用户名: 密码: 验证码:
矾土基β-Sialon结合刚玉复合材料的制备、结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了以高铝矾土、Si、电熔白刚玉颗粒及细粉和部分添加剂为原料,氮气气氛下通过反应烧结的方法一步制备矾土基β-Sialon结合刚玉复合材料的工艺。研究结果表明,流动氮气气氛下1500℃/5h反应烧结可以得到主晶相为刚玉、次晶相为β-Sialon的矾土基β-Sialon结合刚玉复合材料,无其他晶相生成。用逐次回归的方法得到了常温抗折强度、体积密度及显气孔率与与颗粒级配间的函数式,其回归效果良好,可信度高,可用于预报反应烧结法制备矾土基β-Sialon结合刚玉复合材料的常温物理性能。得到了较理想的颗粒级配:刚玉粗颗粒45%、中颗粒10%、细粉45%(其中刚玉细粉25%,合成矾土基β-Sialon的细粉为20%)。用酚醛树脂作结合剂,显微结构表明,复合材料中生成大量矾土基β-Sialon晶须,并互相编织成网络结构。根据前面的工艺得到的矾土基β-Sialon结合刚玉复合材料的常温性能为:体积密度>2.9g/cm3,显气孔率<21%,抗折强度~15MPa。
     矾土基β-Sialon结合刚玉复合材料的高温力学性能研究结果表明:矾土基β-Sialon含量在25%和30%时,复合材料的强度在800℃以前逐渐增加,800-1400℃基本保持不变。应力-应变关系随温度的变化规律表明800℃以前为弹性变形阶段,1400℃以前没有出现快速流动,说明复合材料中结晶效应占主导地位。
     矾土基β-Sialon结合刚玉复合材料的抗热震性能较好,矾土基β-Sialon含量为25%时,其热震临界温度为600℃,热震温差为1350℃时其残余强度保持率仍然有65%;而相同条件的氧化铝基β-Sialon结合刚玉复合材料的临界温差为800℃,但温差为1350℃时的强度保持率比矾土基β-Sialon结合刚玉复合材料的低10个百分点。
     矾土基β-Sialon结合刚玉复合材料的氧化属保护性氧化。实验条件下,矾土基β-Sialon结合刚玉复合材料的氧化动力学可分为两个阶段:60分钟以前,单位面积氧化增重与时间呈线性关系,属于化学反应与扩散过程共同控速。60分钟以后,单位面积氧化增重的平方与时间呈线性关系,属于扩散控速阶段。1250-1350℃范围内温度上升,矾土基β-Sialon结合刚玉复合材料的氧化速率减小。而同样条件下氧化铝基β-Sialon结合刚玉复合材料的变化趋势正好相反。推
    
    郑州大学硕士学位论文
    .,.闷月~.电口...,..口................................
     一‘.........两.州......‘月曰..卜‘~
    导了各阶段的氧化动力学模型。
     与高铝砖和刚玉砖相比,矾土基p一Sialon结合刚玉复合材料的抗从C03侵蚀
    性能优异。
Preparation of bauxite based p-Sialon bonded corundum composite(BSC) through reactive sintering were investigated, using bauxite, silicon, fused white corundum grains, and additives as the raw materials. XRD results showed that the main crystal phase was corundum in the specimens sintered at ISOO? for 5 hours under flowing nitrogen atmosphere, and the other phase was P-Sialon phase. Stepwise regress method were used to investigate relationship between grain size gradient and sintering properties of BSC, and functions were established. The functions fit close well with the experimental results and can be used for forecasting properties of BSC at room temperature. Suitable grain size gradient for preparation of BSC was 45wt% coarse-grain corundum, 10% middle size corundum, and 45% powders(include 25% corundum powder and 20% powders for the synthesis of P-Sialon involved). Interwoven structure could be found in cracked surface of BSC by scanning electronic microscope, when using bakelite as temporary bonder. Ac
    cording to the process above, BSC were got with bulk density >2.9g/cm3, and apparent porosity <21%, and modulus of rupture(MOR, at room temperature) 15MPa or so.
    Relationship of HT-MOR P-Sialon bonded corundum composites with temperature increasing from room temperature up to 1400癈 were studied. Results showed that when temperature rised from room temperature to 800 ?, MOR of the composites increased to the top at 20MPa. When it was in range of 800 癈 to 1400癈, MOR holding almostly the same value as that at 800 for 25% and 30% p-Sialon-contained specimens. In case of the composite with 20% p-Sialon, MOR reduced slightly with the rise of temperature after 800 However, which still higher at 1400 than that at room temperature.
