用户名: 密码: 验证码:
ISFET传感器及其多路测量系统的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ISFET(ion-sensitive field-effect transistor)具有宽广的离子测量范围,因此在环境保护、化工、矿山、地质、土壤、水文以及家庭生活中都有应用。尤其是其微型化的特点,使之在生物医学领域中不仅应用范围广,而且具有很强的生命力。因此ISFET生物传感器及其多路测量系统在整个社会都有重要需求。许多研究机构对它进行了大量的研究,然而ISFET阈值电压的变化,噪声的影响,参考电极封装的困难等等限制了它的商业化。在过去几年中人们常采取微机电技术封装参考电极,采取物理和化学的方法对敏感膜进行处理来解决以上问题,但效果并不很好。针对这种情况在本文中设计了差动测量方法,由ISFET和REFET组成,由金膜辅助电极代替银或氯化银参考电极,能很好地解决上面的问题。
     首先对ISFET的工作原理进行详细的介绍,在此基础上对它的测量方法进行了讨论比较,最终选择了差动测量作为测量方法,并设计了ISFET缓冲器,对它的噪声进行了分析,在同时考虑了敏感膜的面积与电路的噪声的基础上设计了ISFET的栅的宽长分别为800um,20um,采用Synopsys的Hspice、上华公司0.6um工艺进行了模拟得到等效输入噪声电压有效值为0.32uv(0.05Hz-250Hz),噪声电压峰峰值为1.9uv,其功耗约为850.7uw,输出噪声电压为2.8mv,即精度为1/20P(相对于56my/P),而通过差动输出后,作为共模信号被抑制掉一部分,输出噪声电压将更低,精度将大大提高。其功耗之低完全可以集成32个这样的传感器。利用了4片双8路切换开关CC4097,一个INA110仪器测量放大器、MAX297滤波器、AD678模数转换器以及可编程定时/计数器8253对这32路信号进行了采集,为了提高采样速度采用了DMA技术、交替存储技术,一个周期可采集到约6个样点,完全满足采样要求。
     通过此方法能很好地解决长期来困扰人们的问题,为ISFET传感器及其测量系统的商业化迈出了一大步。
Because of broad scope of ion measurement of ISFET (ion-sensitive field-effect transistor) , ISFET is widely used such as environmental protection, chemical industry, mining area, geology, earth, hydrology, and family, and so on. Especially distinguishing feature of miniature, ISFET not only is used widely in biology medical service field, but also is strongly vitality, So ISFET biology sensor and multi-route measurement system are our important necessaries. ISFET has been the object of many research activities. Nevertheless, the threshold voltage time dependence, noise and the technological difficulties associated with the packaging of miniature reference electrodes limit the commercial viability of all the ISFET application. In the last years, in order to overcome these drawbacks, different approaches have been pursued, such as on-ehip fabrication of electrode with micro-fabrication techniques, as well as physical and chemical treatments of the sensing membrane. But the result does not very satisfy'us. Thu
    s I choose differential arrangement to overcome these drawbacks, consisting of an ISFET and a reference FET(REFET), a noble metal counter-electrode provides the electrical contact to the test electrolyte.
    Fust of all I detailedly introduce rules of ISFET sensor and discuss its method of measurement based on rules, so I choose deferential arrangement. Then I design ISFET buffer amplifier and analyse its noise. Considering its area of sensitive film and its noise, I decide breadth and length of gate of ISFET, separately 800 micron and 20 micron. And I simulate it with HSPICE of Synopsy corporation and 0.6 micron process of ShangHua corporation. Its equivalent input noise volt is 0.32 microvolt from 0.05Hz to 250Hz, jroise volt peak value is 1.9 microvolt. Its work loss is 850.7 micro- watt. Output noise volt is 2.8 microvolt, corresponding to a resolution of 1/20 p .Due to differential output, its noise is rejected partly, so its resolution largely is improved. Because of low power we may integrate 32 the seniors. At last we sample 32 route biology signal by four double 8 change-over switch CC4097, a apparatus instrument amplifier INA110, a wave filter MAX297, a analog-digital converter A/D678 and programming f
    ixed time or . counter 8253, In order to advance it, I adopt DMA(direct memory access) technology and replace memory technology. We can sample about six points during a cycle. And this system completely accords with sampling rule.
    The method largely resolves the problem which has- puzzled us chronically and
    
    
    
    easily makes ISFET and measurement system commercial viability.
引文
[1]苏渝生.开发实用生物传感器的意义.分析仪器.第3期.1999:6-9.
    [2]冯德荣.生物传感器的研究现状和发展方向.山东科学.12月第4期.1999:1-4.
    [3]K. Tsukada, Y. Miyahara, Y. Shibate, etal. An integrated chemical sensors with multiple ion and gas sensors. Sensors and Autuators, Vol. B2, 1990. pp291-295.
    [4]Y. Hanazato, M. Nakako, S. Shiono, etal. Integrated multi-bio- sensors based on an ion-sensitive field-effect transistor using photolithographic techniques. IEEE Trans. Electron Devices, Vol. ED-36, 1989. pp1303-1330.
    [5]I.Igarashi, T. Ito, T. Taguchi, etal. Multiple ion sensor array. Sensors and Actuators, Vol. B1, 1990. pp8-11.
    [6]H.S. Wong and M.H. White. A COMS-integrated ISFEI-oprational amplifer chemical sensor employing differential sensing. IEEE Trans. Electron Devices. Vol. ED-36, 1989. pp479-487.
    [7]B.H. van der Schoot, S. Jeanneret, A. van den Bery, etal. A silicon integrated miniature chemical analysis system. Sensors and Actuators. Vol. B6, 1992. pp57-60.
    [8]S. Shoji, M. Esashi, B. van der shoot, etal. A study of a high pressure micropump for integrated chemical analyzing systems. Sensors and Actuators. Vol. A32, 1992. pp335-339.
    [9]A. Grisel, C. Francis and G. Mondin. Packaging technologies for integrated electrochemical sensors.Sensors and Actuatuators. Vol. 17, 1989. pp285-295.
    [10]P. Bergveld. Future applications of ISFETs. Sensors and Actuators. Vol. B4, 1991. pp125-133.
    [11]S. Alegret, J. Bartroli, C.J. Jorquera, etal. Flow-through PH-ISFET reference-ISE as integrated detector in automated FIA determinations. Sensors and Actuators. Vol. BT, 1999. pp555-560.
    [12]P. Woias, S. Koch, E. Muller, etal. An ISFET-FIA system for high precision PH recording. Sensors and Actuators. Vol. B15-16. 1993. pp68-74.
    [13]W. Moritz, F. Lisdat, B. Hvander schoot, etal. Flow injection analysis
    
