experiment under different flow rate (the influence of flow rate, flow velocity out of the water distributing device ,the distance between water distributing pipe and reactor bottom and the dynamics condition for the restarting of hydrolytic device are researched)
    2.The starch hydrolysis experiments in static and dynamic state (the relation between starch adsorption and hydrolysis process and hydraulic loading is researched) The results:
    1, Along with the increment of the current velocity, the flux drawing in increases, and flux is 4-7.7 times volume of the column.
    2.the flux drawing in is related with the distance from the nozzle to the bottom of the column, the distance is longer, the flux drawn into is bigger, but when the distance is 10 times nozzle diameter, because the radial speed decreases quickly, the actual function of the drawn into is not meaningful already.
    3.When water distributing nozzle's caliber is 1mm, Reynolds
    
    count is ranged 4000 -7600 approximately, being onflow, having high exit velocity with scour ability. The distance between the nozzle and bottom is 40mm, agitation state is better. In the projects, the proper distance between the nozzle and bottom is very important.
    4.The main parameter of the fluid mechanics is Reynolds count, the basic condition of sludge dispersing Reynolds count is in onflow. When Reynolds count is larger than 5000, the sludge behavior is more stable.
    5.Distance between the nozzle and the bottom also is a factor to influence sludge dispersing. When sludge concentrated over 48 hours, such as in the experiment condition, the distance between the nozzle and the bottom is 40mm, can satisfying sludge dispersions. The hydrodynamics symbolizing parameter of this condition is the maximum speed along the axis, the speed at the bottom is 0. 45~0.65 m/sec.
    6.In static state experiments of starch hydrolysis, the process of starch concentration changing along with time means for adsorption process, the coefficient of first order reaction equation is k= ?0.0049, and the coefficient of regression
    r=0.971.
    7.According to static and dynamic experiment data of starch hydrolysis, the author puts forward a new loading parameter, starch concentration /the volume of sludge.
引文
[1] R.E,斯皮恩著,李亚新译,工业废水的厌氧生物技术,中国建筑工业出版社,2001
    [2] 贺延龄著,废水的厌氧生物处理,中国轻工业出版社,1998
    [3] Young, J.C.J. Water Pollut. Control Fed., 1969(41)
    [4] Lettinga. G.. et al. High rate anaerobic wastewater treatment using the UASB reactor under wide range of temperature conditions, in: G. E. Russei (ed.) .Biotechnology and Genetic Engineering Reviews.Vol.2. Newcastle: Intercept Ltd, 1984.253~284
    [5] 胡纪萃等,废水厌氧生物处理理论与技术,中国建筑工业出版社,2003
    [6] Jewell, W.J.J WPCF, Vol 53, No4 p. 482 (1981)
    [7] Kato, M.T. Anaerobic Treatment of Strength Soluble Water. Ph.D. Thesis. 1994
    [8] Zouberg, M. T., et al, Wat. Sci. Tech. Vol. 34. No. 5-6, 1996
    [9] 王凯军.城市污水低能耗处理工艺的研究.北京市环境保护科学研究所硕士学位论文,1985.3
    [10] 王凯军编.低浓度污水厌氧—水解处理工艺,中国环境科学出版社.1992
    [11] 王凯军.中国给排水.1993,5(4~6)
    [12] 郑永东、白端超.A-O工艺中水解(酸化)系统的微生物生态及其在印柒废水处理中的作用.环境科学与技术.1998 (2).22-23
    [13] 曾科、买文宁、张磊.微生物酸化的生产应用.研究环境工程.2000(3).15-16
    [14] 李武.水解—好氧生物处理工艺在制药废水处理上的应用.环境工程.1997(4)7-8
    [15] 宁天禄、姚重阳等.应用水解—好氧生物法处理中药厂废水.工业水处理.1998(6)35-37
    [16] 卢平、罗国维.毛毯印染废水处理技术研究.环境污染治理技术与设备.2000(4).62-65
    [17] 邓良伟水解—SBR工艺处理规模化猪场粪污研究中国给排水2001(3) 8-11
    [18] 钱易、汤鸿霄、文湘华等著.水体颗粒物和难降解有机物的特性与控制技术.原理.中国环境科学出版社.2000
    [19] 张希衡等编著.废水厌氧生物处理工程.中国环境科学出版社.1996.9.P4~5
    [20] 汉斯(Henze,M.)著.国家城市给水排水工程技术研究中心译.污水生物与化学处理技术.中国建筑工业出版社.2000
    [21] Henze, M. Grady, C.PL., Gujer, W., Marais, G. v. R., and T. Matsuo. Activated
    
    Sludge Model No.1 IAWPRC, London. (IAWPRC Scientific and Technical Reports No. 1) 1987
    [22] M. Henze et al. Examination of the Activated Sludge Model No.2 with an alterlating Process. Wat. Sci. Tech. Vol.31. No. 2, p55-56. 1995
    [23] M. Henze et al. Activated Sludge Model No.3. Wat. Sci. Tech. Vol.39. No. 1, p183-193, 1999
    [24] Rajeev Goel, Takashi Mino et al. Comparison of Hydrolytic Enzyme Systems In Pure Culture and Activated Sludge under different Electron Acceptor Conditions. Wat. Sci. Tech. Vol. 37, No. 4-5, p337, 1998
    [25] 王凯军、贾立敏编著.城市污水生物处理新技术开发与应用.化学工业出版社.2001
    [26] 余常昭著.紊动射流.高等教育出版社.1993
    [27] 余常昭著.环境流体力学导论.清华大学出版社.2001
    [28] Alberson, M.L. Diffusion of Submerged Jets. Tran. ASCE. 115. 1950
    [29] 戴干策,陈敏恒.《化工流体力学》.化学工业出版社.1988
    [30] Giratt, F, chia, et al. Ind. Eng. Chem. (Fundamental), 16, 1977
    [31] 佟庆理编.两相流动理论基础.冶金工业出版社.1982
    [32] Lettinga G. and J. N.Vinken, Proc.35th Ind. Waste Cohf., Purdue Uniu p.625
    [33] 国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法.中国环境科学出版社.1989
    [34] Rajeev Goel, et al. Comparison of Hydrolytic Enzyme Systems in Pure Culture and Activated Sludge under Different Electron Acceptor Conditions. Wat. Sci. Tech. Vol. 37, No. 4-5, p337, 1998
    [35] 严熙世主编.水和废水技术研究.中国建筑工业出版社.1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700