    From room temperature to 800 , stress-strain curves of p-Sialon bonded corundum exhibited elastic deformation character. When testing temperature is between 1000 to 1400, pamernent deformation were detected. It means that the composites were in plastic flow range. These also proved that the composites
    
    
    
    contained just little liquid phase, and crystal effect was the main factor for high temperature strength.
    P-Sialon bonded corundum composites displayed good thermal shock resistance(TSR) properties. When p-Sialon-containing percentage was 25%, critical temperature difference for BSC was 600癈, and ASC, 800癈. But when the temperature difference was 1350癈, residual strength ratio of BSC was 65%, however it was 55% for ASC.
    Oxidation behavior of p-Sialon bonded corundum composites were studied. Oxidation process of BSC was a protective one. Oxidation kinetic could be divided into two range. That is, when oxidation time is under 60 minutes, quadratic polynomial of weight gain per unit area exhibited a straight line relationship with time in minute. When oxidation time is longer than 60 minutes, parabolic relation between square of weight gain per unit area and time was discovered. Constant rates of the kinetic model were evaluated from the curves. Oxidation speed decrease with the ascending of temperature for BSC when testing temperature is 1250癈 to 1350 癈, and opposite result was got for ASC. Oxidation models were deduced.
    Comparing with high alumina brick and corundum brick, BSC displayed much better property of COerosion resistance at 1300
引文
1 钟香崇.展望90年代我国耐火材料的发展.耐火材料 1993.27(2):63-68.
    2 严东生.钟香崇耐火材料论文选·序言.北京:冶金工业出版社,1991.
    3 Krause C.A. Refractores: The Hidden History. American Ceramic Society Inc.1987.
    4 Oyama, Y. and Kamigaito, K., Solid solubility of some oxides in Si_3N_4. Jim. J. Appl. Phys, 1971, 10, 1637-1642.
    5 Jack, K H. and Wilson, W. I., Ceramics based on the Si-Al-O-N and relates systems. Nature Phys. Sci. (London), 1972, 238, 28-29.
    6 张立明,禄向阳.β-S5don结合刚玉材料性能的研究.耐火材料2001,35(1)11-13.
    7 周丽红,王鸿妹.Sialon结合刚玉砖的研制.耐火材料 2001,35(3)161-162.
    8 L. G. Lee et. al., Am. Ceram. Soc., 1977, 58(9): 869-871
    9 Jie Zheng, Bertil Forslund. Carbothermal Preparation of β-SiAION Powder at Elevated Nitrogen Pressures. Journal of the European Ceramic Society. 19 (1999) 175-185.
    10 J.E. Gilbert, A. Mosset. PREPARATION OF β-SIALON FROM FLY ASHES. Materials Research Bulletin, 33(1998)117-123.
    11 A.A. Kudyba-Jansen, H. T. Hintzen, R. Metselaar. Ca-α/β-sialon ceramics synthesised from fly ash——preparation, characterization and properties. Materials Research Bulletin, 36(2001) 1215-1230.
    12 都兴红,张广荣,张伟民等.β-Sialon结合刚玉耐火材料的制备.耐火材料 1997.31(5):275-278.
    13 罗星源,孙加林,王金相等.β-Sialon结合刚玉耐火材料的合成.耐火材料 1999,33(3):133-135.
    14 钟香崇.矾土基耐火材料的研究与发展.耐火材料,1997,31(3):125-130
    15 孙庚辰,钟香崇.我国DK型烧结高铝矾土材料的应力.应变特征.硅酸盐学报,1984,12(3):355-362
    16 徐平坤,董应榜.刚玉耐火材料.北京:冶金工业出版社,1999.6
    17 A.D.Mazzoni, E.EAglietfi. preparation ofsialon alumina powders with aluminium in nitrogen atmosphere. Thermochimica Acta, 1997, 289:123-128
    18 Mandal, H.,Thompson, D.P. and Ekstrom, T. Reversible α←→β-Sialon transformation in heat-treated Sialon ceramics. J. Eur. Ceram. Soc., 1993,12,421-429
    19 陈卫武,孙维莹,严东生.Ln-α-sialon-AlN多型体(Ln=Y,Y+Sm and Sm)复相陶瓷微观结构的研究.无机材料学报,2000.6,15(3):441-446.
