用户名: 密码: 验证码:
接头角板对客车车身基本结构承载性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文论述了客车车身结构杆连接改进的重要性,综述了国内外研究汽车车身结构接头的进展。本文选择由闭口薄壁矩形钢管焊成的二杆结构,探讨L型接头加角板及其参数对客车车身基本结构刚度和强度的影响,以寻找其中的规律,从而为客车车身结构接头设计提供理论依据。
     本文采用有限元法和ANSYS结构分析软件进行计算,并进行了实验验证。从计算和实验分析可归纳出下列结果:
     (1)加角板可显著提高客车车身基本结构的刚度。角板越大,位移减小系数也越大。位移减小系数几乎与所加的角板边长呈线性关系。在弯曲工况下,当角板边长≥38mm,位移减小系数都在10%以上。
     (2)加角板可大幅度地降低客车车身基本结构接头处的最大米塞斯应力。角板越大,最大米塞斯应力下降得越多。角板边长≥38mm,最大米塞斯应力下降了25%以上。对于由两根等截面的方管或矩形管焊接而成的基本结构,在弯曲工况下,当角板边长与基本结构的厚度之比约为1.2时,应力下降趋于平缓。加角板后,最大米塞斯应力出现的位置有的发生了转移,有的没有发生转移。
     (3)角板厚度对接头处的最大米塞斯应力影响较小。建议对于L型接头,若两根杆件壁厚一样,取角板厚度与杆件的壁厚一样。若两根杆件壁厚不一样,取角板厚度与两根杆件中壁厚较薄的一样。
     (4)L型接头加直角边长不等的三角板后,基本结构产生的最大米塞斯应力,总体来说,介于加边长等于短边的等直角边三角板与边长等于长边的等直角边三角板之间。
     (5)不加封闭板的圆弧角板,应力减小系数比同直角边长的三角板来得小。圆弧角板的圆弧半径越大,应力减小系数越大。
     (6)加了带封闭板的圆弧角板后,应力减小系数比没加封闭板时来得大。但它与同直角边长的三角板比,并没有明显的规律。带封闭板的圆弧角板的圆弧半径越大,应力减小系数也越大。
     本项研究成果对农业机械结构和其它工程结构设计等也有普遍的参考意义。
The importance of joint improvement of bus structure has been discussed in this paper. And the domestic and international progress of studying the joints of automobile structure has been summarized. This paper selects two members which are welded by close thin wall rectangle steel tubes, discusses the influence of L-joint of adding bracket joint and its parameter on the rigidity and strength of bus basic structure, in order to seek its law. So it can offer theoretical basis for bus joint design.
    In this paper, it is calculated with finite element method and structural analysis
    software--ANSYS, and which is verified by the tests. From the calculation and
    experimental analysis, the following results can be summed up:
    (1) Adding bracket joints can apparently raise the rigidity of bus basic structure. The bigger is bracket joint, the greater is the displacement relief coefficient. The relation between displacement relief coefficient and the side length of bracket joints that are added is nearly linear. Under bending loads, when bracket joint side length 38 mm; the displacement relief coefficient drops by more than 10%.
    (2) Adding bracket joints can greatly reduce the maximum equivalent stress of joints for bus basic structure. The bigger bracket joint is, the more maximum equivalent stress drops. Bracket joint side length 38 mm, the maximum equivalent stress drops by more than 25%. For the basic structure that is welded by two rectangle steel tubes or two square steel tubes, under bending loads, when the thickness of basic structure is divided by bracket joint side length, which is approximately 1.2, the stress decrease tends to be smooth. After adding bracket joints, transfer occurs to some of the locations of the maximum equivalent stress.
    (3) The thickness of bracket joint has less influence over the maximum equivalent stress of joints. For L-joint, we suggest that if two members have the same thickness, we take the same thickness of bracket joints as the members. If the thickness of two
    
    
    members is different, we take the thickness of bracket joints as the thinner member.
    (4) In general, L-joint of adding triangle bracket joints of different side lengths, the maximum equivalent stress of basic structure is situated between the triangle bracket joint that is equal to short side and the triangle bracket joint that is equal to long side.
    (5) As to the arc bracket joint which carries no adding close board, stress relief coefficient is less than the same right-angled triangle bracket joint. The bigger is the radius of arc bracket joints, the greater is the stress relief coefficient.