    using PH/Pf ISFET combinations for determination for very low fluoride concentrations. Sensors and Actuators. Vol. B15-16, 1993. pp223-227.
    [14]T. Moriizumi and Y. Miyahara. Integrated enzme FET' s for simultaneous detection of urea and glucose. Sensor and Actuators. Vol.7, 1985. pp1-10.
    [15]J.R. Haak, P.D. vander Wal, D.N. Reinhoudt. Molecular materials for the transduction of chemical information by CHEMFETs, Sensors and Actuators. Vol. BS, 1992. pp211-219.
    [16]L. Bousse, N.F. de Rooij, P. Bergveld. Operation of chemically sensitive field_effect sensors as a function of the insulator electrolyte interface. IEEE Trans. Electron Devices. Vol. ED-30, 1983. pp1263-1270.
    [17]G. Massobrio, M. Grattaarola, G. Mattioli, etal. ISFET-based Bio- sensor modeling with SPICE. Sensors and Actuators. Vol. B1, 1990. pp401-401.
    [18]M.R. Haskard, D.E.Mulcalhy, H.I. Seo, D.H. Kwon. A very large integrated PH-ISFET sensor array chip compatible with standard CMOS processes. Sensors and Actuators B 44.1991. pp434-440.
    [19]丁辛芳.Si_3N_4/Si_O2栅pH-ISFET传感器的设计与模型.东南大学学报.06.1997:103-105.
    [20]高保嘉.MOS VLSI分析与设计.第一版.北京.电子工业出版社.2002:14-16.
    [21]牛蒙年,袁景,林崴.PH-传感器及其测量方法的研究.固体电子学研究与进展.Vol.15,NO.1.1995:50-53.
    [22]P.E.艾伦,D.R.霍尔伯格.CMOS模拟电路设计.王正华,叶小琳.第一版,北京.北京市怀柔黄坎印刷厂印刷.1995:204-205.
    [23]卢豫曾.半导体模拟集成电路.第一版.北京.国防工业出版社.1980:36-37.
    [24]毕查德.拉扎维.模拟CMOS集成电路设计.陈贵灿,程军,张瑞智等.第一版.西安.西安交通大学出版社.2002:13-16.
    [25]康华光,陈大钦.电子技术基础(模拟部分).第四版.北京.高等教育出版社.1999:287-294.
    [26]潘云芳.1/F噪声源及MOS器件中的1/F噪声.微电子技术.Vol.27,No.1.1999:25-30.
    [27]吴兴惠,王彩君.传感器与信号处理.第一版.北京.电子工业出版社.1998:264-267.
    [28]林俊宝.国研院国家晶片系统设计中心.http://www.cic.org.tw,2003.Jul.
    [29]赵保经,吴文炼,黎心源等.中国集成电路大全CMOS集成电路.第一版.北京.国防工业出版社.1985:430-433.
    
    
    [30]杨振江,蔡德芳.新型集成电路使用指南与典型应用.第一版.西安.西安电子科技大学出版社.2000:1-4.
    [31]苏成富.CC4051在纱线断头检测电路中的应用.纺织机械.NO.1.1996:47-49.
    [32]王滦平.900MHz巴特沃兹低通滤波器的设计.天津通信技术.第4期.2000年:25-29.
    [33]刘强.MAX29X系列8阶有源低通滤波器及其应用.电子技术应用.第4期.1995:37-38.
    [34]康华光,陈大钦.电子技术基础(数字部分).第四版.北京.高等教育出版社.1999:402-414.
    [35]丁玉美,高西全.数字信号处理.第二版.西安.西安电子科技大学出版社.2002:19-22.
    [36]李三财,柴琳,汪贵平.AD678转换器的原理及其应用.现代电子技术.第二期.1998:19-22.
    [37]王萍,李小京.CMOSRAM6116在掉电保护中的应用.天津纺织工学院学报.第15卷第4期.1996:60-61.
    [38]赵雅兴.FPGA原理设计与应用.第一版.天津.天津大学出版社.1999:1-4.
    [39]刘征宇,韦立华.最新74系列IC特性代换手册.第一版.福建.福建科学出版社2002:292—293
    [40]朱德森,温鹏.微型计算机原理与应用.第一版.武汉.华中理工大学出版社.2001:169-176.
    [41]莫正坤,高建生.计算机组成原理.第二版.武汉.华中科技大学出版社.2003:203-204.
    [42]彭月祥.传感器非线性的一种拟合方法.数据采集与处理.1999.01:133-134.
    [43]刘大健,卫力,叶强.二元函数插值法校正传感器非线性及温度漂移.仪表技术.第五期.2001:50-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700