    20 H. Zhao, S. P.Swemser, Y.B. Cheng. Elongated α-Sialon Grains in Pressureless Sintered Sialon Ceramics. Journal of the European Ceramic Society, 18(1997) 1057-1057
    21 姜涛,薛向欣,杨建.Sialon陶瓷材料的结构、性质及应用.耐火材料,2001,35(4):229-232
    22 都兴红,张广荣,隋智通.Sialon陶瓷的性质.中国陶瓷,1998,34(2):42-44
    23 JANAF Thermochemical Tables (3rd Edn), American Chemical Society and American Institute of Physics for NBS, 1986
    24 D.A.Gunn. "A Theoretical Evaluation of the Stability of Sialon-bonded Silicon Carbide in the Blast Furnace Environment", J.Eur.Ceram. Soc., 1993, 11, 35-41
    25 文洪杰.红柱石的应用基础研究.北京科技大学博士论文,1997.10
    26 梁英教,车荫昌.无机物热力学数据手册.沈阳:东北大学出版社,1993.8
    27 M. Mitomo, N. Kuramoto, M. Tsutsumi et. al Yogyo-Kyokai-Shi 1978, 86(11): 526-531
    28 Y. Sugahara, K. Kyroda and C. Kato. J. Am. Ceram. Soc., 1984, 8:247
    29 叶国田,贺可音.碳热还原法合成 β-Sialon.西南工学院学报,1995,10(3):1
    30 邱克辉,曹爱红.由高岭土合成高纯 β-Sialon 粉料的探讨.材料科学与工程,1996,14(3):40-44
    31 张宏泉,杨中民.用不同粘土矿物合成Sialon粉末的研究.中国陶瓷,1998.34(1):16-19
    32 Pernilla pettersson, Zhijian Shen, Mats Johnsson, Mats Nygren. Thermal shock resistance of α/β-Sjialon ceramic composites. Jouranl of the European Ceramic Society 2001, 21:999-1005
    
    
    33 Fengying Wu, Tingrong Lai, Hanrui Zhuang, Peiling Wang, Xiren Fu. α/β-Sjialon ceramics and its fatigue life. Materials Letters 1999, 39:197-199
    34 魏涛,周玉,雷廷权.自生α/β复相陶瓷的组织结构及形成机制,材料科学与工艺,1997.3,5(1):99-102
    35 Ekstrom T, Nygren M. J. Am. Ceram. Soc., 1992,75(2): 259
    36 A.A. Kudyba-Jansen, H. T. Hintzen, R. Metselaar. Ca-α/β-sialon ceramics synthesized from fly ash—preparation, characterization and properties. Materials Research Bulletin, 2001, 36:1215-1230
    37 L. Chen, E. Kny, G. Groboth. Sialon ceramic with gradient microstructures. Surface and Coatings Technology, 100-101 (1998)320-323
    38 杨建,薛向欣,王文忠.Sialon陶瓷的结构特征及其物理化学性能,陶瓷工程,1999.10,33(5):1-7
    39 M.J. Wang. Phase Relationship Between β and O'-Sialon at 1623K. Journal of Materials Science 28(1993):669-676
    40 Asada S, Ueki M. Sugiyama M.J. Mater.Sci., 1993,28:3789-3792
    41 董良金,邬凤英,符锡仁.Sialon复相陶瓷的研制.机械工程材料,1996.6,20(3):31-32
    42 王浩,庄汉锐,孙维莹,冯景伟、严东生.添加Sm203的β-12H复相Sialon.硅酸盐学报,1994.2,22(1):1-7
    43 隋万美.Sialon/SiC复相材料研究进展.硅酸盐通报,1995,1:36-40
    44 王浩、高濂,冯景伟,严东升,Ca-α-Sialon纳米相复合材料.无机材料学报,1995.6,10(2):180-182
    45 LEE B T. Fracture Characteristic of a (Si-Al-O-N)-SiC Composite Studied by Transmission Electron Microscopy[J]. J Mater Sci, 1998, 33:313
    46 Q. Liu, L. Gao, D.S. Yan, D.P. Thompson, Hard sialon ceramics reinforced with SiC nanoparticles, Materials Science and Engineering A269 (1999) 1-7.
    47 SUI Wanmei. Microstructure ofBN/Sialon Multiphase Ceramics and Uncertainty of z for Sialon Grains. Chinese iournal of material research, 1998.6, 12(3):277-281.
    48 包宏.甄强,李文超.O'-Sialon/BN和O'-Sialon/ZrO_2复合材料抗熔融金属和保护渣侵蚀.北京科技大学学报,2001,23(4):311-315.
    49 仲维斌,李文超,钟香崇,O'-Sialon-ZrO_2复合材料在1250℃-1350℃的氧化过程.耐火材料,1995,29(3):125-128.
    50 仲维斌,李文超,钟香崇,O'-Sialon-ZrO_2复合材料的显微结构与热力学性能的研究.耐火材料,1996,30(1):10-15.
    51 Xidong Wang, Hong Bao, Wenchao Li, Oxidation of O'-Sialon-ZrO_2 composite ceramics. Journal of University of Science and Technology Beijing, 2001, 8(1):43-47.