    (6) As to the arc bracket joint which carries adding close board, stress relief coefficient is bigger than arc bracket joint which carries no adding close board. But it is compared to the same right-angled bracket joint, which has no obvious law. The bigger is the radius of arc bracket joints which have adding close board, the greater is its stress relief coefficient.
    The research findings can be widely referred in agricultural mechanical structure and other engineering structural design etc.
引文
[1] 彭晓东,刘江.轻合金在汽车工业中的应用[J].汽车工艺与材料,1999,(1):1-5.
    [2] Cedric Ashley著,李虹玉译.钢制车身结构最优化研究——可降低车身质量25%[J].轻型汽车技术,1996.(5):19-23.
    [3] 靳福来.汽车轻量化技术现状[J].汽车技术,1995,(9):56-58.
    [4] 陈少华.客车骨架结构优化分析技术及应用[J].客车技术与研究,1996,18(2):77-82.
    [5] 李涛,兰凤崇,张百杰.客车车身结构概念设计中的优化分析[J].上海汽车,2002,(1):18-22.
    [6] 兰凤崇,李涛.客车车身结构件对整车刚度的影响[J].汽车工程,2002,24(2):137-140。
    [7] 李成芳.JT6120客车轻量化设计[J].客车技术,1995,(3):4-10.
    [8] 温文源.韩祖行.客车车身结构的有限元分析及优化设计研究[J].东南大学学报,1989,19(3):32-40.
    [9] 冯国胜.汽车车架动特性分析及应用[J].汽车技术,1994,(8):9-12.
    [10] 冯国胜.汽车车架结构参数的优化设计[J].汽车技术,1994,(3):6-11.
    [11] 冯国胜.客车车身结构的有限元分析[J].机械工程学报,1999,35(1):91-94.
    [12] 廖抒华,沈光烈.GX6930客车车身结构分析与改进[J].广西工学院学报,1995,6(2):46-50.
    [13] 顾力强,林忠钦,王为盛.FYC6100大客车车身结构有限元分析[J].机械设计与研究,1998,(4):55-56.
    [14] 高卫民,王宏雁.汽车结构分析有限元法[J].汽车研究与开发,2000,(6):30-32.
    [15] 施康.蒙皮对客车车身底架和顶棚结构强度和刚度的影响[J].汽车研究与开发,2000,(6):33-36.
    [16] 于春明,郭迎春.DD6980QS客车骨架轻量化强度计算[J].客车技术,2001,(3):21-23.
    [17] 刘白洲.利用Super SAP进行客车车身结构的有限元分析[J].客车技术与研究,1994,16(2):92-97.
    [18] 何天明,蒋维铭,刘昆敏.SZK6700H型客车半承载式车身骨架的有限元分析与测量[J].
    
    专用汽车,1993,(4):20-23.
    [19] 何天明,徐向农,杨万福等.半承载式客车车身强度分析[J].武汉汽车工业大学学报,1996,18(1):6-10.
    [20] 韩朴.我国客车业现状和发展[N].中国汽车报,2001-7-9(6).
    [21] 叶翔.我国道路客运业的现状及发展对客车制造业的影响[J].城市车辆,2003,(6):21-23.
    [22] 邬晴晖,郭竹亭.国内外车身技术的差距[J].汽车技术,1999.(8):14-16.
    [23] 温瀛.我国大中型客车产品水平及技术发展[J].汽车技术,1993,(11):1-5.
    [24] 陈铭年.旅游客车杆连接的真实形状对变形和应力计算的影响[J].福建农业大学学报(自然科学板),1994,23(4):449-454.
    [25] 陈铭年,H.J.Beermann,庄继德.客车结构杆连接的真实形状对结构计算的影响[J].汽车工程,1996,18(1):44-50.
    [26] M.M.凯墨尔,J.A.沃尔夫著,陈砺志译.现代汽车结构分析[M].北京:人民交通出版社,1987.
    [27] M M K Lee, T Pine, T B Jones. An experimental and finite element study of the torsional behaviour of T-joints in automotive structure[J]. Proceedings of The Institution of Mechanical Engineering, Journal of Automobile Engineering. Proceedings Part D. 2001, 215(2): 231-240.
    [28] M M K Lee, T Pine, T B Jones. Automotive box section design under torsion Part 1: finite element modeling strategy[J]. Proceedings of The Institution of Mechanical Engineering, Journal of Automobile Engineering. Proceedings Part D. 2000,214(4):347-359.
    [29] M M K Lee, T Pine, T B Jones. Automotive box section design under torsion Part 2:behaviour and implications on weight reduction[J]. Proceedings of The Institution of Mechanical Engineering, Journal of Automobile Engineering. Proceedings Part D. 2000,214(5):473-487.
    [30] H.J. Beermann. English translation edited by Guy Tidbury. The Analysis of
    
    commercial vehicle structures[M].LONDON: Mechanical Engineering Publications Limited, 1989.
    [31] Chang D C. Effects of flexible connections on body structural response[C]. SAE Transactions, 1974,83:233-244.
    [32] Nikolaidis E, Lee K. A 3-D joint model for automotive structures[C]. SAE 921088.
    [33] Kellar S G, Patil S P, Zhou J n. Systematic design of automotive body structure joints using CAE and DOE[J]. Automotive Body Design & Engineering, 1993:87-95.
    [34] Lee Y W, Kwon Y W, Kwon S Y, et al. A study on the improvement of the structural joint stiffness for aluminum BIW[C]. SAE 970583.
    [35] 黄金陵.客车的承载式车身结构分析[J].汽车工程,1990,(2):44-52.
    [36] 黄金陵.汽车车架结构元件参数的优选[J].汽车技术,1984,(1):17-25.
    [37] 黄金陵.有限元法应用于汽车车架结构分析中的几个问题[J].吉林工业大学学报,1980,(1):76-88.
    [38] 谷安涛,常国振.汽车车架设计计算的有限元法[J].汽车技术,1977,(6):54-66.
    [39] 谷安涛,常国振.汽车车身计算的有限元法[J].汽车技术,1979.(4):1-24.
    [40] 谷安涛,元成浩.大客车车身结构强度的研究(上)[J].汽车技术,1981,(8):14-20.
    [41] 谷安涛.元成浩.大客车车身结构强度的研究(下)[J].汽车技术,1981,(9):19-28.
    [42] 谷安涛.我国城市客运大客车车身结构强度研究[J].汽车工程,1989,(1):29-34.
    [43] 黄天泽.大客车车身底架抗弯刚度的探讨[J].吉林工业大学学报,1981,(3):67-74.
    [44] 黄天泽.藉应力测定值推求汽车车架节点的内力因素[J].吉林工业大学学报,1983,(2):81-87.
    [45] 赵骞,邵志勇.汽车车架机械负荷的计算与实测分析[J].天津汽车,1999,(4):22-25.
    [46] 陈传颖,车架纵梁局部扭转分析[J].汽车技术,1999,(12):6-12.
    [47] 陈少华,宋建坦.汽车结构分析中对复杂截面薄壁杆件的处理方法[J].计算机辅助工程,1996,5(3):30-36.
    [48] 林中山.轿车车身的接头型式对其刚度的影响[J].国外汽车,1989,(2):15-19.
    [49] 刘文泉.车身薄板骨架接头的刚度[J].国外汽车,1989,(5):22-26.
    
    
    [50] 蒋光福.EQ140车身接头刚度分析[J].二汽科技,1992,(5):4-14.
    [51] 沈小原,许海明.车架接头刚度的实验确定[J].试验技术与试验机,1996,36(3):126-128.
    [52] 张华明,郭敬编译.汽车车身结构连接的实验设计[J].轻型汽车术,1999,(5):15-20.
    [53] 黄金陵,娄永强,龚礼洲.轿车车身结构概念模型中接头的模拟[J].机械工程学报,2000,36(3):78-81.
    [54] 陈铭年,H.J.Beermann,庄继德.客车底架斜撑对箱形框架承载性能的影响[J].中国公路学报,1996,9(4):100-104。
    [55] 陈铭年.混合法用于旅游客车平面框架的接头分析[J].福建农业大学学报,1997,26(1).98-101.
    [56] 陈铭年.客车骨架杆系接头子结构分析初探[J].福建农业大学学报,1997,26(3):382-383.
    [57] 陈铭年.客车结构纵向弯曲时载荷分配的分析[J].福建农业大学学报(自然科学板),1994.23(3):327-333.
    [58] 陈铭年.连接力矩对客车结构受扭时计算结果的影响[J].汽车运输研究,1995,14(2):53-57.
    [59] 陈铭年,H.J.Beermann,庄继德.客车结构载荷分配的计算方法[J].中国公路学报,1996,9(3):104-108.