    52 Dale B.Hoggard, Han K. Park, Ceramic Bulletin, Vol.9,No.7,1990:1163-1166.
    53 张海军,李文超,钟香崇,天然原料合成O'-Sialon-ZrO_2-SiC复合材料及性能分析,稀有金属,2000,24(1):25-29.
    54 张海军,李文超,钟香崇,O'-Sialon-ZrO_2-SiC复合材料的抗热震性能研究,耐火材料,2001,35(3):128-130.
    55 王文武.Sialon结合刚玉耐火材料组成、结构和性能关系的研究,洛阳耐火材料研究院硕士学位论文,1998.5.
    56 李亚伟,李楠,王斌耀等.β-赛隆(Sialon)/刚玉复相耐火材料研究,无机材料学报,2000.8,15(4):612-618.
    57 李亚伟,李楠等.武钢1号高炉大修扩容用赛隆结合刚玉砖的生产与使用,耐火材料,2001,35(3):153-154.
    58 Li Nan, Wu Yiquan. Sintering, microstructure and alkali-resistance of the materials in Al2O3-Si3N4 system. Procedding ofUNITECR'95, Kyoto, Japan, 1995:371-378.
    59 Albano M. P., Scian A. N. Mullite/Sialon/Alumina composites by infiltration processing. J. Am. Ceram. Soc,1997, 80(1):117-124
    60 罗积玉,邢瑛.经济统计分析方法及预测.北京:清华大学出版社.1987.
    61 尚涛,石端伟等.工程计算可视化与MATLAB实现.武昌:武汉大学出版社.2002.
    
    
    62 Ekstrom, T.,Kall, EO., Nygren, M. And Olsson, P.O. Dense single-phase β-Sialon ceramics by glass-encapsulated hot isostatic pressing. J Mater. Sci., 1989,24: 1853-1861.
    63 Masuda M, Soma T, Matsui M. Cyclic Fatigue Behavior of Si_3N_4 Ceramics. J. Eur. Ceram. Soc. 1990.No 6. 253-268.
    64 Michalske T A, Freiman S W.A: Molecular Mechanism for Stress Corrosion in Vitreous Silicon. J.Am.Ceram.Soc. 1983.66[4]:284-288.
    65 Bandy Paolhy S, Mukerjr J, Roychoudhury k: Sintering and Properties of β'-Sialon with a Nitrogen-Rich Y_2O_3 Sintering Aid. J.Am.Ceram.Soc. 1989.72 (6). 1061.
    66 钟香崇.碱性耐火材料的热机械性质.北京:冶金工业出版社.1957.
    67 钟香崇,赵海雷.氧化物-非氧化物复合耐火材料高温性能的研究.耐火材料,2000,34(2)63-68.
    68 W. D. Kingery. Introduce to Ceramics. U.S.A. John Wiley & Sons, Inc. 1960. 635-639.
    69 赵海雷.锆刚玉莫来石—氮化硼系复合材料的高温力学性能与显微结构.北京科技大学.博士论文.1995.
    70 陈肇友.陈肇友耐火材料论文选.北京:冶金工业出版社.1998.51-57.
    71 黄朝晖.β-Sailon.Al2O3-SiC复相材料的研制.北京科技大学.博士论文.2003.
    72 王国雄.高炉用Si3N4结合SiC砖性能的研究.东北大学.博士论文.1989.
    73 张丙怀.熔融还原文集(1988-1989).《钢铁》编辑部.1990.96.
    74 刘军,余正国,罗启富.β-Sialon陶瓷的抗热震性.江苏理工大学学报,1995,16(1)37-42.
    75 Zhong Xiangchong, Zhao Hailei. High Temperature Properties of Refractory Oxide-Nonoxide Composites. Prec., 3rd Intern. Syrup. On Refr. Beijing, China,1998:332-336.
    76 M. B. Trigg. The Steel Liquid Erosions of Several Non-oxide Ceramics. J Br Ceram.Trans. 87(1988)153.
    77 Kenneth J.D. MacKenziea, Carolyn M. Shepparda, Glen C. Barrisa. Kinetics and mechanism of thermal oxidation of sialon ceramic powders. Thermochimica Acta. 1998, 318: 91-100.
    78 R.Ramesh, P.Byme, M.J.Pomeroy. OXIDATION STUDIES OF A HIGH AI SUBSTITUTED β-SIALON. Journal of materials processing technology. 1996. 56: 600-608.
    79 黄向东.β-Sialon-15R及15R.Al2O3复相材料的研究.北京科技大学.博士论文.2001.
    80 钟香崇.矾土基耐火材料的研究与发展.耐火材料,1997,31(2)63-68.
    81 钟香崇.钟香崇耐火材料论文集.北京:冶金工业出版社.1991.365-376.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700