    [60] 陈铭年,庄继德.汽车车架计算方法和结构优化变量综述[J].汽车工程,1996,18(5):285-289.
    [61] 陈铭年.车身结构制造不对称引起的实验误差的估测[J].福建农业大学学报,1998,27(4):475-479.
    [62] M H kim, M W Suh, D H Bae. Development of an optimum design technique for the bus window pillar member[J]. Proceedings of The Institution of Mechanical Engineering, Journal of Automobile Engineering. Proceeding Part D. 2001, 215(1): 11-20.
    [63] M-W Suh, J Suhr, W-H Yang. Condensed joint matrix method for the joint structure of a vehicle body[J]. Journal of Automobile Engineering. Proceedings Part D.
    
    2002,216(D1):35-41.
    [64] J.S.普齐米尼斯基著,王德荣译校.矩阵结构分析理论[M].北京:国防工业出版社,1974.
    [65] 黄天泽,黄金陵.汽车车身结构与设计[M].北京:机械工业出版社,1989.
    [66] 黄天泽.大客车车身[M].长沙:湖南大学出版社,1988.
    [67] 龚培康.汽车拖拉机有限元法基础[M].北京:机械工业出版社,1994.
    [68] 谢贻权,何福保.弹性和塑性力学中的有限单元法[M].北京:机械工业出版社,1981.
    [69] 朱伯芳.有限单元法原理与应用[M].第四版.北京:中国水利水电出版社,1998.
    [70] 周中坚,卢耀祖.机械与汽车结构的有限元分析[M].上海:同济大学出版社,2000.
    [71] 郭长江、冯国胜.SAP5P程序在客车结构分析中的应用[J].天津汽车,1992,(3):32-36.
    [72] 龚曙光.ANSYS基础应用及范例解析[M].北京:机械工业出版社,2003.
    [73] 龚曙光.ANSYS工程应用实例解析[M].北京:机械工业出版社,2003.
    [74] 任重.ANSYS实用分析教程[M].北京:北京大学出版社,2003.
    [75] GB 6792-86,客车车身骨架应力电测量方法[S].北京:中国标准出版社,1986.
    [76] 李维民.客车骨架的电测技术与分析[J].江苏工学院学报,1991,12(4):77-82.
    [77] 胡平,刘满,高以智.客车电加热预应力蒙皮残余应力的测试与有限元分析[M].汽车工程,1990,(4):26-31.
    [78] 吴宗岱,袁礼平.应变电测原理及技术[M].北京:国防工业出版社,1982.
    [79] 马力.应力状态与测点的贴片方位设计[J].北华大学学报(自然科学版),2002,3(5):455-456.
    [80] 戴娟,汪大鹏,陈蕾等.电测应力实验中应变片的粘贴技巧[J].湖南工程学院学报(自然科学版),2003,13(3):55-57.
    [81] 贺智理,李增勤.应变电测技术在产品设计中的应用[J].电气化铁道,2003,(2):32-34.
    [82] 丁锡洪主编.结构力学[M].北京:航空工业出版社,1991.
    [83] 刘鸿文.材料力学[M].第三版.北京:高等教育出版社,1992。
    [84] Horst Oehlschlaeger. Berechnung Verwindungsweicher Nutzfahrzeugrahmen auf Torsion unter BerUcksichtigung der knoten-Ausbildung[D].TU Braunschweig. 1981.
    
    
    [85] Gohrbandt U. 1986. Experimentell Verifizierte Beanspruchungberechnung von Nutzfahrzeug-rahmen. DUsseldorf:Fortschrift-Bericht der YDI-Z[D],Reihe 12, Nr, 63.
    [86] 叶天麒,周天孝.航空结构有限元分析指南[M].北京:航空工业出版社,1996
    [87] 郑大素等.直角应变花固有测量误差分析及贴片定位研究[J].烟台大学学报(自然科学与工程版),1997,10(2):126-130.
    [88] 刘明亮,高文华.应变花贴片偏位误差的分析[J].佳木斯工学院学报,1996,14(1):62-65.
    [89] 丁良旭.客车骨架电算与电测的偏差辨析[J].客车技术与研究,1992,14(4):268-270.
    [90] 康文河,傅彪,杜晓辉.应力测试中的误差分析[J].山西机械,2000,(3):57-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700